metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[5-(4-bromo­phen­yl)-4-(tert-but­­oxy­carbon­yl)pyrrolidine-2-carboxyl­ato]copper(II) dihydrate

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and cDepartment of Chemistry, Middle East Technical University, Ankara 06531, Turkey
*Correspondence e-mail: kudr@org.chem.msu.ru

(Received 15 October 2011; accepted 22 October 2011; online 29 October 2011)

In the title compound, [Cu(C16H19BrNO4)2]·2H2O, the CuII ion resides on an inversion centre and is coordinated by two O and two N atoms from two enanti­omeric 5-(4-bromo­phen­yl)-4-(tert-but­oxy­carbon­yl)pyrrolidine-2-carboxyl­ate ligands in a distorted square-planar geometry. The relative stereochemistry of the three stereogenic C atoms in each ligand has been determined. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane. The crystal studied was twinned by pseudo­merohedry with twin fractions of 0.719 (3) and 0.281 (3).

Related literature

For details of the ligand synthesis, see: Kudryavtsev et al. (2006[Kudryavtsev, K. V., Tsentalovich, M. Yu., Yegorov, A. S. & Kolychev, E. L. (2006). J. Heterocycl. Chem. 43, 1461-1466.], 2010[Kudryavtsev, K. V. (2010). Russ. J. Org. Chem. 46, 372-379.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H19BrNO4)2]·2H2O

  • Mr = 838.04

  • Monoclinic, P 21 /c

  • a = 15.251 (6) Å

  • b = 10.555 (4) Å

  • c = 10.541 (4) Å

  • β = 90.423 (6)°

  • V = 1696.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.06 mm−1

  • T = 150 K

  • 0.32 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.441, Tmax = 0.862

  • 12662 measured reflections

  • 3268 independent reflections

  • 2968 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.161

  • S = 1.09

  • 3268 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2 0.82 2.15 2.968 (13) 180
O5—H52⋯O2i 0.82 2.18 3.001 (14) 180
N1—H⋯O2ii 0.93 1.99 2.916 (9) 173
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To the best of our knowledge this is the first X-ray structural analysis of metal complex with 5-arylpyrrolidine-2,4-dicarboxylic acid derivative. In the title compound, an α-amino acid ligand contains additional structural elements - aryl substituent and second carboxylic function, that allows subsequent tuning of complex physico-chemical properties including supramolecular assemblies formation. In the centrosymmetric title complex central copper atom has square-planar coordination environment. There are no additional axial ligands, since both axial positions are shielded by lateral phenyl substituents (Fig. 1). The crystal lattice contains one crystallographycally independent solvent water molecule. Layers parallel to bc-plane are formed by N—H···O=C and H2O···O=C hydrogen bonds (Table 1, Fig. 2). These layers are linked by weak van-der-Waals interactions between neighbouring t-Bu groups (Fig. 3).

Related literature top

For details of the ligand synthesis, see: Kudryavtsev et al. (2006, 2010).

Experimental top

(2S*,4S*,5R*)-5-(4-Bromophenyl)- 4-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (0.200 g, 0.54 mmol) was suspended in 6 ml of methanol. Anhydrous copper(II) chloride (0.036 g, 0.27 mmol) was added to the suspension in one portion under stirring. The deep blue solution formed immediately. After 1 h the solution was diluted with methanol to 9 mM concentration and subjected to slow evaporation at ambient temperature yielding deep blue crystals of the title complex compound.

Refinement top

All hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methyne groups; C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups; C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups; C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; N—H = 0.93 Å and Uiso(H) = 1.2Ueq(N) for NH group; O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O) for water molecule.

The studied crystal was pseudomerohedrally twinned (1 0 0 0 - 1 0 0 0 - 1). The refinement of twin fractions yielded in 0.719 (3)/0.281 (3).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted [symmetry code: (A) -x, -y, 2 - z]. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms (except amino) are omitted for clarity.
[Figure 2] Fig. 2. Layers parallel to bc plane. Lateral bromophenyl (–C6H4Br) groups, butoxycarbonyl (–CO2tBu) substituents and hydrogen atoms (except amino and water) are omitted for clarity. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A portion of the crystal packing viewed along axis a. Two parallel laeyers are shown. Hydrogen atoms (except amino and water) are omitted for clarity. Hydrogen bonds are drawn as dashed lines.
Bis[5-(4-bromophenyl)-4-(tert-butoxycarbonyl)pyrrolidine-2- carboxylato]copper(II) dihydrate top
Crystal data top
[Cu(C16H19BrNO4)2]·2H2OF(000) = 854
Mr = 838.04Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4476 reflections
a = 15.251 (6) Åθ = 2.4–25.6°
b = 10.555 (4) ŵ = 3.06 mm1
c = 10.541 (4) ÅT = 150 K
β = 90.423 (6)°Prism, light-blue
V = 1696.9 (11) Å30.32 × 0.20 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
3268 independent reflections
Radiation source: fine-focus sealed tube2968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.441, Tmax = 0.862k = 1313
12662 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0259P)2 + 19.8322P]
where P = (Fo2 + 2Fc2)/3
3268 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.12 e Å3
Crystal data top
[Cu(C16H19BrNO4)2]·2H2OV = 1696.9 (11) Å3
Mr = 838.04Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.251 (6) ŵ = 3.06 mm1
b = 10.555 (4) ÅT = 150 K
c = 10.541 (4) Å0.32 × 0.20 × 0.05 mm
β = 90.423 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
3268 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2968 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.862Rint = 0.053
12662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0259P)2 + 19.8322P]
where P = (Fo2 + 2Fc2)/3
3268 reflectionsΔρmax = 0.75 e Å3
218 parametersΔρmin = 1.12 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00001.00000.0234 (3)
Br10.28687 (6)0.06433 (8)1.37487 (10)0.0343 (2)
N10.0529 (4)0.0100 (6)0.8311 (7)0.0205 (14)
H0.01920.06310.77990.025*
O10.0194 (3)0.1801 (4)0.9867 (6)0.0231 (13)
O20.0442 (4)0.3320 (6)0.8483 (6)0.0328 (15)
O30.3162 (4)0.1083 (5)0.7398 (6)0.0257 (13)
O40.3285 (4)0.1004 (5)0.6961 (7)0.0321 (15)
C10.1464 (5)0.0587 (7)0.8354 (8)0.0200 (17)
H10.14550.15260.82280.024*
C20.1854 (5)0.0039 (8)0.7160 (8)0.0234 (18)
H20.16620.04730.64090.028*
C30.1413 (6)0.1349 (8)0.7051 (8)0.0254 (18)
H3A0.17790.20110.74580.030*
H3B0.13120.15800.61520.030*
C40.0542 (5)0.1190 (8)0.7750 (8)0.0235 (17)
H40.00530.12530.71150.028*
C50.0399 (5)0.2194 (7)0.8769 (9)0.0234 (17)
C60.2852 (6)0.0073 (7)0.7164 (7)0.0223 (17)
C70.4129 (5)0.1301 (8)0.7503 (9)0.0271 (18)
C80.4490 (7)0.0602 (10)0.8626 (11)0.044 (3)
H8A0.41670.08470.93880.066*
H8B0.44290.03120.84880.066*
H8C0.51120.08130.87380.066*
C90.4171 (6)0.2711 (9)0.7707 (12)0.046 (3)
H9A0.38570.29310.84840.069*
H9B0.47850.29750.77860.069*
H9C0.38980.31440.69830.069*
C100.4562 (6)0.0945 (10)0.6271 (11)0.041 (2)
H10A0.45630.00210.61810.061*
H10B0.42370.13230.55610.061*
H10C0.51670.12580.62710.061*
C110.1897 (5)0.0298 (7)0.9624 (8)0.0210 (17)
C120.2329 (5)0.0837 (7)0.9889 (9)0.0243 (18)
H120.24050.14480.92370.029*
C130.2650 (5)0.1081 (7)1.1107 (9)0.0257 (18)
H130.29720.18351.12680.031*
C140.2507 (6)0.0250 (8)1.2065 (9)0.030 (2)
C150.2117 (6)0.0916 (8)1.1805 (10)0.034 (2)
H150.20600.15301.24580.041*
C160.1813 (5)0.1178 (8)1.0598 (9)0.0252 (18)
H160.15430.19721.04290.030*
O50.0873 (9)0.5829 (11)0.9593 (12)0.107 (4)
H510.07550.51360.92850.128*
H520.05160.60631.01210.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0179 (6)0.0235 (7)0.0287 (8)0.0049 (6)0.0057 (7)0.0036 (6)
Br10.0351 (4)0.0340 (4)0.0335 (5)0.0043 (4)0.0055 (5)0.0007 (4)
N10.017 (3)0.023 (3)0.022 (3)0.001 (3)0.001 (3)0.007 (3)
O10.020 (3)0.008 (2)0.041 (4)0.007 (2)0.009 (3)0.002 (2)
O20.046 (4)0.025 (3)0.027 (4)0.013 (3)0.001 (3)0.001 (3)
O30.026 (3)0.011 (2)0.040 (4)0.002 (2)0.009 (3)0.004 (3)
O40.027 (3)0.017 (3)0.052 (4)0.000 (3)0.008 (3)0.007 (3)
C10.020 (4)0.006 (3)0.033 (5)0.001 (3)0.010 (3)0.001 (3)
C20.023 (4)0.023 (4)0.024 (4)0.001 (3)0.008 (3)0.003 (3)
C30.030 (4)0.019 (4)0.028 (5)0.002 (3)0.006 (4)0.001 (3)
C40.017 (4)0.022 (4)0.032 (5)0.001 (3)0.002 (3)0.004 (3)
C50.015 (3)0.020 (4)0.036 (5)0.005 (3)0.005 (4)0.011 (4)
C60.033 (4)0.014 (4)0.020 (4)0.003 (4)0.005 (4)0.003 (3)
C70.024 (4)0.019 (4)0.039 (5)0.001 (3)0.004 (4)0.006 (4)
C80.041 (5)0.050 (6)0.041 (6)0.006 (5)0.011 (5)0.008 (5)
C90.032 (5)0.028 (5)0.077 (8)0.015 (4)0.011 (5)0.000 (5)
C100.029 (5)0.049 (6)0.045 (6)0.004 (4)0.008 (5)0.002 (5)
C110.017 (4)0.015 (4)0.031 (5)0.003 (3)0.005 (3)0.002 (3)
C120.034 (5)0.011 (3)0.028 (4)0.003 (3)0.006 (4)0.001 (3)
C130.029 (4)0.020 (4)0.028 (5)0.003 (3)0.007 (4)0.008 (4)
C140.022 (4)0.026 (4)0.042 (6)0.010 (4)0.002 (4)0.005 (4)
C150.027 (4)0.025 (4)0.050 (6)0.002 (4)0.007 (5)0.012 (4)
C160.019 (4)0.014 (4)0.042 (5)0.006 (3)0.004 (4)0.010 (4)
O50.119 (10)0.092 (8)0.110 (10)0.037 (8)0.011 (8)0.029 (7)
Geometric parameters (Å, º) top
Cu1—O11.929 (5)C7—C81.497 (14)
Cu1—O1i1.929 (5)C7—C91.504 (12)
Cu1—N11.963 (7)C7—C101.509 (14)
Cu1—N1i1.963 (7)C8—H8A0.9800
Br1—C141.901 (10)C8—H8B0.9800
N1—C41.485 (11)C8—H8C0.9800
N1—C11.516 (10)C9—H9A0.9800
N1—H0.9300C9—H9B0.9800
O1—C51.271 (11)C9—H9C0.9800
O2—C51.228 (10)C10—H10A0.9800
O3—C61.331 (9)C10—H10B0.9800
O3—C71.495 (10)C10—H10C0.9800
O4—C61.203 (10)C11—C161.392 (12)
C1—C111.519 (12)C11—C121.394 (11)
C1—C21.544 (11)C12—C131.395 (13)
C1—H11.0000C12—H120.9500
C2—C61.523 (12)C13—C141.356 (13)
C2—C31.541 (11)C13—H130.9500
C2—H21.0000C14—C151.394 (12)
C3—C41.534 (11)C15—C161.378 (13)
C3—H3A0.9900C15—H150.9500
C3—H3B0.9900C16—H160.9500
C4—C51.525 (12)O5—H510.8198
C4—H41.0000O5—H520.8200
O1—Cu1—O1i180.0O3—C7—C8109.9 (7)
O1—Cu1—N185.6 (3)O3—C7—C9101.8 (7)
O1i—Cu1—N194.4 (3)C8—C7—C9111.1 (9)
O1—Cu1—N1i94.4 (3)O3—C7—C10109.6 (7)
O1i—Cu1—N1i85.6 (3)C8—C7—C10113.4 (8)
N1—Cu1—N1i179.999 (1)C9—C7—C10110.6 (8)
C4—N1—C1107.9 (6)C7—C8—H8A109.5
C4—N1—Cu1108.6 (5)C7—C8—H8B109.5
C1—N1—Cu1112.6 (5)H8A—C8—H8B109.5
C4—N1—H109.3C7—C8—H8C109.5
C1—N1—H109.3H8A—C8—H8C109.5
Cu1—N1—H109.3H8B—C8—H8C109.5
C5—O1—Cu1115.2 (5)C7—C9—H9A109.5
C6—O3—C7120.2 (6)C7—C9—H9B109.5
N1—C1—C11111.2 (6)H9A—C9—H9B109.5
N1—C1—C2101.5 (6)C7—C9—H9C109.5
C11—C1—C2117.7 (6)H9A—C9—H9C109.5
N1—C1—H1108.7H9B—C9—H9C109.5
C11—C1—H1108.7C7—C10—H10A109.5
C2—C1—H1108.7C7—C10—H10B109.5
C6—C2—C3114.5 (7)H10A—C10—H10B109.5
C6—C2—C1113.5 (7)C7—C10—H10C109.5
C3—C2—C1105.9 (6)H10A—C10—H10C109.5
C6—C2—H2107.5H10B—C10—H10C109.5
C3—C2—H2107.5C16—C11—C12118.1 (8)
C1—C2—H2107.5C16—C11—C1118.4 (7)
C4—C3—C2104.2 (6)C12—C11—C1123.4 (7)
C4—C3—H3A110.9C11—C12—C13120.3 (8)
C2—C3—H3A110.9C11—C12—H12119.8
C4—C3—H3B110.9C13—C12—H12119.8
C2—C3—H3B110.9C14—C13—C12120.6 (8)
H3A—C3—H3B108.9C14—C13—H13119.7
N1—C4—C5110.8 (7)C12—C13—H13119.7
N1—C4—C3107.8 (6)C13—C14—C15119.7 (9)
C5—C4—C3113.0 (7)C13—C14—Br1120.4 (7)
N1—C4—H4108.4C15—C14—Br1119.8 (7)
C5—C4—H4108.4C16—C15—C14119.9 (8)
C3—C4—H4108.4C16—C15—H15120.0
O2—C5—O1123.6 (8)C14—C15—H15120.0
O2—C5—C4119.4 (8)C15—C16—C11121.0 (8)
O1—C5—C4116.9 (7)C15—C16—H16119.5
O4—C6—O3125.9 (8)C11—C16—H16119.5
O4—C6—C2124.6 (8)H51—O5—H52113.1
O3—C6—C2109.4 (7)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.822.152.968 (13)180
O5—H52···O2ii0.822.183.001 (14)180
N1—H···O2iii0.931.992.916 (9)173
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H19BrNO4)2]·2H2O
Mr838.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.251 (6), 10.555 (4), 10.541 (4)
β (°) 90.423 (6)
V3)1696.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.06
Crystal size (mm)0.32 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.441, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
12662, 3268, 2968
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.161, 1.09
No. of reflections3268
No. of parameters218
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0259P)2 + 19.8322P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.75, 1.12

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O20.822.152.968 (13)179.8
O5—H52···O2i0.822.183.001 (14)179.7
N1—H···O2ii0.931.992.916 (9)172.7
Symmetry codes: (i) x, y+1, z+2; (ii) x, y1/2, z+3/2.
 

Acknowledgements

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11–03-00630-a and 11–03-91375-ST-a) and State Contract No. 11.519.11.2032.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKudryavtsev, K. V. (2010). Russ. J. Org. Chem. 46, 372–379.  Web of Science CrossRef CAS Google Scholar
First citationKudryavtsev, K. V., Tsentalovich, M. Yu., Yegorov, A. S. & Kolychev, E. L. (2006). J. Heterocycl. Chem. 43, 1461–1466.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds