organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3080-o3081

4-Nitro­benzoic acid–N-(pyrimidin-2-yl)aniline (1/1)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 October 2011; accepted 24 October 2011; online 29 October 2011)

Four independent mol­ecules comprise the asymmetric unit of the title co-crystal, C10H9N3·C7H5NO4, two for each component. Small conformational differences are noted for the benzoic acid derivatives, notably in the twists of the carb­oxy­lic acid residue out of the plane of the benzene ring to which it is connected [torsion angles = 167.62 (17) and 174.54 (17)°]. In the aniline derivative, the major difference is observed in the dihedral angles formed between the CN3 and phenyl least-squares planes [1.51 (5) and 6.25 (6)°]. Pairs of mol­ecules associate via O—H⋯N and N—H⋯O hydrogen bonds leading to eight-membered {⋯HOCO⋯HNCN} hetero-synthons. The two-mol­ecule aggregates are consolidated in the crystal structure by C—H⋯O(nitro) and ππ inter­actions [shortest centroid–centroid distance between benzene rings = 3.6242 (10) Å].

Related literature

For related studies in co-crystal formation, see: Wardell & Tiekink (2011[Wardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418-1424.]). For the structure of N-(pyrimidin-2-yl)aniline, see: Badaruddin et al. (2009[Badaruddin, E., Shah Bakhtiar, N., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o703.]). For the structure of 4-nitro­benzoic acid, see: Tonogaki et al. (1993[Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031-1039.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3·C7H5NO4

  • Mr = 338.32

  • Monoclinic, P 21 /c

  • a = 12.7754 (4) Å

  • b = 25.7788 (8) Å

  • c = 9.5813 (3) Å

  • β = 104.209 (4)°

  • V = 3058.92 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.856, Tmax = 1.000

  • 15808 measured reflections

  • 6818 independent reflections

  • 5093 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.118

  • S = 1.03

  • 6818 reflections

  • 463 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯N2 0.87 (1) 1.70 (1) 2.5581 (18) 171 (2)
O6—H6o⋯N5 0.85 (1) 1.78 (1) 2.6230 (18) 171 (2)
N1—H1n⋯O1 0.88 (1) 2.15 (1) 3.0217 (18) 176 (2)
N4—H4n⋯O5 0.88 (1) 2.14 (1) 3.0190 (19) 180 (2)
C2—H2⋯O8 0.95 2.41 3.201 (2) 141
C12—H12⋯O4 0.95 2.43 3.106 (2) 128
C18—H18⋯O7i 0.95 2.56 3.330 (2) 138
C19—H19⋯O3ii 0.95 2.60 3.518 (2) 163
C31—H31⋯O8iii 0.95 2.55 3.238 (2) 129
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Model. 19, 557-559.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of recent studies into the phenomenon of co-crystal formation (Wardell & Tiekink, 2011), the title 1:1 carboxylic acid–secondary amine co-crystal, (I), was prepared. There are two independent molecules of each of 4-nitrobenzoic acid and N-(pyrimidin-2-yl)aniline comprising the crystallographic asymmetric unit of (I), Fig. 1.

The two independent molecules of 4-nitrobenzoic acid differ from each other marginally, and from the conformation found in the crystal structure of 4-nitrobenzoic acid (Tonogaki et al., 1993), Fig. 2. In each molecule of (I) there are small twists of the carboxylic acid residue out of the plane of the benzene ring to which it is connected, i.e. the O1—C21—C22—C23 and O5—C28—C29—C30 torsion angles are 167.62 (17) and 174.54 (17)°, respectively, and deviate from planarity compared with the equivalent torsion angle of 178.39 (4)° found in the literature structure (Tonogaki et al., 1993). Less variation is noted for the relative orientation of the nitro groups in (I). Thus, the O3—N7—C25—C26 and O7—N8—C32—C33 torsion angles of 2.7 (3) and -3.0 (2) °, respectively, indicate a similarity in their orientations in (I), and smaller deviations from co-planarity than observed in the literature structure [torsion angle = -14.78 (7)°].

Differences are also noted in the relative conformations found for the N-(pyrimidin-2-yl)aniline molecules in (I) and with those found in the crystal structure of N-(pyrimidin-2-yl)aniline (Badaruddin et al., 2009), Fig. 3. For the two independent molecules in (I), one of the pyrazinyl rings is twisted out of the CN3 plane [the C4—N3—C1—N1 torsion angle is -174.73 (16)°] whereas the other sees both least-squares planes co-planar; the C14—N6—C11—N4 torsion angle is -0.4 (3)°. In the literature structure, the two planes are effectively co-planar with the greatest deviation in the comparable C—N—C—N torsion angles being 177.12 (10)°. Significantly greater differences are noted in the twists between the CN3 and benzene least-squares planes. Thus, in (I), the two dihedral angles indicate a close to co-planar relationship between these residues, i.e. 1.51 (5) and 6.25 (6)°. By contrast, in the literature structure of N-(pyrimidin-2-yl)aniline (Badaruddin et al., 2009), the equivalent dihedral angles are 31.47 (4) and 29.59 (4)°, i.e. indicating significant twisting in the molecules.

In the crystal structure, two pairs of the four independent molecules comprising the asymmetric unit are connected into two molecule aggregates, Table 1 and Fig. 4. Eight-membered hetero-synthons are formed as the each carboxylic acid residue forms hydrogen bonds with the amino-H and one of the pyrazinyl-N atoms. The two molecular aggregates are connected into the three-dimensional architecture via C—H···O(nitro) interactions, Table 1, and several ππ interactions. The shortest of the latter, 3.6242 (10) Å, occurs between centrosymmetrically related (C22–C27)i rings; symmetry operation i: 2 - x, 1 - y, 1 - z. A view of the unit cell contents is shown in Fig. 5.

Related literature top

For related studies in co-crystal formation, see: Wardell & Tiekink (2011). For the structure of N-(pyrimidin-2-yl)aniline, see: Badaruddin et al. (2009). For the structure of 4-nitrobenzoic acid, see: Tonogaki et al. (1993).

Experimental top

N-(Pyrimidin-2-yl)aniline (0.05 g, 0.00029 mol) and 4-nitrobenzoic acid (0.048 g, 0.00029 mol) were refluxed in a solution comprising ethyl acetate (3 ml) and tetrahydrofuran (3 ml) for 2.5 h at 333 K. The mixture was then stirred overnight and left for crystallization. Yellow crystals formed after three to four days; M.pt: 397–398 K.

Refinement top

The H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The O– and N-bound H-atoms were located in a difference Fourier map but were were refined with distance restraints of 0.84±0.01 (O—H) and 0.88±0.01 Å (N—H), and with Uiso(H) = yUeq(O or N) with y = 1.5 for O and y = 1.2 for N. Four reflections, i.e. (0 1 1), (6 3 6), (7 7 7) and (9 6 3), were omitted from the final refinement owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the four molecules comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay diagram of the two 4-nitrobenzoic acid molecules in (I) with the literature structure (see text). The red and blue images illustrate the O1- and O5-containing molecules of (I), respectively, and the green image illustrates the literature structure.
[Figure 3] Fig. 3. An overlay diagram of the two N-(pyrimidin-2-yl)aniline molecules in (I) with the literature structure which also contains two independent molecules (see text). The red and blue images illustrate the N1- and N4-containing molecules of (I), respectively. The green and black images illustrate the two molecules in the literature structure.
[Figure 4] Fig. 4. Two supramolecular two molecule aggregates in (I) mediated by O—H···N and N—H···O hydrogen bonds shown as orange and blue dashed lines, respectively.
[Figure 5] Fig. 5. A view in projection down the c axis of the unit-cell contents of (I). The O—H···N, N—H···O and C—H···O interactions are shown as orange, blue and green dashed lines, respectively.
4-Nitrobenzoic acid–N-(pyrimidin-2-yl)aniline (1/1) top
Crystal data top
C10H9N3·C7H5NO4F(000) = 1408
Mr = 338.32Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5286 reflections
a = 12.7754 (4) Åθ = 2.3–29.3°
b = 25.7788 (8) ŵ = 0.11 mm1
c = 9.5813 (3) ÅT = 100 K
β = 104.209 (4)°Block, colourless
V = 3058.92 (17) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6818 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5093 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scanh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2533
Tmin = 0.856, Tmax = 1.000l = 1211
15808 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.2445P]
where P = (Fo2 + 2Fc2)/3
6818 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 0.26 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H9N3·C7H5NO4V = 3058.92 (17) Å3
Mr = 338.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.7754 (4) ŵ = 0.11 mm1
b = 25.7788 (8) ÅT = 100 K
c = 9.5813 (3) Å0.35 × 0.30 × 0.25 mm
β = 104.209 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
6818 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5093 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.031
15808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
6818 reflectionsΔρmin = 0.28 e Å3
463 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85371 (10)0.60855 (5)0.50402 (13)0.0228 (3)
O20.73858 (10)0.55038 (5)0.55581 (14)0.0244 (3)
H2O0.7228 (17)0.5752 (6)0.608 (2)0.037*
O31.04527 (12)0.41493 (6)0.13302 (18)0.0414 (4)
O40.95094 (12)0.35836 (5)0.21412 (17)0.0382 (4)
O50.60266 (10)0.23665 (5)0.43762 (14)0.0236 (3)
O60.67258 (11)0.29895 (5)0.32451 (14)0.0264 (3)
H6O0.7045 (17)0.2740 (6)0.294 (2)0.040*
O70.39904 (11)0.43347 (5)0.78791 (14)0.0292 (3)
O80.48451 (11)0.49026 (5)0.69235 (14)0.0268 (3)
N10.75301 (12)0.69124 (6)0.65279 (16)0.0184 (3)
H1N0.7837 (14)0.6684 (6)0.6080 (19)0.022*
N20.67877 (11)0.61741 (5)0.71728 (15)0.0179 (3)
N30.63472 (12)0.69905 (5)0.80552 (15)0.0182 (3)
N40.74841 (12)0.15764 (6)0.34898 (16)0.0206 (3)
H4N0.7060 (13)0.1808 (6)0.375 (2)0.025*
N50.78776 (12)0.22892 (6)0.23078 (16)0.0195 (3)
N60.87374 (12)0.14807 (6)0.20705 (16)0.0208 (3)
N70.97993 (13)0.40311 (6)0.20136 (18)0.0272 (4)
N80.45857 (12)0.44542 (6)0.71057 (15)0.0196 (3)
C10.68704 (14)0.66985 (7)0.72861 (18)0.0168 (4)
C20.62103 (14)0.59339 (7)0.79624 (19)0.0201 (4)
H20.61400.55670.79000.024*
C30.57137 (14)0.61991 (7)0.88640 (19)0.0206 (4)
H30.53360.60250.94660.025*
C40.57942 (14)0.67334 (7)0.88454 (18)0.0191 (4)
H40.54350.69280.94290.023*
C50.78214 (14)0.74334 (7)0.63821 (18)0.0173 (4)
C60.85205 (14)0.75203 (7)0.54896 (19)0.0191 (4)
H60.87800.72340.50470.023*
C70.88375 (14)0.80179 (7)0.52446 (19)0.0213 (4)
H70.93050.80720.46250.026*
C80.84778 (15)0.84381 (7)0.58981 (19)0.0212 (4)
H80.86950.87800.57310.025*
C90.77973 (15)0.83529 (7)0.67983 (19)0.0214 (4)
H90.75540.86400.72570.026*
C100.74631 (15)0.78552 (7)0.70434 (19)0.0202 (4)
H100.69920.78030.76600.024*
C110.80609 (14)0.17769 (7)0.25915 (18)0.0183 (4)
C120.84094 (14)0.25086 (7)0.14286 (19)0.0211 (4)
H120.82990.28670.12100.025*
C130.91108 (15)0.22362 (7)0.0826 (2)0.0233 (4)
H130.94770.23950.01860.028*
C140.92555 (14)0.17199 (7)0.11999 (19)0.0214 (4)
H140.97500.15240.08180.026*
C150.74319 (14)0.10683 (7)0.40058 (19)0.0187 (4)
C160.68064 (15)0.10025 (7)0.50034 (19)0.0222 (4)
H160.64650.12940.53080.027*
C170.66824 (15)0.05151 (7)0.5550 (2)0.0233 (4)
H170.62510.04740.62220.028*
C180.71820 (15)0.00886 (7)0.51246 (19)0.0228 (4)
H180.70980.02460.55000.027*
C190.78049 (15)0.01546 (7)0.4146 (2)0.0253 (4)
H190.81510.01380.38540.030*
C200.79362 (15)0.06385 (7)0.3581 (2)0.0228 (4)
H200.83680.06760.29090.027*
C280.61670 (14)0.28223 (7)0.41411 (18)0.0192 (4)
C290.57437 (14)0.32553 (7)0.48937 (18)0.0180 (4)
C300.59992 (14)0.37699 (7)0.46832 (19)0.0196 (4)
H300.64290.38500.40320.023*
C310.56314 (14)0.41665 (7)0.54154 (19)0.0196 (4)
H310.58080.45180.52820.023*
C320.50015 (14)0.40359 (7)0.63449 (18)0.0177 (4)
C330.47428 (15)0.35275 (7)0.65914 (19)0.0209 (4)
H330.43160.34490.72490.025*
C340.51214 (14)0.31377 (7)0.58564 (19)0.0213 (4)
H340.49550.27860.60100.026*
C210.81529 (14)0.56496 (7)0.49520 (18)0.0183 (4)
C220.85442 (14)0.52222 (7)0.41378 (18)0.0183 (4)
C230.82458 (14)0.47097 (7)0.42781 (19)0.0207 (4)
H230.77650.46290.48620.025*
C240.86457 (15)0.43168 (7)0.35713 (19)0.0217 (4)
H240.84440.39660.36590.026*
C250.93451 (14)0.44478 (7)0.27357 (19)0.0204 (4)
C260.96440 (15)0.49535 (7)0.2557 (2)0.0227 (4)
H261.01150.50330.19580.027*
C270.92389 (14)0.53422 (7)0.32744 (19)0.0198 (4)
H270.94370.56930.31750.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0274 (7)0.0153 (7)0.0280 (7)0.0011 (5)0.0110 (6)0.0024 (5)
O20.0285 (7)0.0200 (7)0.0293 (7)0.0027 (6)0.0161 (6)0.0074 (6)
O30.0402 (9)0.0332 (9)0.0613 (10)0.0049 (7)0.0326 (8)0.0181 (8)
O40.0361 (9)0.0197 (8)0.0628 (10)0.0052 (6)0.0197 (8)0.0163 (7)
O50.0260 (7)0.0173 (7)0.0293 (7)0.0011 (5)0.0105 (6)0.0013 (5)
O60.0329 (8)0.0208 (7)0.0309 (7)0.0078 (6)0.0181 (6)0.0019 (6)
O70.0396 (8)0.0246 (7)0.0313 (7)0.0007 (6)0.0238 (7)0.0013 (6)
O80.0359 (8)0.0134 (7)0.0336 (8)0.0042 (6)0.0136 (6)0.0028 (6)
N10.0219 (8)0.0140 (8)0.0229 (8)0.0011 (6)0.0120 (7)0.0021 (6)
N20.0186 (7)0.0150 (7)0.0209 (7)0.0002 (6)0.0061 (6)0.0003 (6)
N30.0188 (8)0.0173 (8)0.0195 (7)0.0015 (6)0.0068 (6)0.0011 (6)
N40.0210 (8)0.0176 (8)0.0266 (8)0.0034 (6)0.0122 (7)0.0006 (6)
N50.0206 (8)0.0167 (8)0.0217 (8)0.0009 (6)0.0063 (6)0.0000 (6)
N60.0184 (8)0.0213 (8)0.0246 (8)0.0013 (6)0.0087 (7)0.0000 (6)
N70.0209 (8)0.0244 (9)0.0369 (10)0.0021 (7)0.0082 (7)0.0117 (7)
N80.0230 (8)0.0172 (8)0.0191 (8)0.0007 (6)0.0058 (7)0.0013 (6)
C10.0159 (8)0.0175 (9)0.0167 (8)0.0007 (7)0.0033 (7)0.0007 (7)
C20.0191 (9)0.0184 (9)0.0227 (9)0.0005 (7)0.0051 (8)0.0009 (7)
C30.0206 (9)0.0216 (9)0.0211 (9)0.0002 (8)0.0081 (8)0.0028 (7)
C40.0191 (9)0.0206 (9)0.0189 (9)0.0009 (7)0.0072 (7)0.0002 (7)
C50.0177 (9)0.0159 (9)0.0180 (9)0.0004 (7)0.0041 (7)0.0006 (7)
C60.0195 (9)0.0186 (9)0.0207 (9)0.0020 (7)0.0076 (8)0.0001 (7)
C70.0195 (9)0.0226 (10)0.0234 (9)0.0009 (8)0.0085 (8)0.0024 (8)
C80.0219 (9)0.0173 (9)0.0232 (9)0.0030 (8)0.0035 (8)0.0019 (7)
C90.0261 (10)0.0172 (9)0.0211 (9)0.0008 (8)0.0061 (8)0.0024 (7)
C100.0226 (9)0.0196 (9)0.0199 (9)0.0004 (8)0.0083 (8)0.0006 (7)
C110.0176 (9)0.0188 (9)0.0180 (9)0.0022 (7)0.0034 (7)0.0015 (7)
C120.0201 (9)0.0191 (9)0.0237 (9)0.0036 (8)0.0044 (8)0.0000 (7)
C130.0205 (9)0.0231 (10)0.0279 (10)0.0032 (8)0.0090 (8)0.0015 (8)
C140.0179 (9)0.0251 (10)0.0226 (9)0.0014 (8)0.0075 (8)0.0023 (8)
C150.0166 (9)0.0190 (9)0.0196 (9)0.0014 (7)0.0030 (7)0.0005 (7)
C160.0213 (9)0.0232 (10)0.0234 (9)0.0026 (8)0.0082 (8)0.0003 (8)
C170.0212 (9)0.0274 (10)0.0222 (9)0.0010 (8)0.0074 (8)0.0034 (8)
C180.0222 (10)0.0213 (10)0.0240 (9)0.0042 (8)0.0038 (8)0.0026 (8)
C190.0270 (10)0.0205 (10)0.0296 (10)0.0003 (8)0.0091 (9)0.0012 (8)
C200.0234 (10)0.0222 (10)0.0258 (10)0.0018 (8)0.0115 (8)0.0006 (8)
C280.0182 (9)0.0203 (10)0.0188 (9)0.0038 (7)0.0037 (7)0.0016 (7)
C290.0174 (9)0.0180 (9)0.0174 (8)0.0012 (7)0.0022 (7)0.0005 (7)
C300.0182 (9)0.0213 (9)0.0201 (9)0.0006 (7)0.0064 (7)0.0009 (7)
C310.0207 (9)0.0157 (9)0.0223 (9)0.0002 (7)0.0053 (8)0.0021 (7)
C320.0174 (9)0.0176 (9)0.0177 (8)0.0015 (7)0.0036 (7)0.0013 (7)
C330.0239 (10)0.0189 (9)0.0222 (9)0.0025 (8)0.0101 (8)0.0003 (7)
C340.0232 (9)0.0159 (9)0.0253 (9)0.0000 (8)0.0065 (8)0.0015 (7)
C210.0183 (9)0.0198 (9)0.0163 (8)0.0030 (7)0.0034 (7)0.0013 (7)
C220.0169 (9)0.0177 (9)0.0181 (8)0.0021 (7)0.0002 (7)0.0011 (7)
C230.0206 (9)0.0198 (9)0.0221 (9)0.0002 (8)0.0059 (8)0.0007 (7)
C240.0211 (9)0.0177 (9)0.0250 (9)0.0004 (8)0.0034 (8)0.0013 (7)
C250.0171 (9)0.0193 (9)0.0238 (9)0.0023 (7)0.0027 (8)0.0069 (7)
C260.0192 (9)0.0234 (10)0.0270 (10)0.0031 (8)0.0085 (8)0.0046 (8)
C270.0188 (9)0.0165 (9)0.0233 (9)0.0003 (7)0.0039 (7)0.0022 (7)
Geometric parameters (Å, º) top
O1—C211.221 (2)C9—H90.9500
O2—C211.311 (2)C10—H100.9500
O2—H2O0.866 (9)C12—C131.372 (3)
O3—N71.219 (2)C12—H120.9500
O4—N71.227 (2)C13—C141.379 (3)
O5—C281.218 (2)C13—H130.9500
O6—C281.317 (2)C14—H140.9500
O6—H6O0.853 (9)C15—C201.392 (2)
O7—N81.2243 (18)C15—C161.399 (2)
O8—N81.2267 (18)C16—C171.385 (3)
N1—C11.357 (2)C16—H160.9500
N1—C51.410 (2)C17—C181.382 (3)
N1—H1N0.876 (9)C17—H170.9500
N2—C21.332 (2)C18—C191.381 (2)
N2—C11.358 (2)C18—H180.9500
N3—C41.332 (2)C19—C201.386 (3)
N3—C11.341 (2)C19—H190.9500
N4—C111.365 (2)C20—H200.9500
N4—C151.407 (2)C28—C291.500 (2)
N4—H4N0.881 (9)C29—C341.391 (2)
N5—C121.331 (2)C29—C301.393 (2)
N5—C111.357 (2)C30—C311.386 (2)
N6—C141.336 (2)C30—H300.9500
N6—C111.338 (2)C31—C321.380 (2)
N7—C251.472 (2)C31—H310.9500
N8—C321.472 (2)C32—C331.386 (2)
C2—C31.373 (2)C33—C341.381 (2)
C2—H20.9500C33—H330.9500
C3—C41.382 (2)C34—H340.9500
C3—H30.9500C21—C221.505 (2)
C4—H40.9500C22—C271.389 (2)
C5—C101.391 (2)C22—C231.391 (2)
C5—C61.398 (2)C23—C241.384 (2)
C6—C71.382 (2)C23—H230.9500
C6—H60.9500C24—C251.380 (2)
C7—C81.385 (2)C24—H240.9500
C7—H70.9500C25—C261.381 (3)
C8—C91.384 (2)C26—C271.385 (2)
C8—H80.9500C26—H260.9500
C9—C101.390 (2)C27—H270.9500
C21—O2—H2O110.5 (14)C20—C15—C16119.11 (16)
C28—O6—H6O111.2 (15)C20—C15—N4124.96 (15)
C1—N1—C5130.82 (15)C16—C15—N4115.93 (15)
C1—N1—H1N113.6 (12)C17—C16—C15120.40 (16)
C5—N1—H1N115.5 (12)C17—C16—H16119.8
C2—N2—C1117.41 (15)C15—C16—H16119.8
C4—N3—C1116.00 (15)C18—C17—C16120.40 (16)
C11—N4—C15130.81 (15)C18—C17—H17119.8
C11—N4—H4N112.5 (13)C16—C17—H17119.8
C15—N4—H4N116.6 (13)C19—C18—C17119.15 (17)
C12—N5—C11116.77 (15)C19—C18—H18120.4
C14—N6—C11115.72 (15)C17—C18—H18120.4
O3—N7—O4123.48 (16)C18—C19—C20121.40 (17)
O3—N7—C25118.09 (15)C18—C19—H19119.3
O4—N7—C25118.42 (15)C20—C19—H19119.3
O7—N8—O8123.56 (14)C19—C20—C15119.55 (16)
O7—N8—C32117.95 (14)C19—C20—H20120.2
O8—N8—C32118.48 (14)C15—C20—H20120.2
N3—C1—N1121.65 (16)O5—C28—O6124.38 (16)
N3—C1—N2124.28 (15)O5—C28—C29122.83 (15)
N1—C1—N2114.06 (15)O6—C28—C29112.76 (15)
N2—C2—C3122.12 (17)C34—C29—C30119.75 (16)
N2—C2—H2118.9C34—C29—C28119.25 (15)
C3—C2—H2118.9C30—C29—C28120.96 (15)
C2—C3—C4116.16 (16)C31—C30—C29120.58 (16)
C2—C3—H3121.9C31—C30—H30119.7
C4—C3—H3121.9C29—C30—H30119.7
N3—C4—C3123.71 (16)C32—C31—C30118.07 (16)
N3—C4—H4118.1C32—C31—H31121.0
C3—C4—H4118.1C30—C31—H31121.0
C10—C5—C6118.98 (16)C31—C32—C33122.79 (16)
C10—C5—N1125.10 (15)C31—C32—N8118.63 (15)
C6—C5—N1115.92 (15)C33—C32—N8118.57 (14)
C7—C6—C5120.68 (16)C34—C33—C32118.24 (16)
C7—C6—H6119.7C34—C33—H33120.9
C5—C6—H6119.7C32—C33—H33120.9
C6—C7—C8120.36 (16)C33—C34—C29120.54 (16)
C6—C7—H7119.8C33—C34—H34119.7
C8—C7—H7119.8C29—C34—H34119.7
C9—C8—C7119.11 (16)O1—C21—O2124.39 (16)
C9—C8—H8120.4O1—C21—C22122.06 (15)
C7—C8—H8120.4O2—C21—C22113.54 (15)
C8—C9—C10121.17 (16)C27—C22—C23119.97 (16)
C8—C9—H9119.4C27—C22—C21119.21 (16)
C10—C9—H9119.4C23—C22—C21120.78 (15)
C9—C10—C5119.69 (16)C24—C23—C22120.34 (16)
C9—C10—H10120.2C24—C23—H23119.8
C5—C10—H10120.2C22—C23—H23119.8
N6—C11—N5125.17 (15)C25—C24—C23118.30 (17)
N6—C11—N4121.16 (16)C25—C24—H24120.8
N5—C11—N4113.68 (15)C23—C24—H24120.8
N5—C12—C13122.43 (17)C24—C25—C26122.76 (16)
N5—C12—H12118.8C24—C25—N7118.70 (16)
C13—C12—H12118.8C26—C25—N7118.54 (16)
C12—C13—C14116.37 (16)C25—C26—C27118.24 (16)
C12—C13—H13121.8C25—C26—H26120.9
C14—C13—H13121.8C27—C26—H26120.9
N6—C14—C13123.53 (16)C26—C27—C22120.37 (17)
N6—C14—H14118.2C26—C27—H27119.8
C13—C14—H14118.2C22—C27—H27119.8
C4—N3—C1—N1174.73 (16)C16—C15—C20—C190.4 (3)
C4—N3—C1—N26.1 (3)N4—C15—C20—C19178.62 (18)
C5—N1—C1—N31.1 (3)O5—C28—C29—C343.0 (3)
C5—N1—C1—N2179.67 (17)O6—C28—C29—C34178.90 (16)
C2—N2—C1—N35.1 (3)O5—C28—C29—C30174.54 (17)
C2—N2—C1—N1175.71 (15)O6—C28—C29—C303.6 (2)
C1—N2—C2—C30.1 (3)C34—C29—C30—C310.5 (3)
N2—C2—C3—C43.6 (3)C28—C29—C30—C31178.06 (16)
C1—N3—C4—C32.2 (3)C29—C30—C31—C320.5 (3)
C2—C3—C4—N32.4 (3)C30—C31—C32—C331.2 (3)
C1—N1—C5—C100.3 (3)C30—C31—C32—N8178.68 (15)
C1—N1—C5—C6179.26 (17)O7—N8—C32—C31176.93 (16)
C10—C5—C6—C71.1 (3)O8—N8—C32—C312.5 (2)
N1—C5—C6—C7178.48 (16)O7—N8—C32—C333.0 (2)
C5—C6—C7—C80.9 (3)O8—N8—C32—C33177.59 (16)
C6—C7—C8—C90.0 (3)C31—C32—C33—C340.9 (3)
C7—C8—C9—C100.6 (3)N8—C32—C33—C34178.98 (16)
C8—C9—C10—C50.4 (3)C32—C33—C34—C290.1 (3)
C6—C5—C10—C90.5 (3)C30—C29—C34—C330.8 (3)
N1—C5—C10—C9179.09 (17)C28—C29—C34—C33178.42 (17)
C14—N6—C11—N50.4 (3)O1—C21—C22—C2710.3 (3)
C14—N6—C11—N4179.87 (16)O2—C21—C22—C27170.65 (16)
C12—N5—C11—N60.7 (3)O1—C21—C22—C23167.62 (17)
C12—N5—C11—N4179.51 (16)O2—C21—C22—C2311.4 (2)
C15—N4—C11—N61.8 (3)C27—C22—C23—C240.6 (3)
C15—N4—C11—N5178.41 (17)C21—C22—C23—C24177.32 (17)
C11—N5—C12—C130.1 (3)C22—C23—C24—C250.2 (3)
N5—C12—C13—C141.2 (3)C23—C24—C25—C261.2 (3)
C11—N6—C14—C130.8 (3)C23—C24—C25—N7178.25 (16)
C12—C13—C14—N61.5 (3)O3—N7—C25—C24176.83 (18)
C11—N4—C15—C205.3 (3)O4—N7—C25—C242.5 (3)
C11—N4—C15—C16175.72 (18)O3—N7—C25—C262.7 (3)
C20—C15—C16—C170.6 (3)O4—N7—C25—C26178.00 (18)
N4—C15—C16—C17178.45 (17)C24—C25—C26—C271.4 (3)
C15—C16—C17—C180.5 (3)N7—C25—C26—C27178.10 (16)
C16—C17—C18—C190.1 (3)C25—C26—C27—C220.5 (3)
C17—C18—C19—C200.2 (3)C23—C22—C27—C260.4 (3)
C18—C19—C20—C150.0 (3)C21—C22—C27—C26177.51 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···N20.87 (1)1.70 (1)2.5581 (18)171 (2)
O6—H6o···N50.85 (1)1.78 (1)2.6230 (18)171 (2)
N1—H1n···O10.88 (1)2.15 (1)3.0217 (18)176 (2)
N4—H4n···O50.88 (1)2.14 (1)3.0190 (19)180 (2)
C2—H2···O80.952.413.201 (2)141
C12—H12···O40.952.433.106 (2)128
C18—H18···O7i0.952.563.330 (2)138
C19—H19···O3ii0.952.603.518 (2)163
C31—H31···O8iii0.952.553.238 (2)129
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H9N3·C7H5NO4
Mr338.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.7754 (4), 25.7788 (8), 9.5813 (3)
β (°) 104.209 (4)
V3)3058.92 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15808, 6818, 5093
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.118, 1.03
No. of reflections6818
No. of parameters463
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···N20.866 (9)1.698 (10)2.5581 (18)171 (2)
O6—H6o···N50.853 (9)1.777 (10)2.6230 (18)171 (2)
N1—H1n···O10.876 (9)2.147 (10)3.0217 (18)176.3 (17)
N4—H4n···O50.881 (9)2.138 (10)3.0190 (19)179.6 (19)
C2—H2···O80.952.413.201 (2)141
C12—H12···O40.952.433.106 (2)128
C18—H18···O7i0.952.563.330 (2)138
C19—H19···O3ii0.952.603.518 (2)163
C31—H31···O8iii0.952.553.238 (2)129
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

The Ministry of Higher Education, Malaysia, is thanked for research grants (FP047/2008 C & FP001/2010 A to ZA and RG125 to ERTT). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBadaruddin, E., Shah Bakhtiar, N., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Model. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWardell, J. L. & Tiekink, E. R. T. (2011). J. Chem. Crystallogr. 41, 1418–1424.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3080-o3081
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds