metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ2-acetato-κ12O:O′-(azido-κN)bis­­(methanol-κO)-μ3-oxido-trichromium(III) methanol monosolvate

aCollege of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
*Correspondence e-mail: jgq3518@163.com

(Received 12 August 2011; accepted 27 September 2011; online 5 October 2011)

In the crystal structure of the title complex, [Cr3(CH3CO2)6(N3)O(CH3OH)2]·CH3OH, the trinuclear core has a central O atom; two methanol mol­ecules and an azide ion are coordinated to the CrIII atoms in the core. The three CrIII atoms form vertices of a nearly equilateral triangle. Each of the six acetate carboxyl­ate groups bridges a Cr—O—Cr fragment. In the crystal, the molecules inter­act with methanol solvent mol­ecules through O—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional hydrogen-bonded network parallel to (100).

Related literature

The design and synthesis of bioactive organic metal complexes have attracted attention since the deficiency of certain trace metals can cause diseases and disorders, see: Farrel (1999[Farrel, N. (1999). In Use of Inorganic Chemistry in Medicine. Cambridge: Royal Society of Chemistry.]). For the supplementation of animal diets with chromium, see: Vincent (2000[Vincent, J. B. (2000). Acc. Chem. Res., 33, 503-510.]). For chromium carboxyl­ate complexes, see: Anson et al. (1997[Anson, C. E., Bourke, J. P., Cannon, R. D., Jayasooriya, U. A., Molinier, M. & Powell, P. A. (1997). Inorg. Chem. 36, 1265-1267.]); Chang & Jeffrey (1970[Chang, S. C. & Jeffrey, G. A. (1970). Acta Cryst. B26, 673-683.]); Fujihara et al. (1998[Fujihara, T., Aonahata, J., Kumakura, S., Nagasawa, A., Murakami, K. & Ito, T. (1998). Inorg. Chem. 37, 3779-3784.]). For the synthesis of the starting material, [Cr3O(CH3CO2)6(H2O)3]Cl·6H2O, see: Earnshaw et al. (1966[Earnshaw, A., Figgis, B. N. & Lewis, J. J. (1966). J. Chem. Soc. A, 12, 1656-1663.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr3(C2H3O2)6(N3)O(CH4O)2]·CH4O

  • Mr = 664.42

  • Monoclinic, C c

  • a = 21.165 (5) Å

  • b = 10.609 (3) Å

  • c = 15.641 (4) Å

  • β = 130.484 (4)°

  • V = 2671.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 153 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.859

  • 6800 measured reflections

  • 3692 independent reflections

  • 3155 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.130

  • S = 1.08

  • 3692 reflections

  • 343 parameters

  • 986 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1110 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16F⋯N1i 0.96 1.85 2.734 (4) 151
O16—H16F⋯O3i 0.96 2.36 2.972 (3) 122
O16—H16F⋯O9i 0.96 2.54 3.254 (5) 132
O16—H16F⋯N2i 0.96 2.63 3.370 (5) 134
O15—H15A⋯N1ii 0.83 1.91 2.621 (5) 144
O15—H15A⋯N2ii 0.83 2.58 3.332 (5) 152
O14—H14D⋯O16 0.82 2.03 2.602 (5) 126
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of bioactive organic metal complexes have attracted intense attention in recent years, since the deficiency of certain trace minerals can cause different diseases and disorders (Farrel, 1999). Among these, Chromium (III) is known to activate enzymes, maintain protein stability and enhance carbohydrate metabolism. Nutritionists believe organic chromium should be supplemented in most animal diets (Vincent, 2000). In the past, chromium carboxylate complexes, in particular the acetate complexes have been extensively studied and characterized (Chang & Jeffrey, 1970; Anson et al., 1997; Fujihara et al., 1998). In order to achieve transition metal complexes by self-assembly, and to explore the relationship between the structure and the biological properties, as one part of our systematic work, in this paper, we report on the synthesis and crystal structure of the title compound, (I)(Fig. 1).

In (I), all the Cr(III) ions have octahedral environment; the equatorial positions in two of the metal atoms are occupied by the carboxylate O atoms and the apical positions are coordinated by the O atoms of MeOH and center O atom. In the other Cr(III) atom, one of the axial positions is occupied by the N atom of the azide ion. In the crystal structure, intermolecular O—H···O and O—H ···N hydrogen bonds link the molecules into two-dimensional network. (Table 1, Figure 2)

Related literature top

The design and synthesis of bioactive organic metal complexes have attracted attention in recent years since the deficiency of certain trace minerals can cause diseases and disorders, see: Farrel (1999). For the supplementation of animal dites with chromium, see: Vincent (2000). For chromium carboxylate complexes, see: Anson et al. (1997); Chang & Jeffrey (1970); Fujihara et al. (1998). For the synthesis of the starting material, [Cr3O(C2H3O2)6(H2O)3]Cl.6H2O, see: Earnshaw et al. (1966);

Experimental top

The starting material [Cr3O (C2H3O2)6(H2O)3] Cl.6H2O was prepared by using a literature method (Earnshaw et al., 1966). [Cr3O (C2H3O2)6(H2O)3]Cl.6H2O (0.8 g, 1.0 mmol) was dissolved in methanol (10 ml) and then NaN3 (0.13 g, 2 mmol) was added. After refluxing for 2 h, the solution was filtered and the dark-green crystals were obtained by the solvent molecules allowed to evaporate slowly.

Refinement top

Carbon-bound H atoms were positioned geometrically, with C—H = 0.97Å for methylene and 0.93 Å for aromatic, and refined using a riding model, with Uiso (H) = 1.2 Ueq (C). The hydroxyl H atom was positioned geometrically and freely refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the 2D H bonded network of (I) along [100], showing molecules connected by O—H···O and O—H ···N hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
Hexa-µ2-acetato-κ12O:O'-(azido-κN)bis(methanol- κO)-µ3-oxido-trichromium(III) methanol monosolvate top
Crystal data top
[Cr3(C2H3O2)6(N3)O(CH4O)2]·CH4OZ = 4
Mr = 664.42F(000) = 1364
Monoclinic, CcDx = 1.652 Mg m3
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 21.165 (5) Åθ = 2.3–28.5°
b = 10.609 (3) ŵ = 1.27 mm1
c = 15.641 (4) ÅT = 153 K
β = 130.484 (4)°Prism, green
V = 2671.2 (12) Å30.2 × 0.16 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3692 independent reflections
Radiation source: fine-focus sealed tube3155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2323
Tmin = 0.776, Tmax = 0.859k = 1213
6800 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0594P)2 + 7.9006P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3692 reflectionsΔρmax = 0.49 e Å3
343 parametersΔρmin = 0.47 e Å3
986 restraintsAbsolute structure: Flack (1983), 1110 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[Cr3(C2H3O2)6(N3)O(CH4O)2]·CH4OV = 2671.2 (12) Å3
Mr = 664.42Z = 4
Monoclinic, CcMo Kα radiation
a = 21.165 (5) ŵ = 1.27 mm1
b = 10.609 (3) ÅT = 153 K
c = 15.641 (4) Å0.2 × 0.16 × 0.12 mm
β = 130.484 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3155 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.859Rint = 0.034
6800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.49 e Å3
S = 1.08Δρmin = 0.47 e Å3
3692 reflectionsAbsolute structure: Flack (1983), 1110 Friedel pairs
343 parametersAbsolute structure parameter: 0.05 (3)
986 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30660 (19)0.3957 (4)0.2755 (3)0.0348 (7)
C20.3497 (2)0.4770 (4)0.2475 (3)0.0456 (11)
H2A0.31620.54980.20630.068*
H2B0.35740.42950.20270.068*
H2C0.40270.50330.31580.068*
C30.31584 (19)0.0377 (3)0.3313 (3)0.0333 (10)
C40.36487 (16)0.1389 (3)0.3277 (2)0.0270 (8)
H4A0.32720.19580.26680.041*
H4B0.39830.18470.39740.041*
H4C0.40010.10020.31670.041*
C50.39185 (18)0.2443 (4)0.6047 (3)0.0320 (9)
C60.4793 (2)0.2640 (4)0.7168 (3)0.0409 (11)
H6A0.51200.30960.70450.061*
H6B0.50460.18360.74990.061*
H6C0.47640.31110.76650.061*
C70.09410 (16)0.3896 (3)0.1609 (2)0.0290 (8)
C80.01608 (18)0.4630 (3)0.0702 (3)0.0315 (9)
H8A0.01520.47870.09390.047*
H8B0.01710.41490.00190.047*
H8C0.03110.54170.05750.047*
C90.10500 (15)0.0215 (3)0.2246 (2)0.0254 (7)
C100.02352 (17)0.0967 (3)0.1558 (3)0.0336 (9)
H10A0.02280.14870.20530.050*
H10B0.01950.14880.10230.050*
H10C0.02260.03940.11680.050*
C110.1791 (2)0.2515 (4)0.4951 (3)0.0357 (10)
C120.1373 (2)0.2719 (4)0.5457 (3)0.0425 (11)
H12A0.15770.34850.58880.064*
H12B0.14990.20220.59380.064*
H12C0.07830.27780.48630.064*
C130.2572 (2)0.6577 (4)0.3982 (3)0.0376 (11)
H13A0.27270.63250.35520.056*
H13B0.29690.71730.45460.056*
H13C0.20310.69580.34940.056*
C140.3548 (2)0.1309 (4)0.6294 (3)0.0441 (12)
H14A0.38150.15800.60100.066*
H14B0.34810.20160.66120.066*
H14C0.38830.06790.68620.066*
C160.0674 (3)0.6046 (5)0.3771 (4)0.0615 (15)
H16A0.03400.66480.37810.092*
H16B0.04730.52110.37090.092*
H16C0.06410.62110.31390.092*
Cr10.24501 (3)0.37094 (6)0.39698 (4)0.03574 (16)
Cr20.19595 (3)0.16932 (5)0.20163 (5)0.03655 (17)
Cr30.25541 (3)0.06601 (6)0.44353 (4)0.03542 (16)
N10.16124 (17)0.1451 (3)0.0481 (3)0.0411 (10)
N20.09146 (19)0.0877 (4)0.0301 (3)0.0486 (11)
N30.04438 (17)0.0238 (3)0.0905 (3)0.0415 (9)
O10.23315 (13)0.2032 (2)0.3494 (2)0.0366 (6)
O20.30800 (13)0.4304 (2)0.3528 (2)0.0381 (6)
O30.26887 (12)0.2994 (2)0.21374 (18)0.0318 (5)
O40.28633 (13)0.0431 (2)0.25849 (19)0.0351 (6)
O50.31318 (13)0.0395 (2)0.40820 (19)0.0341 (6)
O60.36588 (13)0.1342 (2)0.57644 (19)0.0341 (6)
O70.35263 (15)0.3426 (2)0.5511 (2)0.0414 (7)
O80.14220 (14)0.4327 (2)0.2559 (2)0.0364 (7)
O90.10370 (13)0.2883 (2)0.12721 (19)0.0331 (6)
O100.12087 (14)0.0348 (3)0.16931 (19)0.0378 (6)
O110.14884 (12)0.0185 (2)0.32863 (18)0.0324 (6)
O120.20495 (13)0.1442 (2)0.5015 (2)0.0378 (7)
O130.18466 (13)0.3474 (2)0.4524 (2)0.0364 (6)
O140.25539 (16)0.5504 (2)0.4508 (2)0.0397 (7)
O150.27862 (14)0.0813 (3)0.5434 (2)0.0417 (7)
O160.14976 (14)0.6145 (3)0.4761 (2)0.0399 (8)
H16F0.15480.68360.51980.060*
H14D0.25350.56940.49980.060*
H15A0.24190.06690.54700.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0278 (9)0.0326 (15)0.0316 (7)0.0037 (10)0.0137 (6)0.0048 (9)
C20.0432 (12)0.0458 (19)0.0370 (13)0.0092 (13)0.0213 (9)0.0077 (13)
C30.0290 (11)0.0250 (14)0.0300 (12)0.0024 (11)0.0121 (8)0.0045 (11)
C40.0308 (9)0.0293 (15)0.0256 (10)0.0053 (10)0.0204 (7)0.0066 (11)
C50.0272 (10)0.0348 (16)0.0326 (12)0.0012 (12)0.0188 (8)0.0020 (12)
C60.0338 (12)0.0416 (18)0.0363 (14)0.0018 (14)0.0179 (10)0.0014 (14)
C70.0255 (9)0.0349 (16)0.0303 (10)0.0058 (11)0.0198 (7)0.0067 (11)
C80.0308 (11)0.0261 (15)0.0309 (12)0.0075 (12)0.0170 (8)0.0005 (11)
C90.0261 (8)0.0277 (15)0.0341 (8)0.0003 (9)0.0247 (6)0.0053 (9)
C100.0372 (10)0.0294 (16)0.0389 (12)0.0152 (11)0.0268 (8)0.0164 (11)
C110.0319 (11)0.0310 (15)0.0283 (12)0.0020 (12)0.0125 (8)0.0036 (12)
C120.0353 (12)0.0362 (18)0.0385 (14)0.0067 (14)0.0161 (9)0.0006 (14)
C130.0359 (13)0.0311 (17)0.0316 (13)0.0065 (13)0.0156 (10)0.0092 (13)
C140.0360 (13)0.0302 (17)0.0481 (16)0.0055 (13)0.0192 (10)0.0020 (14)
C160.0601 (18)0.042 (2)0.0531 (19)0.0028 (18)0.0239 (13)0.0114 (17)
Cr10.03062 (18)0.0319 (3)0.0343 (2)0.0015 (2)0.01643 (14)0.0020 (2)
Cr20.0327 (2)0.0252 (2)0.0313 (2)0.0022 (2)0.01160 (16)0.0014 (2)
Cr30.03091 (18)0.0307 (3)0.0328 (2)0.0003 (2)0.01535 (15)0.0001 (2)
N10.0346 (12)0.0321 (15)0.0345 (12)0.0021 (12)0.0125 (9)0.0019 (12)
N20.0338 (12)0.0470 (17)0.0418 (14)0.0075 (13)0.0142 (10)0.0084 (13)
N30.0349 (11)0.0421 (16)0.0385 (12)0.0112 (12)0.0198 (8)0.0107 (12)
O10.0333 (7)0.0309 (9)0.0317 (6)0.0027 (8)0.0149 (5)0.0006 (7)
O20.0335 (6)0.0320 (9)0.0355 (6)0.0059 (8)0.0165 (5)0.0047 (7)
O30.0332 (6)0.0327 (9)0.0284 (7)0.0041 (6)0.0195 (5)0.0006 (7)
O40.0372 (7)0.0300 (9)0.0292 (7)0.0077 (7)0.0176 (6)0.0013 (7)
O50.0329 (7)0.0278 (9)0.0303 (8)0.0021 (7)0.0155 (6)0.0022 (7)
O60.0336 (7)0.0285 (9)0.0296 (8)0.0017 (8)0.0158 (6)0.0012 (8)
O70.0365 (8)0.0293 (9)0.0323 (8)0.0001 (8)0.0107 (6)0.0012 (8)
O80.0358 (8)0.0286 (9)0.0312 (8)0.0040 (8)0.0156 (6)0.0009 (8)
O90.0314 (7)0.0325 (9)0.0280 (7)0.0044 (7)0.0160 (5)0.0011 (7)
O100.0378 (6)0.0356 (8)0.0287 (7)0.0088 (5)0.0166 (5)0.0026 (7)
O110.0288 (7)0.0299 (9)0.0337 (7)0.0056 (7)0.0181 (5)0.0023 (7)
O120.0316 (7)0.0329 (10)0.0367 (8)0.0005 (8)0.0168 (6)0.0027 (8)
O130.0370 (7)0.0281 (9)0.0345 (8)0.0016 (8)0.0189 (6)0.0010 (7)
O140.0392 (7)0.0316 (9)0.0305 (8)0.0013 (8)0.0146 (6)0.0029 (8)
O150.0376 (8)0.0313 (10)0.0339 (9)0.0031 (8)0.0133 (6)0.0023 (8)
O160.0378 (9)0.0369 (12)0.0277 (9)0.0048 (10)0.0135 (7)0.0136 (9)
Geometric parameters (Å, º) top
C1—O21.245 (5)C13—O141.419 (5)
C1—O31.270 (4)C13—H13A0.9600
C1—C21.511 (7)C13—H13B0.9600
C2—H2A0.9600C13—H13C0.9600
C2—H2B0.9600C14—O151.367 (4)
C2—H2C0.9600C14—H14A0.9600
C3—O41.224 (4)C14—H14B0.9600
C3—O51.241 (5)C14—H14C0.9600
C3—C41.519 (5)C16—O161.394 (4)
C4—H4A0.9600C16—H16A0.9600
C4—H4B0.9600C16—H16B0.9600
C4—H4C0.9600C16—H16C0.9600
C5—O61.243 (4)Cr1—O11.881 (3)
C5—O71.256 (4)Cr1—O81.949 (2)
C5—C61.527 (4)Cr1—O21.961 (3)
C6—H6A0.9600Cr1—O131.970 (3)
C6—H6B0.9600Cr1—O71.990 (2)
C6—H6C0.9600Cr1—O142.035 (3)
C7—O81.220 (4)Cr2—O11.931 (3)
C7—O91.270 (5)Cr2—O101.943 (3)
C7—C81.517 (4)Cr2—O91.952 (2)
C8—H8A0.9600Cr2—O31.986 (3)
C8—H8B0.9600Cr2—O42.009 (3)
C8—H8C0.9600Cr2—N12.021 (4)
C9—O111.245 (4)Cr3—O11.900 (3)
C9—O101.262 (5)Cr3—O111.964 (2)
C9—C101.536 (4)Cr3—O121.976 (3)
C10—H10A0.9600Cr3—O51.983 (3)
C10—H10B0.9600Cr3—O62.000 (2)
C10—H10C0.9600Cr3—O152.032 (3)
C11—O121.239 (5)N1—N21.305 (4)
C11—O131.264 (5)N2—N31.059 (4)
C11—C121.538 (7)O14—H14D0.8179
C12—H12A0.9600O15—H15A0.8296
C12—H12B0.9600O16—H16F0.9601
C12—H12C0.9600
O2—C1—O3125.7 (4)H16B—C16—H16C109.5
O2—C1—C2118.3 (3)O1—Cr1—O896.06 (10)
O3—C1—C2116.0 (4)O1—Cr1—O296.40 (13)
C1—C2—H2A109.5O8—Cr1—O290.44 (12)
C1—C2—H2B109.5O1—Cr1—O1395.49 (13)
H2A—C2—H2B109.5O8—Cr1—O1388.55 (12)
C1—C2—H2C109.5O2—Cr1—O13168.11 (11)
H2A—C2—H2C109.5O1—Cr1—O795.18 (10)
H2B—C2—H2C109.5O8—Cr1—O7168.75 (11)
O4—C3—O5126.6 (4)O2—Cr1—O788.29 (12)
O4—C3—C4114.2 (4)O13—Cr1—O790.40 (13)
O5—C3—C4119.1 (3)O1—Cr1—O14177.65 (16)
C3—C4—H4A109.5O8—Cr1—O1483.99 (10)
C3—C4—H4B109.5O2—Cr1—O1485.95 (13)
H4A—C4—H4B109.5O13—Cr1—O1482.16 (13)
C3—C4—H4C109.5O7—Cr1—O1484.77 (10)
H4A—C4—H4C109.5O1—Cr2—O1094.44 (12)
H4B—C4—H4C109.5O1—Cr2—O993.78 (11)
O6—C5—O7126.5 (3)O10—Cr2—O989.29 (11)
O6—C5—C6117.6 (3)O1—Cr2—O393.94 (11)
O7—C5—C6115.8 (3)O10—Cr2—O3171.55 (13)
C5—C6—H6A109.5O9—Cr2—O391.26 (11)
C5—C6—H6B109.5O1—Cr2—O493.63 (11)
H6A—C6—H6B109.5O10—Cr2—O490.47 (11)
C5—C6—H6C109.5O9—Cr2—O4172.58 (12)
H6A—C6—H6C109.5O3—Cr2—O487.90 (11)
H6B—C6—H6C109.5O1—Cr2—N1175.94 (14)
O8—C7—O9126.2 (3)O10—Cr2—N189.56 (13)
O8—C7—C8119.2 (3)O9—Cr2—N185.55 (12)
O9—C7—C8114.6 (3)O3—Cr2—N182.08 (13)
C7—C8—H8A109.5O4—Cr2—N187.03 (12)
C7—C8—H8B109.5O1—Cr3—O1194.65 (10)
H8A—C8—H8B109.5O1—Cr3—O1295.62 (13)
C7—C8—H8C109.5O11—Cr3—O1288.27 (11)
H8A—C8—H8C109.5O1—Cr3—O595.98 (13)
H8B—C8—H8C109.5O11—Cr3—O592.11 (11)
O11—C9—O10125.4 (3)O12—Cr3—O5168.32 (11)
O11—C9—C10118.3 (3)O1—Cr3—O693.59 (10)
O10—C9—C10116.3 (3)O11—Cr3—O6171.59 (12)
C9—C10—H10A109.5O12—Cr3—O689.24 (11)
C9—C10—H10B109.5O5—Cr3—O688.72 (11)
H10A—C10—H10B109.5O1—Cr3—O15179.66 (11)
C9—C10—H10C109.5O11—Cr3—O1585.02 (10)
H10A—C10—H10C109.5O12—Cr3—O1584.44 (13)
H10B—C10—H10C109.5O5—Cr3—O1583.97 (12)
O12—C11—O13126.4 (5)O6—Cr3—O1586.74 (10)
O12—C11—C12117.4 (4)N2—N1—Cr2119.4 (3)
O13—C11—C12116.2 (4)N3—N2—N1166.3 (4)
C11—C12—H12A109.5Cr1—O1—Cr3121.05 (16)
C11—C12—H12B109.5Cr1—O1—Cr2119.72 (15)
H12A—C12—H12B109.5Cr3—O1—Cr2119.22 (14)
C11—C12—H12C109.5C1—O2—Cr1130.8 (2)
H12A—C12—H12C109.5C1—O3—Cr2134.2 (3)
H12B—C12—H12C109.5C3—O4—Cr2130.0 (3)
O14—C13—H13A109.5C3—O5—Cr3133.3 (2)
O14—C13—H13B109.5C5—O6—Cr3131.1 (2)
H13A—C13—H13B109.5C5—O7—Cr1132.4 (2)
O14—C13—H13C109.5C7—O8—Cr1133.5 (2)
H13A—C13—H13C109.5C7—O9—Cr2131.88 (17)
H13B—C13—H13C109.5C9—O10—Cr2134.9 (2)
O15—C14—H14A109.5C9—O11—Cr3130.3 (3)
O15—C14—H14B109.5C11—O12—Cr3133.7 (3)
H14A—C14—H14B109.5C11—O13—Cr1130.1 (3)
O15—C14—H14C109.5C13—O14—Cr1123.2 (3)
H14A—C14—H14C109.5C13—O14—H14D112.4
H14B—C14—H14C109.5Cr1—O14—H14D124.1
O16—C16—H16A109.5C14—O15—Cr3126.4 (3)
O16—C16—H16B109.5C14—O15—H15A124.3
H16A—C16—H16B109.5Cr3—O15—H15A98.1
O16—C16—H16C109.5C16—O16—H16F109.2
H16A—C16—H16C109.5
O1—Cr2—N1—N2150.2 (17)C6—C5—O6—Cr3176.4 (3)
O10—Cr2—N1—N219.8 (3)O1—Cr3—O6—C529.2 (4)
O9—Cr2—N1—N269.5 (3)O11—Cr3—O6—C5139.1 (8)
O3—Cr2—N1—N2161.4 (3)O12—Cr3—O6—C566.3 (4)
O4—Cr2—N1—N2110.3 (3)O5—Cr3—O6—C5125.2 (4)
Cr2—N1—N2—N3110 (2)O15—Cr3—O6—C5150.8 (4)
O8—Cr1—O1—Cr3136.06 (16)O6—C5—O7—Cr19.9 (8)
O2—Cr1—O1—Cr3132.82 (15)C6—C5—O7—Cr1171.7 (3)
O13—Cr1—O1—Cr346.94 (15)O1—Cr1—O7—C510.8 (4)
O7—Cr1—O1—Cr343.96 (18)O8—Cr1—O7—C5169.4 (7)
O14—Cr1—O1—Cr345 (2)O2—Cr1—O7—C5107.0 (4)
O8—Cr1—O1—Cr242.87 (18)O13—Cr1—O7—C584.8 (4)
O2—Cr1—O1—Cr248.26 (15)O14—Cr1—O7—C5166.9 (4)
O13—Cr1—O1—Cr2131.98 (15)O9—C7—O8—Cr15.3 (7)
O7—Cr1—O1—Cr2137.11 (17)C8—C7—O8—Cr1177.1 (3)
O14—Cr1—O1—Cr2134 (2)O1—Cr1—O8—C713.9 (4)
O11—Cr3—O1—Cr1128.45 (16)O2—Cr1—O8—C782.6 (4)
O12—Cr3—O1—Cr139.74 (16)O13—Cr1—O8—C7109.3 (4)
O5—Cr3—O1—Cr1138.94 (15)O7—Cr1—O8—C7166.0 (7)
O6—Cr3—O1—Cr149.85 (17)O14—Cr1—O8—C7168.5 (4)
O15—Cr3—O1—Cr1140 (50)O8—C7—O9—Cr25.1 (6)
O11—Cr3—O1—Cr250.48 (17)C8—C7—O9—Cr2172.6 (3)
O12—Cr3—O1—Cr2139.20 (14)O1—Cr2—O9—C729.4 (4)
O5—Cr3—O1—Cr242.13 (15)O10—Cr2—O9—C7123.8 (4)
O6—Cr3—O1—Cr2131.22 (16)O3—Cr2—O9—C764.6 (4)
O15—Cr3—O1—Cr239 (26)O4—Cr2—O9—C7148.0 (8)
O10—Cr2—O1—Cr1137.26 (15)N1—Cr2—O9—C7146.6 (4)
O9—Cr2—O1—Cr147.68 (16)O11—C9—O10—Cr215.3 (6)
O3—Cr2—O1—Cr143.85 (16)C10—C9—O10—Cr2163.1 (2)
O4—Cr2—O1—Cr1131.99 (15)O1—Cr2—O10—C95.6 (3)
N1—Cr2—O1—Cr132.8 (19)O9—Cr2—O10—C999.3 (3)
O10—Cr2—O1—Cr341.69 (16)O3—Cr2—O10—C9166.9 (6)
O9—Cr2—O1—Cr3131.27 (15)O4—Cr2—O10—C988.1 (3)
O3—Cr2—O1—Cr3137.21 (15)N1—Cr2—O10—C9175.1 (3)
O4—Cr2—O1—Cr349.07 (16)O10—C9—O11—Cr31.6 (5)
N1—Cr2—O1—Cr3148.3 (17)C10—C9—O11—Cr3180.0 (2)
O3—C1—O2—Cr19.1 (5)O1—Cr3—O11—C932.0 (3)
C2—C1—O2—Cr1167.7 (2)O12—Cr3—O11—C9127.5 (3)
O1—Cr1—O2—C130.3 (3)O5—Cr3—O11—C964.2 (3)
O8—Cr1—O2—C165.8 (3)O6—Cr3—O11—C9159.7 (8)
O13—Cr1—O2—C1150.8 (4)O15—Cr3—O11—C9148.0 (3)
O7—Cr1—O2—C1125.4 (3)O13—C11—O12—Cr35.7 (5)
O14—Cr1—O2—C1149.8 (3)C12—C11—O12—Cr3175.46 (19)
O2—C1—O3—Cr22.7 (5)O1—Cr3—O12—C1110.1 (3)
C2—C1—O3—Cr2174.2 (2)O11—Cr3—O12—C11104.6 (3)
O1—Cr2—O3—C119.3 (3)O5—Cr3—O12—C11163.4 (4)
O10—Cr2—O3—C1168.2 (6)O6—Cr3—O12—C1183.5 (3)
O9—Cr2—O3—C174.6 (3)O15—Cr3—O12—C11170.3 (3)
O4—Cr2—O3—C1112.8 (3)O12—C11—O13—Cr17.8 (5)
N1—Cr2—O3—C1159.9 (3)C12—C11—O13—Cr1171.06 (19)
O5—C3—O4—Cr221.2 (5)O1—Cr1—O13—C1131.7 (3)
C4—C3—O4—Cr2163.1 (2)O8—Cr1—O13—C11127.6 (3)
O1—Cr2—O4—C339.6 (3)O2—Cr1—O13—C11147.2 (4)
O10—Cr2—O4—C354.9 (3)O7—Cr1—O13—C1163.6 (3)
O9—Cr2—O4—C3143.0 (8)O14—Cr1—O13—C11148.2 (3)
O3—Cr2—O4—C3133.4 (3)O1—Cr1—O14—C13150 (2)
N1—Cr2—O4—C3144.4 (3)O8—Cr1—O14—C1358.2 (3)
O4—C3—O5—Cr37.1 (5)O2—Cr1—O14—C1332.6 (2)
C4—C3—O5—Cr3177.4 (2)O13—Cr1—O14—C13147.6 (3)
O1—Cr3—O5—C317.4 (3)O7—Cr1—O14—C13121.3 (3)
O11—Cr3—O5—C377.5 (3)O1—Cr3—O15—C14139 (26)
O12—Cr3—O5—C3169.1 (4)O11—Cr3—O15—C14150.3 (4)
O6—Cr3—O5—C3110.9 (3)O12—Cr3—O15—C14121.0 (4)
O15—Cr3—O5—C3162.3 (3)O5—Cr3—O15—C1457.7 (3)
O7—C5—O6—Cr32.0 (7)O6—Cr3—O15—C1431.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16F···N1i0.961.852.734 (4)151
O16—H16F···O3i0.962.362.972 (3)122
O16—H16F···O9i0.962.543.254 (5)132
O16—H16F···N2i0.962.633.370 (5)134
O15—H15A···N1ii0.831.912.621 (5)144
O15—H15A···N2ii0.832.583.332 (5)152
O14—H14D···O160.822.032.602 (5)126
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cr3(C2H3O2)6(N3)O(CH4O)2]·CH4O
Mr664.42
Crystal system, space groupMonoclinic, Cc
Temperature (K)153
a, b, c (Å)21.165 (5), 10.609 (3), 15.641 (4)
β (°) 130.484 (4)
V3)2671.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.2 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.776, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
6800, 3692, 3155
Rint0.034
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.130, 1.08
No. of reflections3692
No. of parameters343
No. of restraints986
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47
Absolute structureFlack (1983), 1110 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16F···N1i0.961.852.734 (4)151.1
O16—H16F···O3i0.962.362.972 (3)121.5
O16—H16F···O9i0.962.543.254 (5)131.5
O16—H16F···N2i0.962.633.370 (5)133.9
O15—H15A···N1ii0.831.912.621 (5)143.5
O15—H15A···N2ii0.832.583.332 (5)151.6
O14—H14D···O160.822.032.602 (5)126.2
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

This work was supported by the Science Foundation of Nantong University (grant No. 10ZY004, 09ZY003).

References

First citationAnson, C. E., Bourke, J. P., Cannon, R. D., Jayasooriya, U. A., Molinier, M. & Powell, P. A. (1997). Inorg. Chem. 36, 1265–1267.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, S. C. & Jeffrey, G. A. (1970). Acta Cryst. B26, 673–683.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEarnshaw, A., Figgis, B. N. & Lewis, J. J. (1966). J. Chem. Soc. A, 12, 1656–1663.  CrossRef Web of Science Google Scholar
First citationFarrel, N. (1999). In Use of Inorganic Chemistry in Medicine. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFujihara, T., Aonahata, J., Kumakura, S., Nagasawa, A., Murakami, K. & Ito, T. (1998). Inorg. Chem. 37, 3779–3784.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVincent, J. B. (2000). Acc. Chem. Res., 33, 503–510.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds