metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-(E)-methyl 4-[(2-carbamo­thio­ylhydrazinyl­­idene)meth­yl]benzoate-κ2S:S}bis­­[iodido(tri­phenyl­phosphane-κP)copper(I)]

aDepartment of Chemical Sciences, IISER Kolkata, Mohanpur Campus, 741 252 West Bengal, India
*Correspondence e-mail: parna@iiserkol.ac.in

(Received 30 August 2011; accepted 11 October 2011; online 12 October 2011)

The title complex, [Cu2I2(C10H11N3O2S)2(C18H15P)2], is a centrosymmetric sulfur-bridged dimer of CuI with PPh3 and iodine. The CuI atom shows a distorted tetra­hedral geometry, with bite angles ranging from 98.61 (2) to 120.16 (3)°. The intra­molecular Cu⋯Cu distance is 2.8228 (12) Å. The thio­semicarbazone ligand is coordinated only through the S atom. In the crystal, the complex mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, resulting in a hydrogen-bonded chain along the b axis.

Related literature

For a related structure, see: Lobana et al. (2009[Lobana, T. S., Khanna, S., Hundal, G., Kaur, P., Thakur, B., Attri, S. & Butcher, R. J. (2009). Polyhedron, 28, 1583-1593.]). For the chemotherapeutic properties of transition metal complexes of thio­semicarbazones see: Quiroga et al. (1998[Quiroga, A. G., Perez, J. M., Solera, I. L., Masaguer, J. R., Luque, A., Raman, P., Edwards, A., Alonso, C. & Ranninger, C. N. (1998). J. Med. Chem. 41, 1399-1408.]). For binding modes of thio­semicarbazones, see: Dutta et al. (2008[Dutta, S., Basuli, F., Castineiras, A., Peng, S. M., Lee, G. H. & Bhattacharya, S. (2008). Eur. J. Inorg. Chem. pp. 4538-4546.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C10H11N3O2S)2(C18H15P)2]

  • Mr = 1380.02

  • Triclinic, [P \overline 1]

  • a = 9.6319 (16) Å

  • b = 11.945 (2) Å

  • c = 13.581 (4) Å

  • α = 108.627 (4)°

  • β = 101.655 (4)°

  • γ = 105.044 (3)°

  • V = 1359.0 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 100 K

  • 0.18 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008)[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.757, Tmax = 0.827

  • 22347 measured reflections

  • 5922 independent reflections

  • 4560 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.073

  • S = 1.02

  • 5922 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 1.56 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1i 0.86 2.17 2.963 (5) 154
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008)[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2008)[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones and more specifically transition metal complexes of thiosemicarbazones (Lobana et al., 2009) are of considerable pharmacological interest as they have shown a broad spectrum of chemotherapeutic properties (Quiroga et al., 1998). Thiosemicarbazones usually bind to a metal ion in mono, bi or tridentate fashion (Dutta et al., 2008). Interestingly, one-dimensional network formation has been observed here, where the single unit contain two metal ion bridged by the sulfur atom of two ligands. Two phosphine molecules and two iodine molecules are also coordinated to the metal centre. The C—S bond length [C19—S1 (1.720 (3) Å), C20—N2 (1.282 (5) Å)] indicates presence of double-bond character.

Related literature top

For a related structure, see: Lobana et al. (2009). For the chemotherapeutic properties of transition metal complexes of thiosemicarbazones see: Quiroga et al. (1998). For binding modes of thiosemicarbazones, see: Dutta et al. (2008).

Experimental top

0.190 g(1.0 mmol) CuI was dissolved in 10 mL acetonitrile and 10 mL me thanol, and to this solution 0.237 g(1.0 mmol) Schiff's base of 4-formyl methyl benzoate and thiosemicarbazone was added and stirred for 2 h followed by the addition of 0.262 g(1.0 mmol) PPh3. The mixture was stirred for another 2 h, filtered and kept for crystallization. From the yellow solution yellow coloured block shaped crystals were obtained suitable for x-ray crystallography.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. One dimensional asoociation via intermolecular H-bonding between CO and N—H proton.
[Figure 3] Fig. 3. The formation of the title compound.
Bis{µ-(E)-methyl 4-[(2-carbamothioylhydrazinylidene)methyl]benzoate- κ2S:S}bis[iodido(triphenylphosphane-κP)copper(I)] top
Crystal data top
[Cu2I2(C10H11N3O2S)2(C18H15P)2]Z = 1
Mr = 1380.02F(000) = 688
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6319 (16) ÅCell parameters from 4585 reflections
b = 11.945 (2) Åθ = 2.3–28.2°
c = 13.581 (4) ŵ = 2.11 mm1
α = 108.627 (4)°T = 100 K
β = 101.655 (4)°Block, yellow
γ = 105.044 (3)°0.18 × 0.11 × 0.09 mm
V = 1359.0 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5922 independent reflections
Radiation source: fine-focus sealed tube4560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1211
Tmin = 0.757, Tmax = 0.827k = 1415
22347 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.8634P]
where P = (Fo2 + 2Fc2)/3
5922 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 1.56 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Cu2I2(C10H11N3O2S)2(C18H15P)2]γ = 105.044 (3)°
Mr = 1380.02V = 1359.0 (5) Å3
Triclinic, P1Z = 1
a = 9.6319 (16) ÅMo Kα radiation
b = 11.945 (2) ŵ = 2.11 mm1
c = 13.581 (4) ÅT = 100 K
α = 108.627 (4)°0.18 × 0.11 × 0.09 mm
β = 101.655 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4560 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.827Rint = 0.065
22347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 1.56 e Å3
5922 reflectionsΔρmin = 0.82 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44847 (4)0.99151 (4)0.39202 (4)0.01460 (11)
I10.44275 (2)1.19639 (2)0.35819 (2)0.01695 (7)
S10.70887 (9)1.06875 (7)0.50340 (8)0.01341 (19)
P10.36351 (9)0.82308 (7)0.23174 (8)0.01134 (19)
O10.9554 (3)0.1581 (2)0.2812 (2)0.0209 (6)
O21.0438 (3)0.2624 (2)0.1819 (2)0.0216 (6)
N10.7579 (3)0.8525 (2)0.4633 (3)0.0153 (7)
H10.70160.83850.50300.018*
N20.8214 (3)0.7653 (3)0.4179 (3)0.0178 (7)
N30.8721 (3)0.9774 (3)0.3848 (3)0.0190 (7)
H3A0.91100.92220.35770.023*
H3B0.89031.04520.37240.023*
C10.4266 (3)0.8438 (3)0.1181 (3)0.0124 (7)
C20.3426 (4)0.7719 (3)0.0089 (3)0.0158 (8)
H20.24430.71750.00920.019*
C30.4045 (4)0.7809 (3)0.0733 (3)0.0187 (8)
H30.34840.73150.14620.022*
C40.5499 (4)0.8635 (3)0.0468 (3)0.0177 (8)
H40.59180.86880.10180.021*
C50.6322 (4)0.9377 (3)0.0606 (3)0.0179 (8)
H50.72910.99420.07760.021*
C60.5724 (3)0.9295 (3)0.1446 (3)0.0148 (8)
H60.62870.98040.21710.018*
C70.1577 (4)0.7719 (3)0.1779 (3)0.0140 (7)
C80.0617 (4)0.6465 (3)0.1235 (3)0.0193 (8)
H80.10160.58210.11270.023*
C90.0938 (4)0.6175 (3)0.0851 (3)0.0244 (9)
H90.15720.53360.04940.029*
C100.1549 (4)0.7110 (3)0.0992 (4)0.0242 (9)
H100.25900.69050.07330.029*
C110.0610 (4)0.8364 (3)0.1523 (3)0.0223 (9)
H110.10180.90010.16070.027*
C120.0937 (4)0.8664 (3)0.1926 (3)0.0186 (8)
H120.15600.95050.23000.022*
C130.3993 (3)0.6799 (3)0.2321 (3)0.0120 (7)
C140.4589 (4)0.6129 (3)0.1569 (3)0.0195 (8)
H140.48030.63990.10280.023*
C150.4858 (4)0.5062 (3)0.1631 (3)0.0208 (9)
H150.52530.46230.11290.025*
C160.4549 (4)0.4645 (3)0.2425 (3)0.0196 (8)
H160.47250.39250.24540.023*
C170.3975 (4)0.5306 (3)0.3180 (3)0.0231 (9)
H170.37590.50260.37160.028*
C180.3722 (4)0.6386 (3)0.3138 (3)0.0178 (8)
H180.33670.68390.36620.021*
C190.7841 (3)0.9580 (3)0.4455 (3)0.0145 (8)
C200.7924 (4)0.6687 (3)0.4428 (3)0.0176 (8)
H200.73460.66330.48940.021*
C210.8490 (4)0.5666 (3)0.3989 (3)0.0166 (8)
C220.8040 (4)0.4589 (3)0.4212 (3)0.0173 (8)
H220.74220.45480.46540.021*
C230.8497 (4)0.3586 (3)0.3787 (3)0.0160 (8)
H230.82070.28820.39550.019*
C240.9396 (4)0.3629 (3)0.3104 (3)0.0142 (8)
C250.9797 (4)0.2505 (3)0.2592 (3)0.0157 (8)
C261.0860 (4)0.1589 (3)0.1253 (4)0.0257 (9)
H26A1.15160.14180.17740.038*
H26B1.13780.18040.07680.038*
H26C0.99690.08550.08380.038*
C270.9853 (4)0.4709 (3)0.2880 (3)0.0197 (8)
H271.04600.47480.24300.024*
C280.9406 (4)0.5719 (3)0.3325 (3)0.0206 (8)
H280.97210.64370.31790.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0178 (2)0.01218 (19)0.0124 (3)0.00618 (16)0.00386 (19)0.00278 (18)
I10.02130 (12)0.01412 (11)0.01860 (16)0.00695 (8)0.00813 (10)0.00863 (10)
S10.0140 (4)0.0123 (4)0.0132 (5)0.0046 (3)0.0041 (4)0.0041 (3)
P10.0139 (4)0.0109 (4)0.0100 (5)0.0060 (3)0.0040 (4)0.0036 (4)
O10.0301 (13)0.0156 (12)0.0252 (17)0.0118 (10)0.0147 (13)0.0116 (12)
O20.0278 (13)0.0214 (12)0.0221 (17)0.0139 (10)0.0150 (13)0.0080 (12)
N10.0185 (14)0.0125 (13)0.0210 (19)0.0086 (11)0.0123 (14)0.0077 (13)
N20.0154 (13)0.0147 (13)0.023 (2)0.0077 (11)0.0086 (14)0.0040 (13)
N30.0211 (15)0.0206 (14)0.024 (2)0.0107 (12)0.0140 (15)0.0131 (14)
C10.0162 (15)0.0109 (14)0.015 (2)0.0098 (12)0.0073 (15)0.0064 (14)
C20.0168 (16)0.0126 (15)0.017 (2)0.0072 (13)0.0058 (16)0.0022 (15)
C30.0261 (18)0.0211 (17)0.012 (2)0.0142 (14)0.0053 (16)0.0058 (16)
C40.0234 (17)0.0262 (18)0.018 (2)0.0180 (15)0.0133 (17)0.0153 (17)
C50.0124 (15)0.0228 (17)0.027 (2)0.0104 (13)0.0082 (16)0.0164 (17)
C60.0141 (15)0.0163 (16)0.016 (2)0.0077 (13)0.0043 (15)0.0072 (15)
C70.0152 (16)0.0154 (15)0.010 (2)0.0037 (12)0.0035 (15)0.0049 (14)
C80.0184 (17)0.0156 (16)0.024 (2)0.0059 (13)0.0089 (16)0.0060 (16)
C90.0186 (17)0.0183 (17)0.030 (3)0.0011 (14)0.0093 (18)0.0066 (17)
C100.0131 (16)0.031 (2)0.028 (3)0.0070 (14)0.0061 (17)0.0117 (18)
C110.0237 (18)0.0280 (19)0.022 (2)0.0162 (15)0.0084 (17)0.0125 (18)
C120.0208 (17)0.0131 (15)0.017 (2)0.0058 (13)0.0029 (16)0.0025 (15)
C130.0118 (15)0.0122 (14)0.009 (2)0.0041 (12)0.0017 (14)0.0022 (14)
C140.0264 (18)0.0204 (17)0.017 (2)0.0119 (15)0.0106 (17)0.0078 (16)
C150.0296 (19)0.0184 (17)0.020 (2)0.0161 (15)0.0096 (18)0.0070 (16)
C160.0229 (17)0.0137 (16)0.022 (2)0.0090 (14)0.0035 (17)0.0068 (16)
C170.033 (2)0.0217 (18)0.020 (2)0.0105 (16)0.0099 (19)0.0133 (17)
C180.0258 (18)0.0164 (16)0.017 (2)0.0115 (14)0.0135 (17)0.0069 (16)
C190.0113 (15)0.0138 (15)0.013 (2)0.0022 (12)0.0008 (14)0.0015 (14)
C200.0157 (16)0.0180 (16)0.019 (2)0.0063 (13)0.0082 (16)0.0057 (16)
C210.0165 (16)0.0161 (16)0.016 (2)0.0051 (13)0.0051 (16)0.0047 (15)
C220.0147 (16)0.0200 (17)0.018 (2)0.0057 (13)0.0077 (15)0.0068 (16)
C230.0142 (15)0.0145 (15)0.020 (2)0.0033 (13)0.0061 (16)0.0090 (15)
C240.0143 (15)0.0153 (15)0.014 (2)0.0055 (12)0.0046 (15)0.0060 (15)
C250.0146 (16)0.0139 (15)0.015 (2)0.0031 (12)0.0029 (15)0.0034 (15)
C260.032 (2)0.0228 (18)0.028 (3)0.0159 (16)0.0186 (19)0.0066 (18)
C270.0217 (17)0.0209 (17)0.024 (2)0.0107 (14)0.0132 (17)0.0115 (17)
C280.0291 (19)0.0164 (16)0.023 (2)0.0106 (14)0.0127 (18)0.0114 (16)
Geometric parameters (Å, º) top
Cu1—P12.2548 (10)C9—C101.371 (5)
Cu1—S1i2.4060 (10)C9—H90.9300
Cu1—S12.4093 (10)C10—C111.387 (5)
Cu1—I12.6423 (6)C10—H100.9300
Cu1—Cu1i2.8228 (12)C11—C121.384 (5)
S1—C191.720 (3)C11—H110.9300
S1—Cu1i2.4059 (10)C12—H120.9300
P1—C71.827 (3)C13—C181.394 (5)
P1—C11.832 (4)C13—C141.402 (5)
P1—C131.832 (3)C14—C151.389 (5)
O1—C251.212 (4)C14—H140.9300
O2—C251.347 (4)C15—C161.377 (6)
O2—C261.437 (4)C15—H150.9300
N1—C191.329 (4)C16—C171.385 (5)
N1—N21.383 (4)C16—H160.9300
N1—H10.8600C17—C181.390 (5)
N2—C201.282 (5)C17—H170.9300
N3—C191.325 (5)C18—H180.9300
N3—H3A0.8600C20—C211.467 (5)
N3—H3B0.8600C20—H200.9300
C1—C21.390 (5)C21—C281.387 (5)
C1—C61.402 (4)C21—C221.395 (5)
C2—C31.388 (5)C22—C231.377 (5)
C2—H20.9300C22—H220.9300
C3—C41.384 (5)C23—C241.394 (5)
C3—H30.9300C23—H230.9300
C4—C51.372 (5)C24—C271.400 (5)
C4—H40.9300C24—C251.489 (5)
C5—C61.396 (5)C26—H26A0.9600
C5—H50.9300C26—H26B0.9600
C6—H60.9300C26—H26C0.9600
C7—C81.394 (4)C27—C281.384 (5)
C7—C121.401 (5)C27—H270.9300
C8—C91.391 (5)C28—H280.9300
C8—H80.9300
P1—Cu1—S1i104.59 (4)C12—C11—C10119.8 (3)
P1—Cu1—S1120.16 (3)C12—C11—H11120.1
S1i—Cu1—S1108.22 (3)C10—C11—H11120.1
P1—Cu1—I1110.45 (3)C11—C12—C7120.9 (3)
S1i—Cu1—I1115.32 (3)C11—C12—H12119.5
S1—Cu1—I198.61 (2)C7—C12—H12119.5
P1—Cu1—Cu1i130.06 (4)C18—C13—C14118.4 (3)
S1i—Cu1—Cu1i54.16 (3)C18—C13—P1118.5 (3)
S1—Cu1—Cu1i54.05 (3)C14—C13—P1123.0 (3)
I1—Cu1—Cu1i119.49 (2)C15—C14—C13120.1 (4)
C19—S1—Cu1i113.92 (13)C15—C14—H14120.0
C19—S1—Cu1106.03 (11)C13—C14—H14120.0
Cu1i—S1—Cu171.78 (3)C16—C15—C14121.0 (4)
C7—P1—C1103.42 (17)C16—C15—H15119.5
C7—P1—C13104.04 (14)C14—C15—H15119.5
C1—P1—C13102.23 (15)C15—C16—C17119.5 (3)
C7—P1—Cu1109.73 (12)C15—C16—H16120.2
C1—P1—Cu1117.80 (11)C17—C16—H16120.2
C13—P1—Cu1117.87 (12)C16—C17—C18120.1 (4)
C25—O2—C26116.7 (3)C16—C17—H17120.0
C19—N1—N2119.7 (3)C18—C17—H17120.0
C19—N1—H1120.1C17—C18—C13120.9 (3)
N2—N1—H1120.1C17—C18—H18119.5
C20—N2—N1114.6 (3)C13—C18—H18119.5
C19—N3—H3A120.0N3—C19—N1118.8 (3)
C19—N3—H3B120.0N3—C19—S1120.9 (3)
H3A—N3—H3B120.0N1—C19—S1120.3 (3)
C2—C1—C6119.4 (3)N2—C20—C21121.1 (3)
C2—C1—P1123.3 (2)N2—C20—H20119.5
C6—C1—P1117.1 (3)C21—C20—H20119.5
C3—C2—C1120.5 (3)C28—C21—C22119.2 (3)
C3—C2—H2119.8C28—C21—C20122.0 (3)
C1—C2—H2119.8C22—C21—C20118.8 (3)
C4—C3—C2119.9 (4)C23—C22—C21121.0 (3)
C4—C3—H3120.0C23—C22—H22119.5
C2—C3—H3120.0C21—C22—H22119.5
C5—C4—C3120.1 (4)C22—C23—C24119.9 (3)
C5—C4—H4119.9C22—C23—H23120.1
C3—C4—H4119.9C24—C23—H23120.1
C4—C5—C6120.8 (3)C23—C24—C27119.3 (3)
C4—C5—H5119.6C23—C24—C25119.3 (3)
C6—C5—H5119.6C27—C24—C25121.4 (3)
C5—C6—C1119.2 (3)O1—C25—O2123.5 (3)
C5—C6—H6120.4O1—C25—C24125.2 (3)
C1—C6—H6120.4O2—C25—C24111.3 (3)
C8—C7—C12118.4 (3)O2—C26—H26A109.5
C8—C7—P1124.6 (3)O2—C26—H26B109.5
C12—C7—P1117.0 (2)H26A—C26—H26B109.5
C9—C8—C7120.1 (3)O2—C26—H26C109.5
C9—C8—H8120.0H26A—C26—H26C109.5
C7—C8—H8120.0H26B—C26—H26C109.5
C10—C9—C8120.9 (3)C28—C27—C24120.3 (4)
C10—C9—H9119.6C28—C27—H27119.8
C8—C9—H9119.6C24—C27—H27119.8
C9—C10—C11119.9 (3)C27—C28—C21120.3 (3)
C9—C10—H10120.1C27—C28—H28119.9
C11—C10—H10120.1C21—C28—H28119.9
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1ii0.862.172.963 (5)154
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2I2(C10H11N3O2S)2(C18H15P)2]
Mr1380.02
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6319 (16), 11.945 (2), 13.581 (4)
α, β, γ (°)108.627 (4), 101.655 (4), 105.044 (3)
V3)1359.0 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.11
Crystal size (mm)0.18 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.757, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
22347, 5922, 4560
Rint0.065
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.073, 1.02
No. of reflections5922
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 0.82

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1i0.8602.1652.963 (5)154.09
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

PG thanks the Department of Science and Technology, India, for research grant SR/FT/CS-057/2009. SM thanks the CSIR, India, for his PhD fellowship. VN thanks the DST for an INSPIRE fellowship.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, S., Basuli, F., Castineiras, A., Peng, S. M., Lee, G. H. & Bhattacharya, S. (2008). Eur. J. Inorg. Chem. pp. 4538–4546.  Web of Science CSD CrossRef Google Scholar
First citationLobana, T. S., Khanna, S., Hundal, G., Kaur, P., Thakur, B., Attri, S. & Butcher, R. J. (2009). Polyhedron, 28, 1583–1593.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuiroga, A. G., Perez, J. M., Solera, I. L., Masaguer, J. R., Luque, A., Raman, P., Edwards, A., Alonso, C. & Ranninger, C. N. (1998). J. Med. Chem. 41, 1399–1408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds