metal-organic compounds
The one-dimensional coordination polymer poly[tetrakis[(4-chlorophenyl)methanaminium] [cadmate-μ-cyclohexaphosphorato]]
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn
Cyclohexaphosphoric acid (P6O18H6) reacts with cadmium carbonate and 4-chlorobenzylamine (CBA) to give the mononuclear title complex, (C7H9ClN)4[Cd(P6O18)]n, in which the CdII atom, lying on an inversion centre, has an octahedral coordination built of six O atoms of two centrosymmetric P6O18 rings. Each P6O18 ligand acts as a bridge, linking two CdII atoms and forming an anionic coordination polymer [Cd(P6O18)4−]n extending along [010]. Adjacent polymeric chains are connected through N—H⋯O and C—H⋯O hydrogen bonds, generating a three-dimensional supramolecular network.
Related literature
For the crystal chemistry of condensed phosphates, see: Averbuch-Pouchot & Durif (1996); Durif (2005). For general background to supramolecular complexes, see: Kolotuchin et al. (1995); Tong et al. (1999). For Cl⋯Cl interactions, see: Hathwar et al. (2010) and for π–π interactions, see: Janiak et al. (2000). For the synthesis, see: Schülke & Kayser (1985). For related structures, see: Du et al. (2010); Hu et al. (2008); Kontturi et al. (2005); Man et al. (2006).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S160053681104133X/ff2028sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681104133X/ff2028Isup2.hkl
The chemicals used to prepare the title compounds include CdCO3, 4-chlorobenzylamine (CBA) and H6P6O18. Both first reagents were commercially available (Accros), the third one was produced from Li6P6O18.6H2O, which is prepared by the process of Schülke (Schülke & Kayser, 1985) and protonated with an ion-exchange resin (Amberlite IR 120) in its H-state. An aqueous solution of H6P6O18 (5 mmol, 15 ml) was added dropwise to a stirred mixture of CdCO3 (0.86 g, 5 mmol), 4-chlorobenzylamine (2.45 ml, 20 mmol)and C2H5OH (50 ml). The obtained solution was allowed to stand in air at room temperature until formation of single crystals of the title complex.
All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89 with Uiso(H) = 1.5Ueq, C–H =0.96 Å (CH3) and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.2Ueq].
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).Fig. 1. ORTEP-3 (Farrugia,(1999)) view of (I) with atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. | |
Fig. 2. Perspective view showing the 1-D coordination polymers [Cd(P6O18)4-]n developed along the b axis. | |
Fig. 3. Perspective view of [Cd(P6O18)].4(CBAH) showing the the supramolecular open framework structure. |
(C7H9ClN)4[Cd(P6O18)] | Z = 1 |
Mr = 1156.63 | F(000) = 582 |
Triclinic, P1 | Dx = 1.741 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.021 (4) Å | Cell parameters from 25 reflections |
b = 8.1696 (16) Å | θ = 9.1–10.8° |
c = 17.919 (3) Å | µ = 1.03 mm−1 |
α = 87.31 (5)° | T = 293 K |
β = 88.914 (19)° | Prism, colourless |
γ = 70.100 (3)° | 0.22 × 0.20 × 0.18 mm |
V = 1102.9 (6) Å3 |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.009 |
Radiation source: Enraf Nonius FR590 | θmax = 28.0°, θmin = 2.3° |
Graphite monochromator | h = −9→10 |
non–profiled ω scans | k = 0→10 |
3873 measured reflections | l = −5→23 |
3770 independent reflections | 2 standard reflections every 120 min |
3506 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.863P] where P = (Fo2 + 2Fc2)/3 |
3770 reflections | (Δ/σ)max = 0.022 |
277 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
(C7H9ClN)4[Cd(P6O18)] | γ = 70.100 (3)° |
Mr = 1156.63 | V = 1102.9 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.021 (4) Å | Mo Kα radiation |
b = 8.1696 (16) Å | µ = 1.03 mm−1 |
c = 17.919 (3) Å | T = 293 K |
α = 87.31 (5)° | 0.22 × 0.20 × 0.18 mm |
β = 88.914 (19)° |
Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.009 |
3873 measured reflections | 2 standard reflections every 120 min |
3770 independent reflections | intensity decay: 1% |
3506 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.074 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.76 e Å−3 |
3770 reflections | Δρmin = −0.57 e Å−3 |
277 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.67291 (7) | 0.07788 (7) | 0.58321 (4) | 0.02160 (17) | |
P2 | 0.31753 (7) | 0.30435 (7) | 0.62408 (4) | 0.02213 (17) | |
P3 | 0.21259 (7) | 0.28764 (8) | 0.46566 (4) | 0.02360 (18) | |
O1 | 0.8257 (2) | 0.0489 (2) | 0.63383 (12) | 0.0306 (5) | |
O2 | 0.6552 (2) | 0.1994 (2) | 0.51710 (12) | 0.0278 (5) | |
O3 | 0.4957 (2) | 0.1402 (2) | 0.63318 (13) | 0.0332 (5) | |
O4 | 0.6588 (2) | −0.1001 (2) | 0.55819 (13) | 0.0321 (6) | |
O5 | 0.3676 (2) | 0.4624 (2) | 0.60678 (11) | 0.0265 (5) | |
O6 | 0.2085 (2) | 0.3003 (2) | 0.69060 (12) | 0.0316 (5) | |
O7 | 0.2237 (3) | 0.2579 (3) | 0.55466 (12) | 0.0354 (6) | |
O8 | 0.0311 (2) | 0.3219 (2) | 0.44049 (13) | 0.0390 (6) | |
O9 | 0.3052 (2) | 0.4116 (2) | 0.43979 (12) | 0.0295 (5) | |
Cd | 0.5000 | 0.5000 | 0.5000 | 0.02314 (9) | |
N1 | 0.8521 (3) | 0.3592 (3) | 0.68090 (16) | 0.0336 (6) | |
H1A | 0.8605 | 0.2565 | 0.6633 | 0.050* | |
H1B | 0.9603 | 0.3617 | 0.6892 | 0.050* | |
H1C | 0.7969 | 0.4438 | 0.6476 | 0.050* | |
C1 | 0.7286 (4) | 0.5549 (4) | 0.7877 (2) | 0.0373 (9) | |
C2 | 0.7656 (4) | 0.6922 (4) | 0.7522 (2) | 0.0452 (10) | |
H2 | 0.8130 | 0.6803 | 0.7042 | 0.054* | |
C3 | 0.7325 (5) | 0.8486 (5) | 0.7875 (2) | 0.0500 (10) | |
H3 | 0.7541 | 0.9424 | 0.7631 | 0.060* | |
C4 | 0.6673 (5) | 0.8608 (5) | 0.8592 (2) | 0.0564 (12) | |
C5 | 0.6306 (6) | 0.7272 (6) | 0.8958 (3) | 0.0661 (13) | |
H5 | 0.5852 | 0.7391 | 0.9442 | 0.079* | |
C6 | 0.6619 (5) | 0.5735 (5) | 0.8598 (2) | 0.0522 (11) | |
H6 | 0.6377 | 0.4813 | 0.8844 | 0.063* | |
C7 | 0.7503 (5) | 0.3849 (4) | 0.7516 (2) | 0.0502 (11) | |
H7A | 0.8092 | 0.2893 | 0.7867 | 0.060* | |
H7B | 0.6336 | 0.3799 | 0.7420 | 0.060* | |
Cl1 | 0.6261 (2) | 1.05722 (18) | 0.90321 (8) | 0.1103 (6) | |
N2 | 0.8179 (3) | 0.1736 (3) | 0.37553 (14) | 0.0286 (6) | |
H2A | 0.7756 | 0.1534 | 0.4200 | 0.043* | |
H2B | 0.8255 | 0.2800 | 0.3734 | 0.043* | |
H2C | 0.9251 | 0.0952 | 0.3689 | 0.043* | |
C8 | 0.7590 (4) | 0.1923 (4) | 0.24011 (19) | 0.0358 (8) | |
C9 | 0.8004 (5) | 0.0633 (5) | 0.1879 (2) | 0.0564 (12) | |
H9 | 0.7943 | −0.0456 | 0.2019 | 0.068* | |
C10 | 0.8495 (7) | 0.0933 (6) | 0.1169 (3) | 0.0694 (15) | |
H10 | 0.8750 | 0.0059 | 0.0826 | 0.083* | |
C11 | 0.8614 (6) | 0.2538 (6) | 0.0958 (2) | 0.0589 (12) | |
C12 | 0.8237 (5) | 0.3838 (5) | 0.1459 (2) | 0.0558 (11) | |
H12 | 0.8325 | 0.4915 | 0.1317 | 0.067* | |
C13 | 0.7730 (4) | 0.3532 (4) | 0.2169 (2) | 0.0453 (10) | |
H13 | 0.7472 | 0.4416 | 0.2507 | 0.054* | |
C14 | 0.6978 (4) | 0.1610 (4) | 0.3163 (2) | 0.0401 (9) | |
H14A | 0.5808 | 0.2454 | 0.3244 | 0.048* | |
H14B | 0.6877 | 0.0460 | 0.3198 | 0.048* | |
Cl2 | 0.9233 (3) | 0.2940 (2) | 0.00535 (8) | 0.1069 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0171 (2) | 0.0128 (2) | 0.0337 (4) | −0.0031 (2) | 0.0003 (3) | −0.0040 (3) |
P2 | 0.0190 (2) | 0.0152 (3) | 0.0315 (4) | −0.0047 (2) | 0.0032 (3) | −0.0051 (3) |
P3 | 0.0204 (2) | 0.0144 (3) | 0.0364 (4) | −0.0057 (2) | −0.0049 (3) | −0.0045 (4) |
O1 | 0.0246 (8) | 0.0235 (8) | 0.0421 (13) | −0.0050 (7) | −0.0056 (8) | −0.0079 (10) |
O2 | 0.0262 (8) | 0.0182 (8) | 0.0356 (13) | −0.0035 (6) | 0.0047 (8) | −0.0001 (10) |
O3 | 0.0249 (8) | 0.0201 (8) | 0.0471 (15) | 0.0005 (7) | 0.0114 (9) | 0.0041 (11) |
O4 | 0.0235 (7) | 0.0152 (7) | 0.0566 (16) | −0.0043 (6) | −0.0065 (9) | −0.0078 (11) |
O5 | 0.0288 (8) | 0.0161 (7) | 0.0355 (12) | −0.0084 (6) | 0.0038 (8) | −0.0060 (10) |
O6 | 0.0268 (8) | 0.0288 (9) | 0.0387 (13) | −0.0085 (7) | 0.0084 (8) | −0.0065 (11) |
O7 | 0.0427 (10) | 0.0386 (11) | 0.0354 (14) | −0.0273 (9) | −0.0031 (9) | −0.0022 (12) |
O8 | 0.0230 (8) | 0.0293 (9) | 0.0635 (17) | −0.0050 (7) | −0.0104 (9) | −0.0154 (12) |
O9 | 0.0334 (8) | 0.0195 (8) | 0.0392 (13) | −0.0133 (7) | −0.0079 (9) | −0.0007 (10) |
Cd | 0.02384 (11) | 0.01532 (11) | 0.03217 (18) | −0.00887 (9) | −0.00109 (10) | −0.00258 (13) |
N1 | 0.0303 (10) | 0.0249 (10) | 0.0464 (17) | −0.0101 (9) | −0.0057 (11) | −0.0041 (13) |
C1 | 0.0316 (12) | 0.0382 (15) | 0.043 (2) | −0.0126 (12) | −0.0013 (13) | −0.0018 (19) |
C2 | 0.0535 (17) | 0.0464 (18) | 0.042 (2) | −0.0242 (15) | 0.0066 (16) | −0.012 (2) |
C3 | 0.068 (2) | 0.0419 (17) | 0.047 (3) | −0.0273 (17) | 0.0068 (18) | −0.006 (2) |
C4 | 0.074 (2) | 0.050 (2) | 0.049 (3) | −0.0237 (19) | 0.009 (2) | −0.015 (2) |
C5 | 0.091 (3) | 0.070 (3) | 0.042 (3) | −0.032 (2) | 0.017 (2) | −0.012 (3) |
C6 | 0.066 (2) | 0.049 (2) | 0.044 (3) | −0.0245 (18) | 0.006 (2) | 0.008 (2) |
C7 | 0.0545 (18) | 0.0404 (17) | 0.062 (3) | −0.0249 (15) | 0.0130 (18) | −0.008 (2) |
Cl1 | 0.1789 (15) | 0.0753 (8) | 0.0887 (11) | −0.0554 (9) | 0.0468 (10) | −0.0485 (9) |
N2 | 0.0239 (9) | 0.0246 (10) | 0.0353 (15) | −0.0048 (8) | 0.0001 (9) | −0.0065 (12) |
C8 | 0.0382 (13) | 0.0338 (14) | 0.0370 (19) | −0.0138 (12) | −0.0073 (13) | −0.0016 (17) |
C9 | 0.081 (2) | 0.0355 (17) | 0.053 (3) | −0.0185 (17) | −0.008 (2) | −0.010 (2) |
C10 | 0.112 (3) | 0.048 (2) | 0.045 (3) | −0.022 (2) | 0.002 (2) | −0.015 (3) |
C11 | 0.082 (3) | 0.064 (2) | 0.030 (2) | −0.025 (2) | 0.0006 (19) | 0.003 (3) |
C12 | 0.072 (2) | 0.0465 (19) | 0.054 (3) | −0.0269 (18) | −0.006 (2) | 0.000 (2) |
C13 | 0.0578 (18) | 0.0387 (17) | 0.045 (2) | −0.0227 (15) | 0.0010 (16) | −0.009 (2) |
C14 | 0.0350 (13) | 0.0433 (16) | 0.048 (2) | −0.0211 (12) | −0.0060 (14) | −0.0035 (19) |
Cl2 | 0.1687 (16) | 0.1080 (12) | 0.0444 (8) | −0.0486 (12) | 0.0145 (9) | −0.0017 (10) |
P1—O1 | 1.4846 (19) | C3—C4 | 1.372 (6) |
P1—O2 | 1.486 (2) | C3—H3 | 0.9300 |
P1—O4 | 1.5822 (16) | C4—C5 | 1.362 (6) |
P1—O3 | 1.607 (2) | C4—Cl1 | 1.748 (3) |
P2—O6 | 1.471 (2) | C5—C6 | 1.383 (5) |
P2—O5 | 1.4947 (18) | C5—H5 | 0.9300 |
P2—O7 | 1.5909 (19) | C6—H6 | 0.9300 |
P2—O3 | 1.5975 (18) | C7—H7A | 0.9700 |
P3—O8 | 1.4614 (18) | C7—H7B | 0.9700 |
P3—O9 | 1.499 (2) | N2—C14 | 1.478 (3) |
P3—O4i | 1.6009 (16) | N2—H2A | 0.8900 |
P3—O7 | 1.601 (2) | N2—H2B | 0.8900 |
O2—Cd | 2.3534 (18) | N2—H2C | 0.8900 |
O4—P3i | 1.6009 (16) | C8—C9 | 1.392 (4) |
O5—Cd | 2.230 (2) | C8—C13 | 1.401 (5) |
O9—Cd | 2.2432 (17) | C8—C14 | 1.482 (5) |
Cd—O5ii | 2.230 (2) | C9—C10 | 1.361 (6) |
Cd—O9ii | 2.2432 (17) | C9—H9 | 0.9300 |
Cd—O2ii | 2.3534 (18) | C10—C11 | 1.382 (7) |
N1—C7 | 1.478 (4) | C10—H10 | 0.9300 |
N1—H1A | 0.8900 | C11—C12 | 1.374 (5) |
N1—H1B | 0.8900 | C11—Cl2 | 1.735 (5) |
N1—H1C | 0.8900 | C12—C13 | 1.365 (5) |
C1—C2 | 1.380 (5) | C12—H12 | 0.9300 |
C1—C6 | 1.383 (5) | C13—H13 | 0.9300 |
C1—C7 | 1.515 (4) | C14—H14A | 0.9700 |
C2—C3 | 1.393 (4) | C14—H14B | 0.9700 |
C2—H2 | 0.9300 | ||
O1—P1—O2 | 117.93 (12) | C3—C2—H2 | 119.7 |
O1—P1—O4 | 111.66 (10) | C4—C3—C2 | 118.4 (4) |
O2—P1—O4 | 109.88 (11) | C4—C3—H3 | 120.8 |
O1—P1—O3 | 107.43 (12) | C2—C3—H3 | 120.8 |
O2—P1—O3 | 109.96 (11) | C5—C4—C3 | 122.2 (3) |
O4—P1—O3 | 98.11 (10) | C5—C4—Cl1 | 119.5 (3) |
O6—P2—O5 | 118.97 (11) | C3—C4—Cl1 | 118.2 (3) |
O6—P2—O7 | 107.58 (11) | C4—C5—C6 | 118.8 (4) |
O5—P2—O7 | 111.28 (13) | C4—C5—H5 | 120.6 |
O6—P2—O3 | 106.68 (13) | C6—C5—H5 | 120.6 |
O5—P2—O3 | 108.08 (11) | C5—C6—C1 | 121.0 (4) |
O7—P2—O3 | 102.99 (12) | C5—C6—H6 | 119.5 |
O8—P3—O9 | 118.36 (13) | C1—C6—H6 | 119.5 |
O8—P3—O4i | 111.32 (9) | N1—C7—C1 | 114.6 (3) |
O9—P3—O4i | 104.99 (10) | N1—C7—H7A | 108.6 |
O8—P3—O7 | 110.18 (13) | C1—C7—H7A | 108.6 |
O9—P3—O7 | 110.64 (11) | N1—C7—H7B | 108.6 |
O4i—P3—O7 | 99.62 (12) | C1—C7—H7B | 108.6 |
P1—O2—Cd | 131.47 (10) | H7A—C7—H7B | 107.6 |
P2—O3—P1 | 131.59 (16) | C14—N2—H2A | 109.5 |
P1—O4—P3i | 138.76 (11) | C14—N2—H2B | 109.5 |
P2—O5—Cd | 122.36 (10) | H2A—N2—H2B | 109.5 |
P2—O7—P3 | 139.86 (14) | C14—N2—H2C | 109.5 |
P3—O9—Cd | 129.75 (13) | H2A—N2—H2C | 109.5 |
O5—Cd—O5ii | 180.0 | H2B—N2—H2C | 109.5 |
O5—Cd—O9 | 88.19 (7) | C9—C8—C13 | 117.2 (4) |
O5ii—Cd—O9 | 91.81 (7) | C9—C8—C14 | 121.0 (3) |
O5—Cd—O9ii | 91.81 (7) | C13—C8—C14 | 121.8 (3) |
O5ii—Cd—O9ii | 88.19 (7) | C10—C9—C8 | 121.4 (4) |
O9—Cd—O9ii | 180.00 (10) | C10—C9—H9 | 119.3 |
O5—Cd—O2 | 83.53 (8) | C8—C9—H9 | 119.3 |
O5ii—Cd—O2 | 96.47 (8) | C9—C10—C11 | 119.8 (3) |
O9—Cd—O2 | 83.70 (7) | C9—C10—H10 | 120.1 |
O9ii—Cd—O2 | 96.30 (7) | C11—C10—H10 | 120.1 |
O5—Cd—O2ii | 96.47 (8) | C12—C11—C10 | 120.5 (4) |
O5ii—Cd—O2ii | 83.53 (8) | C12—C11—Cl2 | 119.2 (4) |
O9—Cd—O2ii | 96.30 (7) | C10—C11—Cl2 | 120.3 (3) |
O9ii—Cd—O2ii | 83.70 (7) | C13—C12—C11 | 119.3 (4) |
O2—Cd—O2ii | 180.000 (1) | C13—C12—H12 | 120.3 |
C7—N1—H1A | 109.5 | C11—C12—H12 | 120.3 |
C7—N1—H1B | 109.5 | C12—C13—C8 | 121.7 (3) |
H1A—N1—H1B | 109.5 | C12—C13—H13 | 119.2 |
C7—N1—H1C | 109.5 | C8—C13—H13 | 119.2 |
H1A—N1—H1C | 109.5 | N2—C14—C8 | 113.1 (2) |
H1B—N1—H1C | 109.5 | N2—C14—H14A | 109.0 |
C2—C1—C6 | 118.9 (3) | C8—C14—H14A | 109.0 |
C2—C1—C7 | 123.9 (3) | N2—C14—H14B | 109.0 |
C6—C1—C7 | 117.2 (3) | C8—C14—H14B | 109.0 |
C1—C2—C3 | 120.7 (3) | H14A—C14—H14B | 107.8 |
C1—C2—H2 | 119.7 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.89 | 1.91 | 2.785 (3) | 167 |
N1—H1B···O6iii | 0.89 | 1.88 | 2.740 (3) | 162 |
N1—H1C···O9ii | 0.89 | 1.93 | 2.809 (4) | 168 |
N2—H2A···O2 | 0.89 | 1.96 | 2.814 (4) | 160 |
N2—H2B···O5ii | 0.89 | 2.19 | 2.866 (3) | 133 |
N2—H2C···O1iv | 0.89 | 1.95 | 2.824 (3) | 169 |
C3—H3···O1v | 0.93 | 2.56 | 3.339 (5) | 142 |
C13—H13···O6ii | 0.93 | 2.53 | 3.394 (4) | 154 |
C14—H14B···O3i | 0.97 | 2.56 | 3.410 (4) | 147 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+2, −y, −z+1; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C7H9ClN)4[Cd(P6O18)] |
Mr | 1156.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.021 (4), 8.1696 (16), 17.919 (3) |
α, β, γ (°) | 87.31 (5), 88.914 (19), 70.100 (3) |
V (Å3) | 1102.9 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.22 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3873, 3770, 3506 |
Rint | 0.009 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.074, 1.14 |
No. of reflections | 3770 |
No. of parameters | 277 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.76, −0.57 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.89 | 1.91 | 2.785 (3) | 167 |
N1—H1B···O6i | 0.89 | 1.88 | 2.740 (3) | 162 |
N1—H1C···O9ii | 0.89 | 1.93 | 2.809 (4) | 168 |
N2—H2A···O2 | 0.89 | 1.96 | 2.814 (4) | 160 |
N2—H2B···O5ii | 0.89 | 2.19 | 2.866 (3) | 133 |
N2—H2C···O1iii | 0.89 | 1.95 | 2.824 (3) | 169 |
C3—H3···O1iv | 0.93 | 2.56 | 3.339 (5) | 142 |
C13—H13···O6ii | 0.93 | 2.53 | 3.394 (4) | 154 |
C14—H14B···O3v | 0.97 | 2.56 | 3.410 (4) | 147 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) x, y+1, z; (v) −x+1, −y, −z+1. |
References
Averbuch-Pouchot, M. T. & Durif, A. (1996). In Topics in Phosphate Chemistry. Singapore: World Scientific. Google Scholar
Du, Z. Y., Sun, Y. H., Xie, Y. R., Lin, J. & Wen, H. R. (2010). Inorg. Chem. Commun. 13, 77–80. Web of Science CSD CrossRef CAS Google Scholar
Durif, A. (2005). Solid State Sci. 7, 760–766. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Row, T. N. G. (2010). J. Chem. Sci. 122, 677–685. CSD CrossRef CAS Google Scholar
Hu, J.-Y., Zhao, J.-A., Hou, H.-W. & Fan, Y.-T. (2008). Inorg. Chem. Commun. 11, 1110–1112. Web of Science CSD CrossRef CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kolotuchin, S. V., Fenlon, E. E., Wilson, S. R., Loweth, C. J. & Zimmerman, S. C. (1995). Angew. Chem. Int. Ed. 34, 2654–2657. CrossRef CAS Google Scholar
Kontturi, M., Laurila, E., Mattsson, R., Peraniemi, S., Vepsalainen, J. J. & Ahlgren, M. (2005). Inorg. Chem. 44, 2400–2406. Web of Science CSD CrossRef PubMed CAS Google Scholar
Man, S. P., Motevalli, M., Gardiner, S., Sullivan, A. & Wilson, J. (2006). Polyhedron, 25, 1017–1032. Web of Science CSD CrossRef CAS Google Scholar
Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. M. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The key to successful construction of supramolecular architecture is the control and manipulation of coordination bonds an non-covalent interactions by carefully selecting the coordination geometry of the metal atoms and the organic ligands containing appropriate functional groups (such as polyphosphoric acid and polyamine) (Kolotuchin et al., 1995). Up to now, a large number of supramolecular complexes with various dimensions and topologies have been achieved through judicious choice of linkers and metal ions (Tong et al., 1999). The approach to supramolecular framework employed in this work is to use the hexafunctional linker P6O186- that is of strong coordinating ability and suitable hydrogen bond acceptor. The 4-chlorobenzylamine (CBA) is used to create possibly π-π packing interactions between the aromatic rings and Cl—Cl interactions, which could facilitate the formation of ordered and non-interpenetrated open frameworks. In this contribution, we report the self-assembly of CdII with P6O186- in the presence of template (CBA) into a supramolecular open framework material [Cd(P6O186-)]n.4n(CABH) (Scheme I). Single-crystal X-ray diffraction study of this compound shows that the asymmetric unit contains half of cadmium atom, half of a cycle P6O18 and two crystallographically independent 4-chlorobenzylammonium (CBAH) cations (Fig. 1). The Cd atom locates on an inversion centre and is coordinated by six O atoms. The CdO6 octahedron, sharing six vertex oxygen atoms with two adjacent P6O18 rings, is slightly distorted compared to other cases (Du et al., 2010; Kontturi et al., 2005; Man et al., 2006; Hu et al., 2008). Bond distances Cd—O range from 2.230 (2) to 2.353 (7)Å and angles O—Cd—O range from 83.53 (8) to 88.19 (7) °. The P6O18 units display average P–O distances of 1.540 A and P–P distances of 2.967 Å, values usually found in other condensed anions (Averbuch-Pouchot & Durif, 1996). The values of the P—P—P angles, varying from 87.13 (1) to 128.55 (1)°, are in the range of values observed with other cyclohexaphosphates (Durif, 2005). As shown in Fig. 2, the CdII atoms are bridged by P6O18 rings to form infinite 1-D coordination polymers [Cd(P6O18)]n parallel to the b axis. Fig. 3 shows the supramolecular open framework structure built of the infinite zigzag chains linked by hydrogen bonds of types N(C)—H···O ranging from 2.714 (3) to 3.410 (4) Å, established by the protonated amine (CBAH). The phenyl rings of these organic molecules are planar, with a mean plane deviation of 0.0043 Å and are parallel with a dihedral angle of 4.94°. The orientations of the –CH2—NH3+ substituent in the two cations (CBAH) are distinct, as seen from the following torsion angles: N1—C7—C1—C2 = 13.1 (3) and N2—C14—C8—C9 = 118.3 (17)°. The supramolecular framework structure is further stabilized by electrostatic strengths, Cl–Cl interactions [4.051 Å] (Hathwar et al., 2010). The inter-planar distance between nearby phenyl rings is in the vicinity of 4.165 Å, which is longer than 3.80 Å, value required for the formation of π–π interactions (Janiak et al., 2000).