organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-[(1,4-Phenyl­enedi­methyl­ene)bis­­(sulfanedi­yl)]bis­­(1-methyl-1H-1,2,3,4-tetra­zole)

aDepartment of Chemistry and Chemical Engineering, Daqing Normal University, 163712 Daqing, Heilongjiang, People's Republic of China, and bDaQing Petrochemical Corporation, 163712 Daqing, Heilongjiang, People's Republic of China
*Correspondence e-mail: hdf00@yeah.net

(Received 10 September 2011; accepted 18 October 2011; online 29 October 2011)

The title mol­ecule, C12H14N8S2, has point symmetry [\overline{1}] since it is situated on a crystallographic centre of symmetry. The 1-meth­yl/5-thio groups are in an anti­periplanar conformation. The dihedral angle between the benzene and tetra­zole rings is 84.33 (2)°. In the crystal, C—H⋯N hydrogen bonds link mol­ecules into ladder-like chains running along the b axis. There are also C—H⋯π inter­actions present in the crystal structure.

Related literature

For the pharmaceutical properties of ligands derived from tetra­zole, see: Armour et al. (1996[Armour, D. R., Chung, K. M. L., Congreve, M., Evans, B., Guntrip, S., Hubbard, T., Kay, C., Middlemiss, D., Mordaunt, J. E., Pegg, N. A., Vinader, M. V., Ward, P. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1015-1020.]); Segarra et al. (1998[Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505-510.]); Bronisz (2002[Bronisz, R. (2002). Inorg. Chim. Acta, 340, 215-220.]); Semenov (2002[Semenov, B. B. (2002). Russ. Chem. Bull. 51, 357-358.]); Upadhayaya et al. (2004[Upadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579-592.]); Wang et al. (2004[Wang, W., Liu, H.-M. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1107-o1109.]); She et al. (2006[She, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402-o404.]); Wei et al. (2011[Wei, W., Xia, Z., Chen, S. & Gao, S. (2011). Acta Cryst. E67, o999.]). For the synthesis of the title compound, see: Wang et al. (2005[Wang, W., Zhao, B., Zheng, P.-W. & Duan, X.-M. (2005). Acta Cryst. E61, o1163-o1164.]). For graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N8S2

  • Mr = 334.43

  • Monoclinic, C 2/c

  • a = 18.464 (4) Å

  • b = 7.6392 (18) Å

  • c = 13.625 (3) Å

  • β = 126.999 (4)°

  • V = 1534.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.25 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.965

  • 6541 measured reflections

  • 1758 independent reflections

  • 1412 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.07

  • 1758 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cgbenzene is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯N2i 0.97 2.58 3.429 (3) 145
C6—H6ACgbenzeneii 0.96 2.82 3.545 (4) 133
Symmetry codes: (i) x, y-1, z; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, tetrazole compounds and their derivatives have received much attention because of their diverse pharmaceutical properties (Armour et al., 1996; Segarra et al., 1998; Bronisz, 2002; Semenov, 2002; Upadhayaya et al., 2004; Wang et al., 2004; She et al., 2006; Wei et al., 2011).

In order to search for a new tetrazole compound with higher bioactivity, the title compound has been synthesized and its crystal structure determined.

The title molecule, C12H14N2S8, has the point symmetry 1 since it is situated on the crystallographic centre of symmetry. 1-methyl-5-thio- moieties are in the antiperiplanar conformation. The dihedral angle between the benzene and tetrazole ring is 84.39 (2) °. The molecules are situated on the crystallographic centres of symmetry and therefore their point symmetry is 1. In the crystal structure, the molecules are linked by C—H···N hydrogen bonds (Tab. 1; Fig. 2) forming a ladder-like chain composed of the graph set motifs R22(22) (Etter et al. (1990). The chains are directed along the b axis.

Moreover, there are also C—H···ring-πi-electron interactions in the structure: (C6—H6A···Cgbenzenei: 0.96, 2.82, 3.545 (4) Å, 133 °; the symmetry code i: -x, y, 1/2 - z and C6ii—H6Aii···Cgbenzeneii: 0.96, 2.82, 3.545 (4) Å, 133 °; the symmetry code ii: x, -y, 1/2 + z).

Related literature top

For the pharmaceutical properties of ligands derived from tetrazole, see: Armour et al. (1996); Segarra et al. (1998); Bronisz (2002); Semenov (2002); Upadhayaya et al. (2004); Wang et al. (2004); She et al. (2006); Wei et al. (2011). For the synthesis of the title compound, see: Wang et al. (2005). For graph-set motifs, see Etter et al. (1990).

Experimental top

The title compound was synthesized according to the method reported in the literature (Wang et al., 2005). Colourless block-shaped crystals with approx. size 0.2 × 0.1 × 0.1 mm were obtained by slow evaporation from ethanol solution of the title compound.

Refinement top

All the H atoms could be discerned in the difference electron density map. However, they have been situated into the idealized positions and refined within the riding atom approximation. The used constraints: Caryl—Haryl = 0.93; Cmethyl—Hmethyl = 0.96 Å; Cmethylene—Hmethylene = 0.97 Å. Uiso(Haryl/methylene)=1.2; Uiso(Hmethyl)=1.5Ueq(Cmethyl). The diffraction 2 0 0 has been excluded from the refinement because most probably it had been eclipsed by the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The infinite ladder-like chains formed via C-H···N hydrogen bonds indicated by the dashed lines. The chains contain the graph set motifs R22(22) (Etter et al., 1990).
1-methyl-5-({4-[(1-methyl-1H-1,2,3,4-tetrazol-5- yl)sulfanylmethyl]phenyl}methylsulfanyl)-1H-1,2,3,4-tetrazole top
Crystal data top
C12H14N8S2F(000) = 696
Mr = 334.43Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2201 reflections
a = 18.464 (4) Åθ = 3.0–26.9°
b = 7.6392 (18) ŵ = 0.36 mm1
c = 13.625 (3) ÅT = 296 K
β = 126.999 (4)°Block, colorless
V = 1534.8 (6) Å30.25 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
1758 independent reflections
Radiation source: fine-focus sealed tube1412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1924
Tmin = 0.916, Tmax = 0.965k = 99
6541 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.9815P]
where P = (Fo2 + 2Fc2)/3
1758 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
27 constraints
Crystal data top
C12H14N8S2V = 1534.8 (6) Å3
Mr = 334.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.464 (4) ŵ = 0.36 mm1
b = 7.6392 (18) ÅT = 296 K
c = 13.625 (3) Å0.25 × 0.10 × 0.10 mm
β = 126.999 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
1758 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1412 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.965Rint = 0.024
6541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
1758 reflectionsΔρmin = 0.26 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15096 (4)0.07607 (7)0.36393 (5)0.04497 (19)
N10.16911 (15)0.3872 (3)0.27877 (19)0.0558 (5)
N20.15595 (18)0.5580 (3)0.2902 (2)0.0697 (6)
N30.12550 (16)0.5769 (3)0.3536 (2)0.0652 (6)
N40.11760 (12)0.4145 (2)0.38467 (16)0.0452 (4)
C10.07348 (14)0.1014 (3)0.03169 (19)0.0413 (5)
H10.12250.16970.05230.050*
C20.00541 (14)0.1013 (3)0.08832 (19)0.0413 (4)
H20.00870.16960.14740.050*
C30.07963 (13)0.0003 (3)0.12106 (17)0.0384 (4)
C40.16597 (14)0.0016 (3)0.25088 (19)0.0444 (5)
H4A0.21070.07120.25490.053*
H4B0.18940.12020.27180.053*
C50.14563 (12)0.2996 (3)0.33927 (16)0.0390 (4)
C60.08800 (19)0.3838 (4)0.4606 (3)0.0640 (7)
H6A0.03870.30170.42030.096*
H6B0.06830.49210.47310.096*
H6C0.13750.33710.53850.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (3)0.0439 (3)0.0376 (3)0.0049 (2)0.0280 (2)0.0001 (2)
N10.0711 (13)0.0491 (11)0.0643 (12)0.0057 (9)0.0497 (11)0.0038 (9)
N20.0895 (17)0.0488 (12)0.0893 (17)0.0011 (11)0.0636 (15)0.0105 (11)
N30.0751 (14)0.0451 (12)0.0819 (16)0.0064 (10)0.0507 (14)0.0054 (10)
N40.0409 (9)0.0459 (10)0.0497 (10)0.0017 (7)0.0278 (8)0.0002 (8)
C10.0418 (10)0.0438 (11)0.0449 (11)0.0055 (8)0.0296 (9)0.0073 (8)
C20.0474 (11)0.0421 (11)0.0411 (10)0.0026 (9)0.0303 (9)0.0021 (8)
C30.0387 (10)0.0404 (10)0.0391 (10)0.0002 (8)0.0250 (8)0.0078 (8)
C40.0408 (10)0.0467 (12)0.0445 (11)0.0022 (9)0.0250 (9)0.0040 (9)
C50.0336 (9)0.0449 (11)0.0335 (9)0.0040 (8)0.0176 (8)0.0014 (8)
C60.0681 (16)0.0732 (17)0.0717 (17)0.0009 (13)0.0532 (15)0.0078 (13)
Geometric parameters (Å, º) top
S1—C51.732 (2)C1—H10.9300
S1—C41.821 (2)C2—C31.394 (3)
N1—C51.321 (3)C2—H20.9300
N1—N21.353 (3)C3—C1i1.388 (3)
N2—N31.291 (3)C3—C41.509 (3)
N3—N41.347 (3)C4—H4A0.9700
N4—C51.344 (3)C4—H4B0.9700
N4—C61.450 (3)C6—H6A0.9600
C1—C3i1.388 (3)C6—H6B0.9600
C1—C21.389 (3)C6—H6C0.9600
C5—S1—C4100.20 (10)C3—C4—S1113.41 (14)
C5—N1—N2105.50 (19)C3—C4—H4A108.9
N3—N2—N1111.44 (19)S1—C4—H4A108.9
N2—N3—N4106.27 (19)C3—C4—H4B108.9
C5—N4—N3108.20 (18)S1—C4—H4B108.9
C5—N4—C6129.58 (19)H4A—C4—H4B107.7
N3—N4—C6122.13 (19)N1—C5—N4108.57 (19)
C3i—C1—C2120.44 (18)N1—C5—S1128.22 (17)
C3i—C1—H1119.8N4—C5—S1123.19 (15)
C2—C1—H1119.8N4—C6—H6A109.5
C1—C2—C3120.64 (18)N4—C6—H6B109.5
C1—C2—H2119.7H6A—C6—H6B109.5
C3—C2—H2119.7N4—C6—H6C109.5
C1i—C3—C2118.92 (18)H6A—C6—H6C109.5
C1i—C3—C4120.31 (18)H6B—C6—H6C109.5
C2—C3—C4120.77 (18)
C5—N1—N2—N30.3 (3)C5—S1—C4—C376.96 (17)
N1—N2—N3—N40.4 (3)N2—N1—C5—N40.9 (2)
N2—N3—N4—C50.9 (3)N2—N1—C5—S1177.38 (17)
N2—N3—N4—C6177.8 (2)N3—N4—C5—N11.2 (2)
C3i—C1—C2—C30.0 (3)C6—N4—C5—N1177.7 (2)
C1—C2—C3—C1i0.0 (3)N3—N4—C5—S1177.23 (15)
C1—C2—C3—C4178.97 (18)C6—N4—C5—S10.6 (3)
C1i—C3—C4—S1119.20 (18)C4—S1—C5—N115.1 (2)
C2—C3—C4—S161.8 (2)C4—S1—C5—N4166.87 (16)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N2ii0.972.583.429 (3)145
C6—H6A···Cgbenzeneiii0.962.823.545 (4)133
Symmetry codes: (ii) x, y1, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14N8S2
Mr334.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)18.464 (4), 7.6392 (18), 13.625 (3)
β (°) 126.999 (4)
V3)1534.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.25 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.916, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
6541, 1758, 1412
Rint0.024
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.07
No. of reflections1758
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···N2i0.972.583.429 (3)145
C6—H6A···Cgbenzeneii0.962.823.545 (4)133
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21171030).

References

First citationArmour, D. R., Chung, K. M. L., Congreve, M., Evans, B., Guntrip, S., Hubbard, T., Kay, C., Middlemiss, D., Mordaunt, J. E., Pegg, N. A., Vinader, M. V., Ward, P. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1015–1020.  CrossRef CAS Web of Science Google Scholar
First citationBronisz, R. (2002). Inorg. Chim. Acta, 340, 215–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSegarra, V., Crespo, M. I., Pujol, F., Beleta, J., Domenech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSemenov, B. B. (2002). Russ. Chem. Bull. 51, 357–358.  Web of Science CrossRef CAS Google Scholar
First citationShe, J.-B., Zhang, G.-F., Dou, Y.-L., Fan, X.-Z. & Li, J.-Z. (2006). Acta Cryst. E62, o402–o404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Jain, S., Sinha, N., Kishore, N., Chandra, R. & Arora, S. K. (2004). Eur. J. Med. Chem. 39, 579–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Liu, H.-M. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1107–o1109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Zhao, B., Zheng, P.-W. & Duan, X.-M. (2005). Acta Cryst. E61, o1163–o1164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, W., Xia, Z., Chen, S. & Gao, S. (2011). Acta Cryst. E67, o999.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds