organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-2-nitro-4′-(tri­fluoro­meth­yl)biphen­yl

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hljusunzhizhong@163.com

(Received 16 September 2011; accepted 23 September 2011; online 12 October 2011)

The title compound, C14H10F3NO3, was prepared by a palladium-catalysed Suzuki–Miyaura coupling reaction. The dihedral angle between the nitro group and its parent benzene ring is 66.85 (19)° while the dihedral angle between the two benzene rings is 49.98 (9)°. The CF3 group is disordered over two sets of sites with occupancies of 0.457 (8) and 0.543 (8).

Related literature

For general background to the synthesis and properties of the title compound, see: Suzuki (1999[Suzuki, A. (1999). J. Organomet. Chem. A576, 147-168.]); Razler et al. (2009[Razler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381-1384.]). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996[Kimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635-636.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F3NO3

  • Mr = 297.23

  • Monoclinic, P 21 /c

  • a = 8.1956 (13) Å

  • b = 20.777 (3) Å

  • c = 7.9715 (12) Å

  • β = 104.240 (2)°

  • V = 1315.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.974

  • 10512 measured reflections

  • 3235 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.161

  • S = 1.05

  • 3235 reflections

  • 243 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For general background to the synthesis and properties of the title compound, see: Suzuki (1999); Razler et al. (2009). For the biological activity of biphenyl derivatives, see: Kimpe et al. (1996).

Experimental top

To a solution of 4-bromo-trifluoromethylphenyl (5 mmol) and 4-methoxy-2-nitro-phenylboronic acid (6 mmol) in 20 ml water and 20 ml methanol was added Pd(OAc)2 (5 mmol) and K2CO3 (10 mmol). After stirring the reaction mixture for 12 h at room temperature, the aqueous phases were extracted with 100 ml ethyl acetate. The organic extracts were washed with 200 ml saturated aqueous sodium chloride, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The resulting crude material was purified via silica gel chromatography (5% ethyl acetate/hexane) to afford a translucent solid in a yield of 80%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol at room temperature in a total yield of 32%. Analysis found: C 56.6, H 3.3, N 4.6%; C14H10F3NO3 requires: C 56.6, H 3.4, N 4.7%. 1H NMR (400 MHz, CDCl3) 7.66 (d, J = 8.1 Hz, 2H), 7.45 (d, J = 2.6 Hz, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.5 Hz, 1H), 7.19 (dd, J = 8.6, 2.6 Hz, 1H), 3.92 (s, 3H).

Refinement top

All H-atoms were positioned geometrically and included in the refinement in the riding-model approximation, with Uiso(H)= 1.5Ueq(methyl C) and 1.2Ueq(aromatic C). The –CF3 group is disordered over two sites with occupancies of 0.457 (8) and 0.543 (8). For this fragment, some anisotropic displacement ellipsoids were rather elongated which led us to use the ISOR restraints (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% probability displacement ellipsoids for non-hydrogen atoms showing the disordered –CF3 group.
4-Methoxy-2-nitro-4'-(trifluoromethyl)biphenyl top
Crystal data top
C14H10F3NO3F(000) = 608
Mr = 297.23Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1880 reflections
a = 8.1956 (13) Åθ = 2.8–22.6°
b = 20.777 (3) ŵ = 0.13 mm1
c = 7.9715 (12) ÅT = 293 K
β = 104.240 (2)°Block, colorless
V = 1315.7 (3) Å30.26 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3235 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.966, Tmax = 0.974k = 2727
10512 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.1504P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3235 reflectionsΔρmax = 0.30 e Å3
243 parametersΔρmin = 0.21 e Å3
36 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (4)
Crystal data top
C14H10F3NO3V = 1315.7 (3) Å3
Mr = 297.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1956 (13) ŵ = 0.13 mm1
b = 20.777 (3) ÅT = 293 K
c = 7.9715 (12) Å0.26 × 0.24 × 0.20 mm
β = 104.240 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3235 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1910 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.029
10512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05036 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
3235 reflectionsΔρmin = 0.21 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.6447 (4)0.19880 (14)0.4301 (4)0.0705 (7)0.46
F1A0.6131 (8)0.1395 (3)0.3972 (18)0.147 (3)0.46
F2A0.7487 (9)0.2001 (4)0.5832 (6)0.108 (2)0.46
F3A0.7514 (8)0.2162 (4)0.3299 (10)0.1111 (16)0.46
C1B0.6447 (4)0.19880 (14)0.4301 (4)0.0705 (7)0.54
F1B0.6331 (8)0.1469 (3)0.5270 (8)0.1152 (18)0.54
F2B0.7864 (6)0.2248 (3)0.4985 (14)0.142 (2)0.54
F3B0.6443 (9)0.1723 (3)0.2844 (5)0.1143 (16)0.54
O30.3255 (2)0.48543 (8)0.4265 (2)0.0667 (5)
N10.0999 (2)0.42470 (11)0.1294 (2)0.0604 (5)
C20.4994 (3)0.24308 (11)0.4159 (3)0.0549 (6)
C30.5169 (3)0.30787 (12)0.3869 (3)0.0581 (6)
C40.3843 (3)0.34936 (11)0.3798 (3)0.0551 (6)
C50.2308 (3)0.32692 (10)0.4005 (3)0.0496 (5)
C60.2145 (3)0.26131 (11)0.4274 (3)0.0573 (6)
C70.3473 (3)0.21981 (12)0.4348 (3)0.0606 (6)
C80.0882 (3)0.37089 (10)0.4025 (3)0.0485 (5)
C90.0257 (3)0.41719 (10)0.2790 (3)0.0484 (5)
C100.1091 (3)0.45702 (10)0.2791 (3)0.0504 (5)
C110.1881 (3)0.45081 (10)0.4134 (3)0.0512 (5)
C120.1259 (3)0.40693 (11)0.5441 (3)0.0574 (6)
H120.17510.40390.63720.069*
C130.0072 (3)0.36797 (11)0.5379 (3)0.0568 (6)
C140.4039 (3)0.52531 (14)0.2844 (4)0.0754 (8)
H14A0.32720.55850.27000.113*
H14B0.50320.54450.30640.113*
H14C0.43430.49980.18100.113*
H100.146 (3)0.4878 (10)0.188 (3)0.053 (6)*
H40.401 (3)0.3937 (11)0.364 (3)0.064 (7)*
H110.044 (3)0.3381 (11)0.630 (3)0.063 (6)*
H60.112 (3)0.2454 (11)0.442 (3)0.062 (6)*
H70.332 (3)0.1735 (12)0.454 (3)0.067 (7)*
H30.622 (3)0.3236 (11)0.371 (3)0.068 (7)*
O20.1707 (3)0.47594 (11)0.1180 (3)0.0972 (7)
O10.0856 (3)0.38237 (10)0.0266 (3)0.1025 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0697 (18)0.0762 (18)0.0648 (17)0.0077 (14)0.0150 (13)0.0032 (14)
F1A0.114 (4)0.079 (3)0.239 (7)0.007 (3)0.025 (6)0.054 (5)
F2A0.099 (4)0.151 (6)0.063 (2)0.062 (4)0.001 (2)0.004 (3)
F3A0.089 (3)0.141 (4)0.123 (4)0.043 (3)0.061 (3)0.041 (3)
C1B0.0697 (18)0.0762 (18)0.0648 (17)0.0077 (14)0.0150 (13)0.0032 (14)
F1B0.126 (4)0.116 (4)0.115 (3)0.066 (3)0.053 (3)0.055 (3)
F2B0.065 (2)0.122 (4)0.221 (6)0.017 (2)0.002 (4)0.038 (4)
F3B0.151 (4)0.128 (3)0.070 (2)0.067 (3)0.039 (2)0.007 (2)
O30.0589 (10)0.0774 (11)0.0701 (11)0.0099 (8)0.0280 (8)0.0027 (8)
N10.0601 (12)0.0727 (13)0.0524 (11)0.0114 (10)0.0215 (9)0.0146 (10)
C20.0553 (13)0.0601 (13)0.0466 (12)0.0065 (11)0.0076 (10)0.0014 (9)
C30.0517 (13)0.0662 (15)0.0568 (13)0.0055 (11)0.0139 (10)0.0024 (11)
C40.0562 (14)0.0512 (13)0.0586 (13)0.0068 (11)0.0152 (10)0.0017 (10)
C50.0518 (12)0.0518 (12)0.0436 (11)0.0029 (10)0.0085 (9)0.0027 (9)
C60.0535 (14)0.0536 (13)0.0655 (14)0.0051 (11)0.0161 (11)0.0067 (10)
C70.0651 (15)0.0524 (13)0.0637 (14)0.0005 (12)0.0148 (11)0.0058 (11)
C80.0477 (12)0.0475 (11)0.0501 (12)0.0066 (9)0.0115 (9)0.0023 (9)
C90.0518 (12)0.0519 (11)0.0438 (11)0.0031 (9)0.0166 (9)0.0019 (9)
C100.0531 (12)0.0499 (11)0.0501 (12)0.0002 (10)0.0161 (10)0.0056 (10)
C110.0489 (12)0.0529 (12)0.0545 (12)0.0062 (10)0.0176 (10)0.0032 (10)
C120.0590 (14)0.0657 (14)0.0529 (12)0.0066 (11)0.0243 (10)0.0026 (10)
C130.0611 (14)0.0604 (13)0.0492 (12)0.0040 (11)0.0144 (10)0.0104 (10)
C140.0611 (16)0.0862 (18)0.0803 (18)0.0158 (14)0.0201 (13)0.0066 (14)
O20.1010 (15)0.1191 (17)0.0805 (14)0.0256 (13)0.0393 (12)0.0224 (12)
O10.149 (2)0.0977 (15)0.0789 (13)0.0180 (14)0.0628 (14)0.0116 (11)
Geometric parameters (Å, º) top
C1A—F1A1.273 (6)C5—C81.487 (3)
C1A—F2A1.306 (6)C6—C71.378 (3)
C1A—F3A1.370 (5)C6—H60.93 (2)
C1A—C21.487 (3)C7—H70.99 (2)
O3—C111.361 (3)C8—C91.381 (3)
O3—C141.423 (3)C8—C131.401 (3)
N1—O11.188 (3)C9—C101.381 (3)
N1—O21.226 (3)C10—C111.387 (3)
N1—C91.474 (2)C10—H100.96 (2)
C2—C31.379 (3)C11—C121.384 (3)
C2—C71.380 (3)C12—C131.369 (3)
C3—C41.377 (3)C12—H120.9300
C3—H30.96 (2)C13—H110.95 (2)
C4—C51.389 (3)C14—H14A0.9600
C4—H40.94 (2)C14—H14B0.9600
C5—C61.391 (3)C14—H14C0.9600
F1A—C1A—F2A105.4 (6)C6—C7—H7119.2 (14)
F1A—C1A—F3A105.2 (5)C2—C7—H7120.7 (14)
F2A—C1A—F3A100.1 (5)C9—C8—C13114.61 (19)
F1A—C1A—C2117.7 (4)C9—C8—C5125.07 (17)
F2A—C1A—C2112.6 (3)C13—C8—C5120.31 (19)
F3A—C1A—C2114.0 (3)C10—C9—C8124.99 (18)
C11—O3—C14117.82 (17)C10—C9—N1115.23 (18)
O1—N1—O2124.0 (2)C8—C9—N1119.73 (18)
O1—N1—C9119.3 (2)C9—C10—C11118.1 (2)
O2—N1—C9116.6 (2)C9—C10—H10120.4 (12)
C3—C2—C7119.6 (2)C11—C10—H10121.5 (12)
C3—C2—C1A120.2 (2)O3—C11—C12116.66 (18)
C7—C2—C1A120.2 (2)O3—C11—C10124.2 (2)
C4—C3—C2120.3 (2)C12—C11—C10119.1 (2)
C4—C3—H3120.5 (14)C13—C12—C11120.76 (19)
C2—C3—H3119.2 (14)C13—C12—H12119.6
C3—C4—C5120.9 (2)C11—C12—H12119.6
C3—C4—H4118.5 (15)C12—C13—C8122.4 (2)
C5—C4—H4120.6 (15)C12—C13—H11117.6 (14)
C4—C5—C6118.1 (2)C8—C13—H11120.1 (14)
C4—C5—C8122.17 (19)O3—C14—H14A109.5
C6—C5—C8119.66 (19)O3—C14—H14B109.5
C7—C6—C5121.0 (2)H14A—C14—H14B109.5
C7—C6—H6119.8 (14)O3—C14—H14C109.5
C5—C6—H6119.2 (14)H14A—C14—H14C109.5
C6—C7—C2120.1 (2)H14B—C14—H14C109.5
F1A—C1A—C2—C3156.3 (8)C13—C8—C9—C102.3 (3)
F2A—C1A—C2—C380.8 (6)C5—C8—C9—C10178.5 (2)
F3A—C1A—C2—C332.4 (6)C13—C8—C9—N1179.6 (2)
F1A—C1A—C2—C724.9 (8)C5—C8—C9—N11.2 (3)
F2A—C1A—C2—C798.0 (6)O1—N1—C9—C10111.7 (2)
F3A—C1A—C2—C7148.7 (5)O2—N1—C9—C1066.8 (3)
C7—C2—C3—C41.1 (3)O1—N1—C9—C865.8 (3)
C1A—C2—C3—C4177.7 (2)O2—N1—C9—C8115.6 (2)
C2—C3—C4—C50.4 (3)C8—C9—C10—C110.5 (3)
C3—C4—C5—C60.4 (3)N1—C9—C10—C11177.87 (19)
C3—C4—C5—C8176.8 (2)C14—O3—C11—C12172.8 (2)
C4—C5—C6—C70.5 (3)C14—O3—C11—C107.2 (3)
C8—C5—C6—C7176.7 (2)C9—C10—C11—O3177.8 (2)
C5—C6—C7—C20.2 (4)C9—C10—C11—C122.2 (3)
C3—C2—C7—C61.0 (3)O3—C11—C12—C13177.1 (2)
C1A—C2—C7—C6177.8 (2)C10—C11—C12—C132.9 (3)
C4—C5—C8—C950.9 (3)C11—C12—C13—C80.9 (4)
C6—C5—C8—C9131.9 (2)C9—C8—C13—C121.6 (3)
C4—C5—C8—C13128.2 (2)C5—C8—C13—C12179.2 (2)
C6—C5—C8—C1348.9 (3)

Experimental details

Crystal data
Chemical formulaC14H10F3NO3
Mr297.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1956 (13), 20.777 (3), 7.9715 (12)
β (°) 104.240 (2)
V3)1315.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
10512, 3235, 1910
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.161, 1.05
No. of reflections3235
No. of parameters243
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 20872030) and Heilongjiang University, China, for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKimpe, N. D., Keppens, M. & Froncg, G. (1996). Chem. Commun. 5, 635–636.  Google Scholar
First citationRazler, T. M., Hsiao, Y., Qian, F., Fu, R., Khan, R. K. & Carl, E. S. (2009). J. Org. Chem. 74, 1381–1384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. A576, 147–168.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds