organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­selanyl-3,5-di­ethyl-1H-pyrazol-2-ium chloride

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kyiv, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: mcs@univ.kiev.ua

(Received 14 October 2011; accepted 21 October 2011; online 29 October 2011)

In the cation of the title compound, C7H12ClN2Se+·Cl, the ethyl­ene groups and the Se–Cl fragment adopt a cis configuration with a C—Se—Cl angle of 96.09 (6)°. In the crystal, inter­molecular N—H⋯Cl hydrogen bonds link two cations and two chlorine anions into centrosymmetric clusters. ππ inter­actions between the pyrazole rings [centroid–centroid distance of 3.530 (2) Å] link these clusters into columns along [001] with short inter­molecular Se⋯Cl contacts of 2.995 (1) Å.

Related literature

For reviews of organoselenium chemistry, see: Krief (1995[Krief, A. (1995). Comprehensive Organometallic Chemistry II, edited by E. V. Abel, F. G. A. Stone & G. Wilkinson. New York: Pergamon Press.]); Freudendahl et al. (2009[Freudendahl, D. M., Shahzad, S. A. & Wirth, T. (2009). Eur. J. Org. Chem. pp. 1649-1664.]). For structural studies of bis­(1H-pyrazol-4-yl)selenides, see: Seredyuk, Fritsky et al. (2010[Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772-8777.]). For structural studies of d-metal complexes of bis­(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.]); Seredyuk, Moroz et al. (2010[Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010). Acta Cryst. E66, m363.]).

[Scheme 1]

Experimental

Crystal data
  • C7H12ClN2Se+·Cl

  • Mr = 274.05

  • Monoclinic, P 21 /c

  • a = 8.1944 (6) Å

  • b = 19.3719 (10) Å

  • c = 7.1241 (3) Å

  • β = 111.025 (6)°

  • V = 1055.60 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 120 K

  • 0.30 × 0.21 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.379, Tmax = 0.699

  • 13385 measured reflections

  • 2423 independent reflections

  • 2040 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.049

  • S = 1.04

  • 2423 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.82 (3) 2.22 (3) 3.0333 (19) 172 (3)
N2—H2⋯Cl1i 0.81 (3) 2.22 (3) 3.030 (2) 178 (2)
Symmetry code: (i) -x, -y, -z+3.

Data collection: COLLECT (Bruker–Nonius, 2004[Bruker-Nonius (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aryl selenides are central reagents in organoselenium chemistry (Krief, 1995; Freudendahl et al., 2009). Pyrazole-based selenides are promising multidentate ligands for supramolecular frameworks and complexes of 3d-metals (Seredyuk et al., 2007; Seredyuk et al., 2009; Seredyuk, Moroz et al., 2010). As a part of our study of the bis(1H-pyrazol-4-yl)selenides (Seredyuk, Fritsky et al., 2010), we report the crystal structure of the title compound (Fig. 1).

In the title compound, between pairs of molecules of the compound strong N—H···Cl hydrogen bonds are observed with the distance N···Cl being 3.030 (2) and 3.0333 (19) Å (Table 1). The crystal packing exhibits π···π interactions between the pyrazol rings (centroid-centroid distance is 3.530 (2) Å) and short intermolecular Se···Cl- contacts of 2.995 (1) Å.

Related literature top

For a review of organoselenium chemistry, see: Krief (1995); Freudendahl et al. (2009). For structural studies of bis(1H-pyrazol-4-yl)selenides, see: Seredyuk, Fritsky et al. (2010). For structural studies of d-metal complexes of bis(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2007, 2009); Seredyuk, Moroz et al. (2010).

Experimental top

Mixture of 3,5-diethyl-1H-pyrazole (1.241 g, 10 mmol), selenium dioxide (1.670 g, 15 mmol) and pyridine (25 ml) was refluxed 6 h, after that pyridine was distilled off under reduced pressure. Syrup-like residue was dissolved in 20 ml of conc. HCl and put in a fridge at 4°C for one week. The obtained precipitate was filtered off and dried. In the obtained mixture, well formed orange crystals are the target compound, whereas yellowish crystals are hydrochloride of bis(3,5-diethyl-1H-pyrazol-4-yl)selenide. C7H12Cl2N2Se requires: C, 30.68; H, 4.41; N, 10.22. Found: C, 30.44; H, 4.54; N, 10.20.

Refinement top

N-bound H atoms were located on a difference Fourier map and refined isotropically. Other H atoms were placed in idealized position and constrained to ride on their parent atoms with the distances 0.98–0.99 Å and with Uiso = 1.2–1.5eq (parent atom).

Computing details top

Data collection: COLLECT (Bruker–Nonius, 2004); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric part of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
4-Chloroselanyl-3,5-diethyl-1H-pyrazol-2-ium chloride top
Crystal data top
C7H12ClN2Se+·ClF(000) = 544
Mr = 274.05Dx = 1.724 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3966 reflections
a = 8.1944 (6) Åθ = 1.0–27.5°
b = 19.3719 (10) ŵ = 4.01 mm1
c = 7.1241 (3) ÅT = 120 K
β = 111.025 (6)°Block, orange
V = 1055.60 (10) Å30.30 × 0.21 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2423 independent reflections
Radiation source: fine-focus sealed tube2040 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.032
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ scans and ω scans with κ offseth = 1010
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
k = 2325
Tmin = 0.379, Tmax = 0.699l = 99
13385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0163P)2 + 1.0004P]
where P = (Fo2 + 2Fc2)/3
2423 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C7H12ClN2Se+·ClV = 1055.60 (10) Å3
Mr = 274.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1944 (6) ŵ = 4.01 mm1
b = 19.3719 (10) ÅT = 120 K
c = 7.1241 (3) Å0.30 × 0.21 × 0.10 mm
β = 111.025 (6)°
Data collection top
Nonius KappaCCD
diffractometer
2423 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
2040 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.699Rint = 0.032
13385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
2423 reflectionsΔρmin = 0.38 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.09775 (3)0.154947 (11)0.72449 (3)0.01773 (7)
Cl10.26973 (7)0.02283 (3)1.32107 (8)0.01820 (12)
Cl20.00330 (8)0.25802 (3)0.77369 (9)0.02668 (14)
N10.0543 (3)0.06371 (10)1.1409 (3)0.0188 (4)
H10.119 (4)0.0437 (15)1.188 (4)0.040 (8)*
N20.1181 (3)0.06797 (9)1.2431 (3)0.0192 (4)
H20.162 (3)0.0557 (13)1.359 (4)0.023 (7)*
C10.0658 (3)0.11191 (10)0.9452 (3)0.0144 (4)
C20.0913 (3)0.08920 (10)0.9570 (3)0.0158 (4)
C30.1960 (3)0.09761 (10)1.1294 (3)0.0164 (4)
C40.2731 (3)0.09086 (12)0.8111 (4)0.0235 (5)
H4A0.33840.05120.83680.028*
H4B0.27180.08600.67330.028*
C50.3658 (3)0.15699 (13)0.8246 (5)0.0352 (6)
H5A0.36150.16340.96270.053*
H5B0.48800.15450.73330.053*
H5C0.30820.19600.78640.053*
C60.3877 (3)0.10861 (12)1.2043 (4)0.0247 (5)
H6A0.43350.09331.10010.030*
H6B0.44280.07961.32510.030*
C70.4393 (3)0.18281 (13)1.2570 (4)0.0353 (6)
H7A0.38840.21171.13710.053*
H7B0.56700.18691.30640.053*
H7C0.39600.19821.36170.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02534 (13)0.01435 (11)0.01690 (11)0.00085 (9)0.01169 (9)0.00111 (9)
Cl10.0180 (3)0.0205 (3)0.0173 (3)0.0003 (2)0.0077 (2)0.0031 (2)
Cl20.0454 (4)0.0144 (3)0.0276 (3)0.0047 (2)0.0220 (3)0.0042 (2)
N10.0212 (11)0.0159 (9)0.0228 (10)0.0016 (8)0.0122 (9)0.0014 (8)
N20.0281 (11)0.0145 (9)0.0156 (10)0.0028 (8)0.0084 (9)0.0021 (8)
C10.0201 (11)0.0097 (10)0.0153 (10)0.0002 (8)0.0086 (9)0.0004 (8)
C20.0209 (12)0.0095 (9)0.0194 (11)0.0004 (8)0.0101 (10)0.0010 (8)
C30.0218 (12)0.0097 (10)0.0178 (11)0.0011 (8)0.0072 (9)0.0030 (8)
C40.0181 (12)0.0209 (12)0.0307 (13)0.0004 (9)0.0076 (10)0.0010 (10)
C50.0208 (12)0.0229 (13)0.0586 (18)0.0025 (11)0.0103 (12)0.0011 (12)
C60.0196 (12)0.0232 (12)0.0276 (12)0.0002 (10)0.0039 (10)0.0023 (10)
C70.0311 (15)0.0263 (13)0.0429 (16)0.0088 (11)0.0063 (13)0.0067 (12)
Geometric parameters (Å, º) top
Se1—C11.8793 (19)C4—H4A0.9900
Se1—Cl22.2144 (6)C4—H4B0.9900
N1—C21.329 (3)C5—H5A0.9800
N1—N21.339 (3)C5—H5B0.9800
N1—H10.82 (3)C5—H5C0.9800
N2—C31.328 (3)C6—C71.507 (3)
N2—H20.81 (3)C6—H6A0.9900
C1—C31.390 (3)C6—H6B0.9900
C1—C21.391 (3)C7—H7A0.9800
C2—C41.480 (3)C7—H7B0.9800
C3—C61.482 (3)C7—H7C0.9800
C4—C51.510 (3)
C1—Se1—Cl296.09 (6)C5—C4—H4B109.2
C2—N1—N2109.64 (18)H4A—C4—H4B107.9
C2—N1—H1129 (2)C4—C5—H5A109.5
N2—N1—H1121 (2)C4—C5—H5B109.5
C3—N2—N1109.82 (19)H5A—C5—H5B109.5
C3—N2—H2128.2 (18)C4—C5—H5C109.5
N1—N2—H2121.9 (18)H5A—C5—H5C109.5
C3—C1—C2107.06 (18)H5B—C5—H5C109.5
C3—C1—Se1126.01 (16)C3—C6—C7113.1 (2)
C2—C1—Se1126.93 (16)C3—C6—H6A109.0
N1—C2—C1106.75 (19)C7—C6—H6A109.0
N1—C2—C4121.10 (19)C3—C6—H6B109.0
C1—C2—C4132.13 (19)C7—C6—H6B109.0
N2—C3—C1106.72 (19)H6A—C6—H6B107.8
N2—C3—C6121.5 (2)C6—C7—H7A109.5
C1—C3—C6131.8 (2)C6—C7—H7B109.5
C2—C4—C5112.1 (2)H7A—C7—H7B109.5
C2—C4—H4A109.2C6—C7—H7C109.5
C5—C4—H4A109.2H7A—C7—H7C109.5
C2—C4—H4B109.2H7B—C7—H7C109.5
C2—N1—N2—C31.3 (2)N1—N2—C3—C6179.63 (18)
Cl2—Se1—C1—C3101.57 (18)C2—C1—C3—N20.0 (2)
Cl2—Se1—C1—C277.53 (18)Se1—C1—C3—N2179.22 (14)
N2—N1—C2—C11.3 (2)C2—C1—C3—C6178.7 (2)
N2—N1—C2—C4179.96 (18)Se1—C1—C3—C62.1 (3)
C3—C1—C2—N10.8 (2)N1—C2—C4—C590.0 (3)
Se1—C1—C2—N1178.43 (15)C1—C2—C4—C588.4 (3)
C3—C1—C2—C4179.4 (2)N2—C3—C6—C7105.4 (3)
Se1—C1—C2—C40.1 (3)C1—C3—C6—C776.0 (3)
N1—N2—C3—C10.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.82 (3)2.22 (3)3.0333 (19)172 (3)
N2—H2···Cl1i0.81 (3)2.22 (3)3.030 (2)178 (2)
Symmetry code: (i) x, y, z+3.

Experimental details

Crystal data
Chemical formulaC7H12ClN2Se+·Cl
Mr274.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.1944 (6), 19.3719 (10), 7.1241 (3)
β (°) 111.025 (6)
V3)1055.60 (10)
Z4
Radiation typeMo Kα
µ (mm1)4.01
Crystal size (mm)0.30 × 0.21 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.379, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
13385, 2423, 2040
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.049, 1.04
No. of reflections2423
No. of parameters119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.38

Computer programs: COLLECT (Bruker–Nonius, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.82 (3)2.22 (3)3.0333 (19)172 (3)
N2—H2···Cl1i0.81 (3)2.22 (3)3.030 (2)178 (2)
Symmetry code: (i) x, y, z+3.
 

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFreudendahl, D. M., Shahzad, S. A. & Wirth, T. (2009). Eur. J. Org. Chem. pp. 1649–1664.  Web of Science CrossRef Google Scholar
First citationKrief, A. (1995). Comprehensive Organometallic Chemistry II, edited by E. V. Abel, F. G. A. Stone & G. Wilkinson. New York: Pergamon Press.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772–8777.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSeredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010). Acta Cryst. E66, m363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds