organic compounds
4-Chloroselanyl-3,5-diethyl-1H-pyrazol-2-ium chloride
aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska Street 64, 01033 Kyiv, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: mcs@univ.kiev.ua
In the cation of the title compound, C7H12ClN2Se+·Cl−, the ethylene groups and the Se–Cl fragment adopt a cis configuration with a C—Se—Cl angle of 96.09 (6)°. In the crystal, intermolecular N—H⋯Cl hydrogen bonds link two cations and two chlorine anions into centrosymmetric clusters. π–π interactions between the pyrazole rings [centroid–centroid distance of 3.530 (2) Å] link these clusters into columns along [001] with short intermolecular Se⋯Cl− contacts of 2.995 (1) Å.
Related literature
For reviews of organoselenium chemistry, see: Krief (1995); Freudendahl et al. (2009). For structural studies of bis(1H-pyrazol-4-yl)selenides, see: Seredyuk, Fritsky et al. (2010). For structural studies of d-metal complexes of bis(1H-pyrazol-4-yl)selenides, see: Seredyuk et al. (2007, 2009); Seredyuk, Moroz et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Bruker–Nonius, 2004); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811043790/cv5179sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043790/cv5179Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811043790/cv5179Isup3.cml
Mixture of 3,5-diethyl-1H-pyrazole (1.241 g, 10 mmol), selenium dioxide (1.670 g, 15 mmol) and pyridine (25 ml) was refluxed 6 h, after that pyridine was distilled off under reduced pressure. Syrup-like residue was dissolved in 20 ml of conc. HCl and put in a fridge at 4°C for one week. The obtained precipitate was filtered off and dried. In the obtained mixture, well formed orange crystals are the target compound, whereas yellowish crystals are hydrochloride of bis(3,5-diethyl-1H-pyrazol-4-yl)selenide. C7H12Cl2N2Se requires: C, 30.68; H, 4.41; N, 10.22. Found: C, 30.44; H, 4.54; N, 10.20.
N-bound H atoms were located on a difference Fourier map and refined isotropically. Other H atoms were placed in idealized position and constrained to ride on their parent atoms with the distances 0.98–0.99 Å and with Uiso = 1.2–1.5eq (parent atom).
Data collection: COLLECT (Bruker–Nonius, 2004); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The content of asymmetric part of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. Dashed line denotes hydrogen bond. |
C7H12ClN2Se+·Cl− | F(000) = 544 |
Mr = 274.05 | Dx = 1.724 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3966 reflections |
a = 8.1944 (6) Å | θ = 1.0–27.5° |
b = 19.3719 (10) Å | µ = 4.01 mm−1 |
c = 7.1241 (3) Å | T = 120 K |
β = 111.025 (6)° | Block, orange |
V = 1055.60 (10) Å3 | 0.30 × 0.21 × 0.10 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2423 independent reflections |
Radiation source: fine-focus sealed tube | 2040 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.032 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
ϕ scans and ω scans with κ offset | h = −10→10 |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | k = −23→25 |
Tmin = 0.379, Tmax = 0.699 | l = −9→9 |
13385 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0163P)2 + 1.0004P] where P = (Fo2 + 2Fc2)/3 |
2423 reflections | (Δ/σ)max = 0.001 |
119 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C7H12ClN2Se+·Cl− | V = 1055.60 (10) Å3 |
Mr = 274.05 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1944 (6) Å | µ = 4.01 mm−1 |
b = 19.3719 (10) Å | T = 120 K |
c = 7.1241 (3) Å | 0.30 × 0.21 × 0.10 mm |
β = 111.025 (6)° |
Nonius KappaCCD diffractometer | 2423 independent reflections |
Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008) | 2040 reflections with I > 2σ(I) |
Tmin = 0.379, Tmax = 0.699 | Rint = 0.032 |
13385 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.50 e Å−3 |
2423 reflections | Δρmin = −0.38 e Å−3 |
119 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.09775 (3) | 0.154947 (11) | 0.72449 (3) | 0.01773 (7) | |
Cl1 | −0.26973 (7) | −0.02283 (3) | 1.32107 (8) | 0.01820 (12) | |
Cl2 | 0.00330 (8) | 0.25802 (3) | 0.77369 (9) | 0.02668 (14) | |
N1 | −0.0543 (3) | 0.06371 (10) | 1.1409 (3) | 0.0188 (4) | |
H1 | −0.119 (4) | 0.0437 (15) | 1.188 (4) | 0.040 (8)* | |
N2 | 0.1181 (3) | 0.06797 (9) | 1.2431 (3) | 0.0192 (4) | |
H2 | 0.162 (3) | 0.0557 (13) | 1.359 (4) | 0.023 (7)* | |
C1 | 0.0658 (3) | 0.11191 (10) | 0.9452 (3) | 0.0144 (4) | |
C2 | −0.0913 (3) | 0.08920 (10) | 0.9570 (3) | 0.0158 (4) | |
C3 | 0.1960 (3) | 0.09761 (10) | 1.1294 (3) | 0.0164 (4) | |
C4 | −0.2731 (3) | 0.09086 (12) | 0.8111 (4) | 0.0235 (5) | |
H4A | −0.3384 | 0.0512 | 0.8368 | 0.028* | |
H4B | −0.2718 | 0.0860 | 0.6733 | 0.028* | |
C5 | −0.3658 (3) | 0.15699 (13) | 0.8246 (5) | 0.0352 (6) | |
H5A | −0.3615 | 0.1634 | 0.9627 | 0.053* | |
H5B | −0.4880 | 0.1545 | 0.7333 | 0.053* | |
H5C | −0.3082 | 0.1960 | 0.7864 | 0.053* | |
C6 | 0.3877 (3) | 0.10861 (12) | 1.2043 (4) | 0.0247 (5) | |
H6A | 0.4335 | 0.0933 | 1.1001 | 0.030* | |
H6B | 0.4428 | 0.0796 | 1.3251 | 0.030* | |
C7 | 0.4393 (3) | 0.18281 (13) | 1.2570 (4) | 0.0353 (6) | |
H7A | 0.3884 | 0.2117 | 1.1371 | 0.053* | |
H7B | 0.5670 | 0.1869 | 1.3064 | 0.053* | |
H7C | 0.3960 | 0.1982 | 1.3617 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.02534 (13) | 0.01435 (11) | 0.01690 (11) | −0.00085 (9) | 0.01169 (9) | 0.00111 (9) |
Cl1 | 0.0180 (3) | 0.0205 (3) | 0.0173 (3) | 0.0003 (2) | 0.0077 (2) | 0.0031 (2) |
Cl2 | 0.0454 (4) | 0.0144 (3) | 0.0276 (3) | 0.0047 (2) | 0.0220 (3) | 0.0042 (2) |
N1 | 0.0212 (11) | 0.0159 (9) | 0.0228 (10) | −0.0016 (8) | 0.0122 (9) | 0.0014 (8) |
N2 | 0.0281 (11) | 0.0145 (9) | 0.0156 (10) | 0.0028 (8) | 0.0084 (9) | 0.0021 (8) |
C1 | 0.0201 (11) | 0.0097 (10) | 0.0153 (10) | −0.0002 (8) | 0.0086 (9) | −0.0004 (8) |
C2 | 0.0209 (12) | 0.0095 (9) | 0.0194 (11) | 0.0004 (8) | 0.0101 (10) | −0.0010 (8) |
C3 | 0.0218 (12) | 0.0097 (10) | 0.0178 (11) | 0.0011 (8) | 0.0072 (9) | −0.0030 (8) |
C4 | 0.0181 (12) | 0.0209 (12) | 0.0307 (13) | −0.0004 (9) | 0.0076 (10) | −0.0010 (10) |
C5 | 0.0208 (12) | 0.0229 (13) | 0.0586 (18) | 0.0025 (11) | 0.0103 (12) | 0.0011 (12) |
C6 | 0.0196 (12) | 0.0232 (12) | 0.0276 (12) | 0.0002 (10) | 0.0039 (10) | −0.0023 (10) |
C7 | 0.0311 (15) | 0.0263 (13) | 0.0429 (16) | −0.0088 (11) | 0.0063 (13) | −0.0067 (12) |
Se1—C1 | 1.8793 (19) | C4—H4A | 0.9900 |
Se1—Cl2 | 2.2144 (6) | C4—H4B | 0.9900 |
N1—C2 | 1.329 (3) | C5—H5A | 0.9800 |
N1—N2 | 1.339 (3) | C5—H5B | 0.9800 |
N1—H1 | 0.82 (3) | C5—H5C | 0.9800 |
N2—C3 | 1.328 (3) | C6—C7 | 1.507 (3) |
N2—H2 | 0.81 (3) | C6—H6A | 0.9900 |
C1—C3 | 1.390 (3) | C6—H6B | 0.9900 |
C1—C2 | 1.391 (3) | C7—H7A | 0.9800 |
C2—C4 | 1.480 (3) | C7—H7B | 0.9800 |
C3—C6 | 1.482 (3) | C7—H7C | 0.9800 |
C4—C5 | 1.510 (3) | ||
C1—Se1—Cl2 | 96.09 (6) | C5—C4—H4B | 109.2 |
C2—N1—N2 | 109.64 (18) | H4A—C4—H4B | 107.9 |
C2—N1—H1 | 129 (2) | C4—C5—H5A | 109.5 |
N2—N1—H1 | 121 (2) | C4—C5—H5B | 109.5 |
C3—N2—N1 | 109.82 (19) | H5A—C5—H5B | 109.5 |
C3—N2—H2 | 128.2 (18) | C4—C5—H5C | 109.5 |
N1—N2—H2 | 121.9 (18) | H5A—C5—H5C | 109.5 |
C3—C1—C2 | 107.06 (18) | H5B—C5—H5C | 109.5 |
C3—C1—Se1 | 126.01 (16) | C3—C6—C7 | 113.1 (2) |
C2—C1—Se1 | 126.93 (16) | C3—C6—H6A | 109.0 |
N1—C2—C1 | 106.75 (19) | C7—C6—H6A | 109.0 |
N1—C2—C4 | 121.10 (19) | C3—C6—H6B | 109.0 |
C1—C2—C4 | 132.13 (19) | C7—C6—H6B | 109.0 |
N2—C3—C1 | 106.72 (19) | H6A—C6—H6B | 107.8 |
N2—C3—C6 | 121.5 (2) | C6—C7—H7A | 109.5 |
C1—C3—C6 | 131.8 (2) | C6—C7—H7B | 109.5 |
C2—C4—C5 | 112.1 (2) | H7A—C7—H7B | 109.5 |
C2—C4—H4A | 109.2 | C6—C7—H7C | 109.5 |
C5—C4—H4A | 109.2 | H7A—C7—H7C | 109.5 |
C2—C4—H4B | 109.2 | H7B—C7—H7C | 109.5 |
C2—N1—N2—C3 | 1.3 (2) | N1—N2—C3—C6 | −179.63 (18) |
Cl2—Se1—C1—C3 | −101.57 (18) | C2—C1—C3—N2 | 0.0 (2) |
Cl2—Se1—C1—C2 | 77.53 (18) | Se1—C1—C3—N2 | 179.22 (14) |
N2—N1—C2—C1 | −1.3 (2) | C2—C1—C3—C6 | 178.7 (2) |
N2—N1—C2—C4 | 179.96 (18) | Se1—C1—C3—C6 | −2.1 (3) |
C3—C1—C2—N1 | 0.8 (2) | N1—C2—C4—C5 | 90.0 (3) |
Se1—C1—C2—N1 | −178.43 (15) | C1—C2—C4—C5 | −88.4 (3) |
C3—C1—C2—C4 | 179.4 (2) | N2—C3—C6—C7 | −105.4 (3) |
Se1—C1—C2—C4 | 0.1 (3) | C1—C3—C6—C7 | 76.0 (3) |
N1—N2—C3—C1 | −0.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.82 (3) | 2.22 (3) | 3.0333 (19) | 172 (3) |
N2—H2···Cl1i | 0.81 (3) | 2.22 (3) | 3.030 (2) | 178 (2) |
Symmetry code: (i) −x, −y, −z+3. |
Experimental details
Crystal data | |
Chemical formula | C7H12ClN2Se+·Cl− |
Mr | 274.05 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 8.1944 (6), 19.3719 (10), 7.1241 (3) |
β (°) | 111.025 (6) |
V (Å3) | 1055.60 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.01 |
Crystal size (mm) | 0.30 × 0.21 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (XPREP in SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.379, 0.699 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13385, 2423, 2040 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.049, 1.04 |
No. of reflections | 2423 |
No. of parameters | 119 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.38 |
Computer programs: COLLECT (Bruker–Nonius, 2004), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.82 (3) | 2.22 (3) | 3.0333 (19) | 172 (3) |
N2—H2···Cl1i | 0.81 (3) | 2.22 (3) | 3.030 (2) | 178 (2) |
Symmetry code: (i) −x, −y, −z+3. |
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker–Nonius (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Freudendahl, D. M., Shahzad, S. A. & Wirth, T. (2009). Eur. J. Org. Chem. pp. 1649–1664. Web of Science CrossRef Google Scholar
Krief, A. (1995). Comprehensive Organometallic Chemistry II, edited by E. V. Abel, F. G. A. Stone & G. Wilkinson. New York: Pergamon Press. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010). Tetrahedron, 66, 8772–8777. Web of Science CSD CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef Google Scholar
Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396. Web of Science CrossRef IUCr Journals Google Scholar
Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010). Acta Cryst. E66, m363. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Aryl selenides are central reagents in organoselenium chemistry (Krief, 1995; Freudendahl et al., 2009). Pyrazole-based selenides are promising multidentate ligands for supramolecular frameworks and complexes of 3d-metals (Seredyuk et al., 2007; Seredyuk et al., 2009; Seredyuk, Moroz et al., 2010). As a part of our study of the bis(1H-pyrazol-4-yl)selenides (Seredyuk, Fritsky et al., 2010), we report the crystal structure of the title compound (Fig. 1).
In the title compound, between pairs of molecules of the compound strong N—H···Cl hydrogen bonds are observed with the distance N···Cl being 3.030 (2) and 3.0333 (19) Å (Table 1). The crystal packing exhibits π···π interactions between the pyrazol rings (centroid-centroid distance is 3.530 (2) Å) and short intermolecular Se···Cl- contacts of 2.995 (1) Å.