metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1549-m1550

The one-dimensional coordination polymer poly[tetra­kis­[(4-chloro­phen­yl)methanaminium] [cadmate-μ-cyclo­hexa­phospho­rato]]

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 20 September 2011; accepted 7 October 2011; online 22 October 2011)

Cyclo­hexa­phospho­ric acid (P6O18H6) reacts with cadmium carbonate and 4-chloro­benzyl­amine (CBA) to give the mononuclear title complex, (C7H9ClN)4[Cd(P6O18)]n, in which the CdII atom, lying on an inversion centre, has an octa­hedral coordination built of six O atoms of two centrosymmetric P6O18 rings. Each P6O18 ligand acts as a bridge, linking two CdII atoms and forming an anionic coordination polymer [Cd(P6O18)4−]n extending along [010]. Adjacent polymeric chains are connected through N—H⋯O and C—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular network.

Related literature

For the crystal chemistry of condensed phosphates, see: Averbuch-Pouchot & Durif (1996[Averbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific.]); Durif (2005[Durif, A. (2005). Solid State Sci. 7, 760-766.]). For general background to supra­molecular complexes, see: Kolotuchin et al. (1995[Kolotuchin, S. V., Fenlon, E. E., Wilson, S. R., Loweth, C. J. & Zimmerman, S. C. (1995). Angew. Chem. Int. Ed. 34, 2654-2657.]); Tong et al. (1999[Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. M. (1999). J. Chem. Soc. Dalton Trans. pp. 3657-3659.]). For Cl⋯Cl inter­actions, see: Hathwar et al. (2010[Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677-685.]) and for ππ inter­actions, see: Janiak et al. (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For the synthesis, see: Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]). For related structures, see: Du et al. (2010[Du, Z. Y., Sun, Y. H., Xie, Y. R., Lin, J. & Wen, H. R. (2010). Inorg. Chem. Commun. 13, 77-80.]); Hu et al. (2008[Hu, J.-Y., Zhao, J.-A., Hou, H.-W. & Fan, Y.-T. (2008). Inorg. Chem. Commun. 11, 1110-1112.]); Kontturi et al. (2005[Kontturi, M., Laurila, E., Mattsson, R., Peraniemi, S., Vepsalainen, J. J. & Ahlgren, M. (2005). Inorg. Chem. 44, 2400-2406.]); Man et al. (2006[Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017-1032.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H9ClN)4[Cd(P6O18)]

  • Mr = 1156.63

  • Triclinic, [P \overline 1]

  • a = 8.021 (4) Å

  • b = 8.1696 (16) Å

  • c = 17.919 (3) Å

  • α = 87.31 (5)°

  • β = 88.914 (19)°

  • γ = 70.100 (3)°

  • V = 1102.9 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 3873 measured reflections

  • 3770 independent reflections

  • 3506 reflections with I > 2σ(I)

  • Rint = 0.009

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.14

  • 3770 reflections

  • 277 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.89 1.91 2.785 (3) 167
N1—H1B⋯O6i 0.89 1.88 2.740 (3) 162
N1—H1C⋯O9ii 0.89 1.93 2.809 (4) 168
N2—H2A⋯O2 0.89 1.96 2.814 (4) 160
N2—H2B⋯O5ii 0.89 2.19 2.866 (3) 133
N2—H2C⋯O1iii 0.89 1.95 2.824 (3) 169
C3—H3⋯O1iv 0.93 2.56 3.339 (5) 142
C13—H13⋯O6ii 0.93 2.53 3.394 (4) 154
C14—H14B⋯O3v 0.97 2.56 3.410 (4) 147
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y+1, z; (v) -x+1, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The key to successful construction of supramolecular architecture is the control and manipulation of coordination bonds an non-covalent interactions by carefully selecting the coordination geometry of the metal atoms and the organic ligands containing appropriate functional groups (such as polyphosphoric acid and polyamine) (Kolotuchin et al., 1995). Up to now, a large number of supramolecular complexes with various dimensions and topologies have been achieved through judicious choice of linkers and metal ions (Tong et al., 1999). The approach to supramolecular framework employed in this work is to use the hexafunctional linker P6O186- that is of strong coordinating ability and suitable hydrogen bond acceptor. The 4-chlorobenzylamine (CBA) is used to create possibly π-π packing interactions between the aromatic rings and Cl—Cl interactions, which could facilitate the formation of ordered and non-interpenetrated open frameworks. In this contribution, we report the self-assembly of CdII with P6O186- in the presence of template (CBA) into a supramolecular open framework material [Cd(P6O186-)]n.4n(CABH) (Scheme I). Single-crystal X-ray diffraction study of this compound shows that the asymmetric unit contains half of cadmium atom, half of a cycle P6O18 and two crystallographically independent 4-chlorobenzylammonium (CBAH) cations (Fig. 1). The Cd atom locates on an inversion centre and is coordinated by six O atoms. The CdO6 octahedron, sharing six vertex oxygen atoms with two adjacent P6O18 rings, is slightly distorted compared to other cases (Du et al., 2010; Kontturi et al., 2005; Man et al., 2006; Hu et al., 2008). Bond distances Cd—O range from 2.230 (2) to 2.353 (7)Å and angles O—Cd—O range from 83.53 (8) to 88.19 (7) °. The P6O18 units display average P–O distances of 1.540 A and P–P distances of 2.967 Å, values usually found in other condensed anions (Averbuch-Pouchot & Durif, 1996). The values of the P—P—P angles, varying from 87.13 (1) to 128.55 (1)°, are in the range of values observed with other cyclohexaphosphates (Durif, 2005). As shown in Fig. 2, the CdII atoms are bridged by P6O18 rings to form infinite 1-D coordination polymers [Cd(P6O18)]n parallel to the b axis. Fig. 3 shows the supramolecular open framework structure built of the infinite zigzag chains linked by hydrogen bonds of types N(C)—H···O ranging from 2.714 (3) to 3.410 (4) Å, established by the protonated amine (CBAH). The phenyl rings of these organic molecules are planar, with a mean plane deviation of 0.0043 Å and are parallel with a dihedral angle of 4.94°. The orientations of the –CH2—NH3+ substituent in the two cations (CBAH) are distinct, as seen from the following torsion angles: N1—C7—C1—C2 = 13.1 (3) and N2—C14—C8—C9 = 118.3 (17)°. The supramolecular framework structure is further stabilized by electrostatic strengths, Cl–Cl interactions [4.051 Å] (Hathwar et al., 2010). The inter-planar distance between nearby phenyl rings is in the vicinity of 4.165 Å, which is longer than 3.80 Å, value required for the formation of ππ interactions (Janiak et al., 2000).

Related literature top

For the crystal chemistry of condensed phosphates, see: Averbuch-Pouchot & Durif (1996); Durif (2005). For general supramolecular complexes, see: Kolotuchin et al. (1995); Tong et al. (1999). For Cl···Cl interactions, see: Hathwar et al. (2010) and for ππ interactions, see: Janiak et al. (2000). For the synthesis, see: Schülke & Kayser (1985). For related structures, see: Du et al. (2010); Hu et al. (2008); Kontturi et al. (2005); Man et al. (2006).

Experimental top

The chemicals used to prepare the title compounds include CdCO3, 4-chlorobenzylamine (CBA) and H6P6O18. Both first reagents were commercially available (Accros), the third one was produced from Li6P6O18.6H2O, which is prepared by the process of Schülke (Schülke & Kayser, 1985) and protonated with an ion-exchange resin (Amberlite IR 120) in its H-state. An aqueous solution of H6P6O18 (5 mmol, 15 ml) was added dropwise to a stirred mixture of CdCO3 (0.86 g, 5 mmol), 4-chlorobenzylamine (2.45 ml, 20 mmol)and C2H5OH (50 ml). The obtained solution was allowed to stand in air at room temperature until formation of single crystals of the title complex.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89 with Uiso(H) = 1.5Ueq, C–H =0.96 Å (CH3) and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.2Ueq].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia,(1999)) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view showing the 1-D coordination polymers [Cd(P6O18)4-]n developed along the b axis.
[Figure 3] Fig. 3. Perspective view of [Cd(P6O18)].4(CBAH) showing the the supramolecular open framework structure.
poly[tetrakis[(4-chlorophenyl)methanaminium] [cadmate-µ-cyclohexaphosphorato]] top
Crystal data top
(C7H9ClN)4[Cd(P6O18)]Z = 1
Mr = 1156.63F(000) = 582
Triclinic, P1Dx = 1.741 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.021 (4) ÅCell parameters from 25 reflections
b = 8.1696 (16) Åθ = 9.1–10.8°
c = 17.919 (3) ŵ = 1.03 mm1
α = 87.31 (5)°T = 293 K
β = 88.914 (19)°Prism, colourless
γ = 70.100 (3)°0.22 × 0.20 × 0.18 mm
V = 1102.9 (6) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.009
Radiation source: Enraf Nonius FR590θmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 910
non–profiled ω scansk = 010
3873 measured reflectionsl = 523
3770 independent reflections2 standard reflections every 120 min
3506 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.863P]
where P = (Fo2 + 2Fc2)/3
3770 reflections(Δ/σ)max = 0.022
277 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C7H9ClN)4[Cd(P6O18)]γ = 70.100 (3)°
Mr = 1156.63V = 1102.9 (6) Å3
Triclinic, P1Z = 1
a = 8.021 (4) ÅMo Kα radiation
b = 8.1696 (16) ŵ = 1.03 mm1
c = 17.919 (3) ÅT = 293 K
α = 87.31 (5)°0.22 × 0.20 × 0.18 mm
β = 88.914 (19)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.009
3873 measured reflections2 standard reflections every 120 min
3770 independent reflections intensity decay: 1%
3506 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.14Δρmax = 0.76 e Å3
3770 reflectionsΔρmin = 0.57 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.67291 (7)0.07788 (7)0.58321 (4)0.02160 (17)
P20.31753 (7)0.30435 (7)0.62408 (4)0.02213 (17)
P30.21259 (7)0.28764 (8)0.46566 (4)0.02360 (18)
O10.8257 (2)0.0489 (2)0.63383 (12)0.0306 (5)
O20.6552 (2)0.1994 (2)0.51710 (12)0.0278 (5)
O30.4957 (2)0.1402 (2)0.63318 (13)0.0332 (5)
O40.6588 (2)0.1001 (2)0.55819 (13)0.0321 (6)
O50.3676 (2)0.4624 (2)0.60678 (11)0.0265 (5)
O60.2085 (2)0.3003 (2)0.69060 (12)0.0316 (5)
O70.2237 (3)0.2579 (3)0.55466 (12)0.0354 (6)
O80.0311 (2)0.3219 (2)0.44049 (13)0.0390 (6)
O90.3052 (2)0.4116 (2)0.43979 (12)0.0295 (5)
Cd0.50000.50000.50000.02314 (9)
N10.8521 (3)0.3592 (3)0.68090 (16)0.0336 (6)
H1A0.86050.25650.66330.050*
H1B0.96030.36170.68920.050*
H1C0.79690.44380.64760.050*
C10.7286 (4)0.5549 (4)0.7877 (2)0.0373 (9)
C20.7656 (4)0.6922 (4)0.7522 (2)0.0452 (10)
H20.81300.68030.70420.054*
C30.7325 (5)0.8486 (5)0.7875 (2)0.0500 (10)
H30.75410.94240.76310.060*
C40.6673 (5)0.8608 (5)0.8592 (2)0.0564 (12)
C50.6306 (6)0.7272 (6)0.8958 (3)0.0661 (13)
H50.58520.73910.94420.079*
C60.6619 (5)0.5735 (5)0.8598 (2)0.0522 (11)
H60.63770.48130.88440.063*
C70.7503 (5)0.3849 (4)0.7516 (2)0.0502 (11)
H7A0.80920.28930.78670.060*
H7B0.63360.37990.74200.060*
Cl10.6261 (2)1.05722 (18)0.90321 (8)0.1103 (6)
N20.8179 (3)0.1736 (3)0.37553 (14)0.0286 (6)
H2A0.77560.15340.42000.043*
H2B0.82550.28000.37340.043*
H2C0.92510.09520.36890.043*
C80.7590 (4)0.1923 (4)0.24011 (19)0.0358 (8)
C90.8004 (5)0.0633 (5)0.1879 (2)0.0564 (12)
H90.79430.04560.20190.068*
C100.8495 (7)0.0933 (6)0.1169 (3)0.0694 (15)
H100.87500.00590.08260.083*
C110.8614 (6)0.2538 (6)0.0958 (2)0.0589 (12)
C120.8237 (5)0.3838 (5)0.1459 (2)0.0558 (11)
H120.83250.49150.13170.067*
C130.7730 (4)0.3532 (4)0.2169 (2)0.0453 (10)
H130.74720.44160.25070.054*
C140.6978 (4)0.1610 (4)0.3163 (2)0.0401 (9)
H14A0.58080.24540.32440.048*
H14B0.68770.04600.31980.048*
Cl20.9233 (3)0.2940 (2)0.00535 (8)0.1069 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0171 (2)0.0128 (2)0.0337 (4)0.0031 (2)0.0003 (3)0.0040 (3)
P20.0190 (2)0.0152 (3)0.0315 (4)0.0047 (2)0.0032 (3)0.0051 (3)
P30.0204 (2)0.0144 (3)0.0364 (4)0.0057 (2)0.0049 (3)0.0045 (4)
O10.0246 (8)0.0235 (8)0.0421 (13)0.0050 (7)0.0056 (8)0.0079 (10)
O20.0262 (8)0.0182 (8)0.0356 (13)0.0035 (6)0.0047 (8)0.0001 (10)
O30.0249 (8)0.0201 (8)0.0471 (15)0.0005 (7)0.0114 (9)0.0041 (11)
O40.0235 (7)0.0152 (7)0.0566 (16)0.0043 (6)0.0065 (9)0.0078 (11)
O50.0288 (8)0.0161 (7)0.0355 (12)0.0084 (6)0.0038 (8)0.0060 (10)
O60.0268 (8)0.0288 (9)0.0387 (13)0.0085 (7)0.0084 (8)0.0065 (11)
O70.0427 (10)0.0386 (11)0.0354 (14)0.0273 (9)0.0031 (9)0.0022 (12)
O80.0230 (8)0.0293 (9)0.0635 (17)0.0050 (7)0.0104 (9)0.0154 (12)
O90.0334 (8)0.0195 (8)0.0392 (13)0.0133 (7)0.0079 (9)0.0007 (10)
Cd0.02384 (11)0.01532 (11)0.03217 (18)0.00887 (9)0.00109 (10)0.00258 (13)
N10.0303 (10)0.0249 (10)0.0464 (17)0.0101 (9)0.0057 (11)0.0041 (13)
C10.0316 (12)0.0382 (15)0.043 (2)0.0126 (12)0.0013 (13)0.0018 (19)
C20.0535 (17)0.0464 (18)0.042 (2)0.0242 (15)0.0066 (16)0.012 (2)
C30.068 (2)0.0419 (17)0.047 (3)0.0273 (17)0.0068 (18)0.006 (2)
C40.074 (2)0.050 (2)0.049 (3)0.0237 (19)0.009 (2)0.015 (2)
C50.091 (3)0.070 (3)0.042 (3)0.032 (2)0.017 (2)0.012 (3)
C60.066 (2)0.049 (2)0.044 (3)0.0245 (18)0.006 (2)0.008 (2)
C70.0545 (18)0.0404 (17)0.062 (3)0.0249 (15)0.0130 (18)0.008 (2)
Cl10.1789 (15)0.0753 (8)0.0887 (11)0.0554 (9)0.0468 (10)0.0485 (9)
N20.0239 (9)0.0246 (10)0.0353 (15)0.0048 (8)0.0001 (9)0.0065 (12)
C80.0382 (13)0.0338 (14)0.0370 (19)0.0138 (12)0.0073 (13)0.0016 (17)
C90.081 (2)0.0355 (17)0.053 (3)0.0185 (17)0.008 (2)0.010 (2)
C100.112 (3)0.048 (2)0.045 (3)0.022 (2)0.002 (2)0.015 (3)
C110.082 (3)0.064 (2)0.030 (2)0.025 (2)0.0006 (19)0.003 (3)
C120.072 (2)0.0465 (19)0.054 (3)0.0269 (18)0.006 (2)0.000 (2)
C130.0578 (18)0.0387 (17)0.045 (2)0.0227 (15)0.0010 (16)0.009 (2)
C140.0350 (13)0.0433 (16)0.048 (2)0.0211 (12)0.0060 (14)0.0035 (19)
Cl20.1687 (16)0.1080 (12)0.0444 (8)0.0486 (12)0.0145 (9)0.0017 (10)
Geometric parameters (Å, º) top
P1—O11.4846 (19)C3—C41.372 (6)
P1—O21.486 (2)C3—H30.9300
P1—O41.5822 (16)C4—C51.362 (6)
P1—O31.607 (2)C4—Cl11.748 (3)
P2—O61.471 (2)C5—C61.383 (5)
P2—O51.4947 (18)C5—H50.9300
P2—O71.5909 (19)C6—H60.9300
P2—O31.5975 (18)C7—H7A0.9700
P3—O81.4614 (18)C7—H7B0.9700
P3—O91.499 (2)N2—C141.478 (3)
P3—O4i1.6009 (16)N2—H2A0.8900
P3—O71.601 (2)N2—H2B0.8900
O2—Cd2.3534 (18)N2—H2C0.8900
O4—P3i1.6009 (16)C8—C91.392 (4)
O5—Cd2.230 (2)C8—C131.401 (5)
O9—Cd2.2432 (17)C8—C141.482 (5)
Cd—O5ii2.230 (2)C9—C101.361 (6)
Cd—O9ii2.2432 (17)C9—H90.9300
Cd—O2ii2.3534 (18)C10—C111.382 (7)
N1—C71.478 (4)C10—H100.9300
N1—H1A0.8900C11—C121.374 (5)
N1—H1B0.8900C11—Cl21.735 (5)
N1—H1C0.8900C12—C131.365 (5)
C1—C21.380 (5)C12—H120.9300
C1—C61.383 (5)C13—H130.9300
C1—C71.515 (4)C14—H14A0.9700
C2—C31.393 (4)C14—H14B0.9700
C2—H20.9300
O1—P1—O2117.93 (12)C3—C2—H2119.7
O1—P1—O4111.66 (10)C4—C3—C2118.4 (4)
O2—P1—O4109.88 (11)C4—C3—H3120.8
O1—P1—O3107.43 (12)C2—C3—H3120.8
O2—P1—O3109.96 (11)C5—C4—C3122.2 (3)
O4—P1—O398.11 (10)C5—C4—Cl1119.5 (3)
O6—P2—O5118.97 (11)C3—C4—Cl1118.2 (3)
O6—P2—O7107.58 (11)C4—C5—C6118.8 (4)
O5—P2—O7111.28 (13)C4—C5—H5120.6
O6—P2—O3106.68 (13)C6—C5—H5120.6
O5—P2—O3108.08 (11)C5—C6—C1121.0 (4)
O7—P2—O3102.99 (12)C5—C6—H6119.5
O8—P3—O9118.36 (13)C1—C6—H6119.5
O8—P3—O4i111.32 (9)N1—C7—C1114.6 (3)
O9—P3—O4i104.99 (10)N1—C7—H7A108.6
O8—P3—O7110.18 (13)C1—C7—H7A108.6
O9—P3—O7110.64 (11)N1—C7—H7B108.6
O4i—P3—O799.62 (12)C1—C7—H7B108.6
P1—O2—Cd131.47 (10)H7A—C7—H7B107.6
P2—O3—P1131.59 (16)C14—N2—H2A109.5
P1—O4—P3i138.76 (11)C14—N2—H2B109.5
P2—O5—Cd122.36 (10)H2A—N2—H2B109.5
P2—O7—P3139.86 (14)C14—N2—H2C109.5
P3—O9—Cd129.75 (13)H2A—N2—H2C109.5
O5—Cd—O5ii180.0H2B—N2—H2C109.5
O5—Cd—O988.19 (7)C9—C8—C13117.2 (4)
O5ii—Cd—O991.81 (7)C9—C8—C14121.0 (3)
O5—Cd—O9ii91.81 (7)C13—C8—C14121.8 (3)
O5ii—Cd—O9ii88.19 (7)C10—C9—C8121.4 (4)
O9—Cd—O9ii180.00 (10)C10—C9—H9119.3
O5—Cd—O283.53 (8)C8—C9—H9119.3
O5ii—Cd—O296.47 (8)C9—C10—C11119.8 (3)
O9—Cd—O283.70 (7)C9—C10—H10120.1
O9ii—Cd—O296.30 (7)C11—C10—H10120.1
O5—Cd—O2ii96.47 (8)C12—C11—C10120.5 (4)
O5ii—Cd—O2ii83.53 (8)C12—C11—Cl2119.2 (4)
O9—Cd—O2ii96.30 (7)C10—C11—Cl2120.3 (3)
O9ii—Cd—O2ii83.70 (7)C13—C12—C11119.3 (4)
O2—Cd—O2ii180.000 (1)C13—C12—H12120.3
C7—N1—H1A109.5C11—C12—H12120.3
C7—N1—H1B109.5C12—C13—C8121.7 (3)
H1A—N1—H1B109.5C12—C13—H13119.2
C7—N1—H1C109.5C8—C13—H13119.2
H1A—N1—H1C109.5N2—C14—C8113.1 (2)
H1B—N1—H1C109.5N2—C14—H14A109.0
C2—C1—C6118.9 (3)C8—C14—H14A109.0
C2—C1—C7123.9 (3)N2—C14—H14B109.0
C6—C1—C7117.2 (3)C8—C14—H14B109.0
C1—C2—C3120.7 (3)H14A—C14—H14B107.8
C1—C2—H2119.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.891.912.785 (3)167
N1—H1B···O6iii0.891.882.740 (3)162
N1—H1C···O9ii0.891.932.809 (4)168
N2—H2A···O20.891.962.814 (4)160
N2—H2B···O5ii0.892.192.866 (3)133
N2—H2C···O1iv0.891.952.824 (3)169
C3—H3···O1v0.932.563.339 (5)142
C13—H13···O6ii0.932.533.394 (4)154
C14—H14B···O3i0.972.563.410 (4)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C7H9ClN)4[Cd(P6O18)]
Mr1156.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.021 (4), 8.1696 (16), 17.919 (3)
α, β, γ (°)87.31 (5), 88.914 (19), 70.100 (3)
V3)1102.9 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3873, 3770, 3506
Rint0.009
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.14
No. of reflections3770
No. of parameters277
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.57

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.891.912.785 (3)167
N1—H1B···O6i0.891.882.740 (3)162
N1—H1C···O9ii0.891.932.809 (4)168
N2—H2A···O20.891.962.814 (4)160
N2—H2B···O5ii0.892.192.866 (3)133
N2—H2C···O1iii0.891.952.824 (3)169
C3—H3···O1iv0.932.563.339 (5)142
C13—H13···O6ii0.932.533.394 (4)154
C14—H14B···O3v0.972.563.410 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y+1, z; (v) x+1, y, z+1.
 

References

First citationAverbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific.  Google Scholar
First citationDu, Z. Y., Sun, Y. H., Xie, Y. R., Lin, J. & Wen, H. R. (2010). Inorg. Chem. Commun. 13, 77–80.  Web of Science CSD CrossRef CAS Google Scholar
First citationDurif, A. (2005). Solid State Sci. 7, 760–766.  Web of Science CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677–685.  CSD CrossRef CAS Google Scholar
First citationHu, J.-Y., Zhao, J.-A., Hou, H.-W. & Fan, Y.-T. (2008). Inorg. Chem. Commun. 11, 1110–1112.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKolotuchin, S. V., Fenlon, E. E., Wilson, S. R., Loweth, C. J. & Zimmerman, S. C. (1995). Angew. Chem. Int. Ed. 34, 2654–2657.  CrossRef CAS Google Scholar
First citationKontturi, M., Laurila, E., Mattsson, R., Peraniemi, S., Vepsalainen, J. J. & Ahlgren, M. (2005). Inorg. Chem. 44, 2400–2406.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMan, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. M. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1549-m1550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds