metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1508-m1509

A potential anti­cancer agent: 5-chloro-7-iodo-8-hy­dr­oxy­quinolinium di­chlorido(5-chloro-7-iodo­quinolin-8-olato-κ2N,O)palladium(II) dihydrate

aDepartment of Inorganic Chemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia
*Correspondence e-mail: peter.vranec@student.upjs.sk

(Received 28 September 2011; accepted 4 October 2011; online 8 October 2011)

The title PdII coordination compound, (C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2O, was prepared as a potential anti­cancer agent. Its structure is ionic and consists of a square-planar [PdCl2(CQ)] complex anion (CQ is 5-chloro-7-iodo­quinolin-8-olate), with the PdII atom surrounded by two chloride ligands in a cis configuration and one N,O-bidentate CQ mol­ecule, a protonated anion of CQ as counter-cation and two non-coordinated water mol­ecules. The water mol­ecules are involved in O—H⋯O and N—H⋯O hydrogen bonds, which inter­connect the HCQ+ cations into a chain parallel to [010]. Apart from these inter­actions, the structure is also stabilized by face-to-face ππ inter­actions [centroid–centroid = 3.546 (3) Å], which occur between the phenolic parts of the complex anions and cations.

Related literature

For background to square-planar complexes of platinum and palladium as potential chemotherapeutics, see: Bielawska et al. (2010[Bielawska, A., Poplawska, B., Surazyñski, A., Czarnomysy, R. & Bielawsky, K. (2010). Eur. J. Pharmacol. 643, 34-41.]); Bruijnincx & Sadler (2008[Bruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197-206.]); Ding et al. (2005[Ding, W. Q., Liu, B., Vaught, J. L., Yamauchi, H. & Lind, S. E. (2005). Cancer Res. 65, 3389-3395.]); Garoufis et al. (2009[Garoufis, A., Hadjikakou, S. K. & Hadjilijadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397.]). For structures of CQ complexes, see: Di Vaira et al. (2004[Di Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795-3797.]) for [Cu(CQ)2] and [Zn(CQ)2(H2O)]·H2O·THF; Miyashita et al. (2005[Miyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K. (2005). Sci. Tech. Adv. Mater. 6, 660-666.]) for [ReCl2(CQ)O(PPh3)]. The structure of [Pd(8-HQ)2] (8-HQ = 8-hy­droxy­quinoline) was previously described by Prout & Wheeler (1966[Prout, C. K. & Wheeler, A. G. (1966). J. Chem. Soc. A, pp. 1286-1290.]). For other related structures, see: Cui et al. (2009[Cui, J., Zhang, M., Wang, Y. & Li, Z. (2009). Inorg. Chem. Commun. 12, 839-841.]); Guney et al. (2011[Guney, E., Yilmaz, V. T. & Buyukgungor, O. (2011). Polyhedron, 30, 1968-1974.]); Screnci & McKeage (1999[Screnci, D. & McKeage, M. J. (1999). J. Inorg. Biochem. 77, 105-110.]); Yue et al. (2008[Yue, Ch., Jiang, F., Xu, Y., Yuan, D., Chen, L., Yan, Ch. & Hong, M. (2008). Cryst. Growth Des. 8, 2721-2728.]); Kapteijn et al. (1996[Kapteijn, G. M., Grove, D. M., Kooijman, H., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1996). Inorg. Chem. 35, 526-533.]); Fazeli et al. (2009[Fazaeli, Y., Najafi, E., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m270.]); Gniewek et al. (2006[Gniewek, A., Ziółkowski, J. J. & Lis, T. (2006). Acta Cryst. E62, m1428-m1430.]). Structures of complexes containing other halogen-derivatives of 8-HQ may also be found in the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2O

  • Mr = 824.31

  • Monoclinic, C 2/c

  • a = 34.3212 (10) Å

  • b = 7.7028 (2) Å

  • c = 18.4128 (5) Å

  • β = 104.455 (3)°

  • V = 4713.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 293 K

  • 0.44 × 0.14 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.555, Tmax = 1.000

  • 24287 measured reflections

  • 4641 independent reflections

  • 3888 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.14

  • 4641 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 2.009 (4)
Pd1—O1 2.035 (3)
Pd1—Cl1 2.2711 (14)
Pd1—Cl2 2.3107 (14)
N1—Pd1—O1 82.12 (15)
N1—Pd1—Cl1 94.01 (12)
O1—Pd1—Cl1 175.98 (10)
N1—Pd1—Cl2 175.90 (12)
O1—Pd1—Cl2 94.44 (10)
Cl1—Pd1—Cl2 89.47 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.18 2.782 (7) 131
N2—H2N⋯O4A 0.82 (6) 1.92 (6) 2.737 (10) 174 (6)
N2—H2N⋯O4B 0.82 (6) 1.96 (6) 2.683 (9) 146 (6)
O4A—H1O4⋯O2 0.85 2.00 2.787 (10) 155
C28—H28⋯O3i 0.93 2.48 3.347 (8) 155
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CALC-OH (Nardelli, 1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Square-planar complexes of platinum and palladium, as potential chemotherapeutics, are studied worldwide (Bruijnincx & Sadler, 2008 and Bielawska et al., 2010). Unfortunately, many of these anticancer drugs exhibit significant side effects and their activity is relatively low (Screnci & McKeage, 1999). One of the approaches to overcome limitations connected with platinum- or palladium-based chemotherapy, new square-planar coordination compounds of these metals with biologically active ligands should be prepared. One of the examples of such ligand is 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ), as it exhibits wide range of biological activity, including anticancer activity. CQ's favourable effect to human cancer cells is ascribed to its ability to chelate metal ions (Ding et al., 2005). In our efforts to prepare novel square-planar complexes of Pt and Pd with clioquinol of Cat[MCl2(CQ)] (M = Pt or Pd; Cat = cation of +1 charge, such as Na+, K+ or Cs+) composition, we prepared crystals of HCQ[PdCl2(CQ)].2H2O (I) (HCQ = protonated molecule of CQ), which we believe has an increased anticancer activity. Here we present the structure of the title compound.

The molecular structure of the ionic HCQ[PdCl2(CQ)].2H2O (I) compound consists of discrete [PdCl2(CQ)]- anion in which the central PdII atom has a distorted square-planar configuration, protonated molecule of CQ (HCQ+) as cation, and two non-coordinated water molecules (Fig. 1). Complex anion is formed by PdII atom which is surrounded by two chlorido ligands in cis- configuration at 2.271 (1) (Pd1—Cl1) and 2.311 (1) Å (Pd1—Cl2) distances, which are close to Pd—Cl distances observed in other square planar PdII complexes (Cui et al., 2009), and one bidentately coordinated CQ molecule. This is bound to PdII atom by nitrogen atom of pyridine part and oxygen atom, which is ready to coordinate after deprotonation of the CQ's hydroxyl group in phenolic part; the Pd1—N1 (2.009 (4) Å) and Pd1—O1 (2.035 (3) Å) distances are normal (Yue et al., 2008). Both the coordinated and free protonated CQ molecules are nearly planar, with the largest deviation of atoms from the mean planes through the aromatic rings being 0.05 (1) Å. The geometric parameters within the individual rings resemble those found in similar compounds containing pyridine and phenolic rings (Guney et al., 2011 and Kapteijn et al., 1996). The C—X bonds (X = Cl and I; 1.742 (10) and 2.098 (2) Å in average, respectively) are usual for single Csp2X bonds (Fazeli et al., 2009 and Gniewek et al., 2006).

Besides the ionic forces, the structure is also stabilized by π-π interactions and hydrogen bonds. π-π interactions occur between the phenolic parts of the complex anion and the cation. The distance between centroids of these parts (CgAnCgCat = 3.546 (3) Å) and angle between normal to the plane and vector connecting the two centroids (16.46°) are consistent with the values typical for the face-to-face ππ interactions (Janiak, 2000). Moreover, the distance between Pd1 atom and CgCati of another adjacent cation (i = x, 1 + y, z) of 3.497 Å and the angle between normal to the plane of HCQ+ cation and vector connecting CgCati and Pd1 of 171.96° indicate possible η6 semi coordination of the phenyl ring of the cation. Thus the coordination number of Pd atom can be considered as 4 + 1 with a tetragonal pyramidal coordination polyhedron. Due to these intermolecular contacts the cations and anions are linked to form a chain parallel with [010] (Fig. 2).

Two uncoordinated water molecules interconnect the HCQ+ cations via hydrogen bonds into a chain running along [010] (Fig. 3). Distances and angles characterizing these bonds are summarized in Table 2.

Related literature top

For background to square-planar complexes of platinum and palladium as potential chemotherapeutics, see: Bielawska et al. (2010); Bruijnincx & Sadler (2008); Ding et al. (2005); Garoufis et al. (2009). For structures of CQ complexes, see: Di Vaira et al. (2004) ([Cu(CQ)2] and [Zn(CQ)2(H2O)].H2O.THF); Miyashita et al. (2005) ([ReCl2(CQ)O(PPh3)]). The structure of [Pd(8-HQ)2] (8-HQ = 8-hydroxyquinoline) was previously described by Prout & Wheeler (1966). For other related structures, see: Cui et al. (2009); Guney et al. (2011); Screnci & McKeage (1999); Yue et al. (2008); Kapteijn et al. (1996); Fazeli et al. (2009); Gniewek et al. (2006). Structures of complexes containing other halogen-derivatives of 8-HQ may also be found in the Cambridge Structural Database, see: Allen (2002). For ππ interactions, see: Janiak (2000).

Experimental top

Ethanolic solution of PdCl2 prepared from 0.2 cm3 40% water solution of PdCl2 in 8 cm3 of ethanol (0.048 g PdCl2; 0.27 mmol) was cooled down to -15 °C and mixed with a cold (-5 °C) THF solution of CQ (0.17 g CQ dissolved in 15 cm3 of THF; 0.54 mmol). Resulting solution was stirred at -15 °C for a while and then a cold (3 °C) aqueous solution of CsCl (0.046 g of CsCl dissolved in 2 cm3 of water; 0.27 mmol) was added. Yellow precipitation of I, which formed immediately after mixing, was filtered off, dried on air and analyzed by IR and elemental analysis. Mother liquor was left for crystallization in refrigerator at -5 °C and after few days we obtained a small amount of orange-red crystals of I. Crystals were filtered off, dried on air and analyzed by IR spectroscopy to prove their identity with the precipitation.

Refinement top

H atoms of the CQ moieties were inserted in calculated positions appropriate for the data collection temperature with isotropic displacement parameters riding on that of the parent C and O atoms, Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). The hydrogen atom coordinated on the N2 atom in HCQ+ was found in the difference electron map and refined freely, water H atoms were found with the program CALC-OH (Nardelli, 1999) and were refined with fixed bond distances and angles. Hydrogen atoms could be found only for one disordered position (O4A).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CALC-OH (Nardelli, 1999); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of I. Displacement ellipsoids are drawn at the 50% probability for non-H atoms. H atoms are represented as small spheres of arbitrary radii. Only one position of the disordered O4 water molecule is shown.
[Figure 2] Fig. 2. Parallel stacking of the cation and the complex anion enabling π-π interactions in I (shown by dashed lines); i = x, 1 + y, z. Possible penta-coordination of PdII is suggested.
[Figure 3] Fig. 3. The system of hydrogen bonds (dashed lines) in I formed in the direction of b axis. Complex anions are not shown because of clarity.
5-chloro-7-iodo-8-hydroxyquinolinium dichlorido(5-chloro-7-iodoquinolin-8-olato-κ2N,O)palladium(II) dihydrate top
Crystal data top
(C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2OF(000) = 3104
Mr = 824.31Dx = 2.323 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14809 reflections
a = 34.3212 (10) Åθ = 3.0–29.6°
b = 7.7028 (2) ŵ = 3.89 mm1
c = 18.4128 (5) ÅT = 293 K
β = 104.455 (3)°Needle, orange-red
V = 4713.7 (2) Å30.44 × 0.14 × 0.07 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube3888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.3438 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 4242
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
k = 99
Tmin = 0.555, Tmax = 1.000l = 2222
24287 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0265P)2 + 28.2625P]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.002
287 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
(C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2OV = 4713.7 (2) Å3
Mr = 824.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 34.3212 (10) ŵ = 3.89 mm1
b = 7.7028 (2) ÅT = 293 K
c = 18.4128 (5) Å0.44 × 0.14 × 0.07 mm
β = 104.455 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
4641 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
3888 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 1.000Rint = 0.049
24287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0265P)2 + 28.2625P]
where P = (Fo2 + 2Fc2)/3
4641 reflectionsΔρmax = 0.61 e Å3
287 parametersΔρmin = 0.87 e Å3
Special details top

Experimental. CrysAlis RED, Oxford Diffraction (2007), Analytical numeric absorption correction using a multifaceted crystal model.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.699063 (11)0.67835 (5)0.58026 (2)0.04530 (12)
Pd10.627824 (11)0.95775 (5)0.77655 (2)0.02970 (11)
Cl10.59303 (5)1.0787 (2)0.85369 (8)0.0471 (4)
Cl20.68728 (4)1.0204 (2)0.86375 (8)0.0483 (4)
I20.611094 (11)0.16194 (5)0.507511 (19)0.03868 (11)
Cl30.53299 (5)0.6203 (2)0.43378 (8)0.0515 (4)
Cl40.54308 (4)0.4700 (3)0.72671 (9)0.0574 (4)
O10.65529 (10)0.8421 (5)0.70322 (19)0.0343 (8)
O20.69038 (11)0.2391 (6)0.6466 (2)0.0469 (10)
H20.68540.19250.60520.070*
N10.57824 (12)0.9057 (6)0.6950 (2)0.0329 (10)
C130.60872 (16)0.6631 (7)0.5168 (3)0.0345 (12)
H30.61610.60980.47690.041*
N20.69550 (14)0.4180 (6)0.7764 (3)0.0373 (11)
H2N0.7156 (18)0.398 (8)0.761 (3)0.045*
C120.63853 (15)0.7155 (6)0.5801 (3)0.0288 (10)
C140.56918 (16)0.6898 (7)0.5132 (3)0.0346 (12)
C110.62914 (14)0.7916 (6)0.6417 (3)0.0274 (10)
C280.70063 (18)0.4935 (8)0.8424 (3)0.0459 (15)
H280.72650.51330.87190.055*
C290.65883 (15)0.3807 (7)0.7305 (3)0.0310 (11)
C190.58701 (14)0.8219 (6)0.6352 (3)0.0279 (10)
C250.62410 (15)0.4374 (7)0.7528 (3)0.0315 (11)
C230.58380 (15)0.3332 (7)0.6341 (3)0.0331 (11)
H230.55870.31980.60080.040*
C180.54040 (16)0.9481 (8)0.6920 (3)0.0441 (14)
H80.53461.00810.73190.053*
C220.61854 (15)0.2761 (6)0.6136 (3)0.0302 (11)
C240.58658 (15)0.4075 (7)0.7019 (3)0.0337 (11)
C210.65593 (15)0.2950 (7)0.6611 (3)0.0304 (11)
C160.51643 (16)0.8190 (8)0.5717 (3)0.0418 (13)
H60.49530.78890.53110.050*
C150.55647 (15)0.7739 (7)0.5712 (3)0.0328 (11)
C270.66770 (19)0.5433 (8)0.8681 (3)0.0451 (14)
H270.67130.59410.91510.054*
C260.62989 (17)0.5169 (7)0.8236 (3)0.0388 (13)
H260.60770.55190.84030.047*
C170.50877 (17)0.9044 (9)0.6298 (3)0.0538 (16)
H70.48250.93490.62920.065*
O4A0.7649 (2)0.3424 (13)0.7353 (5)0.0556 (18)0.50
H1O40.74440.33210.69860.083*0.50
H2O40.78190.26580.73030.083*0.50
O4B0.7706 (2)0.4711 (14)0.7626 (5)0.0556 (18)0.50
O30.72251 (16)0.1567 (7)0.5263 (3)0.0780 (16)
H2O30.70470.07890.51290.117*
H1O30.71250.24740.50280.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0356 (2)0.0526 (2)0.0522 (2)0.00153 (17)0.01937 (17)0.00573 (18)
Pd10.0312 (2)0.0324 (2)0.02578 (18)0.00258 (17)0.00749 (15)0.00048 (16)
Cl10.0538 (9)0.0550 (9)0.0381 (7)0.0005 (7)0.0218 (7)0.0047 (6)
Cl20.0436 (8)0.0610 (9)0.0350 (7)0.0094 (7)0.0002 (6)0.0030 (7)
I20.0445 (2)0.0382 (2)0.03188 (18)0.00183 (16)0.00673 (15)0.00035 (15)
Cl30.0471 (9)0.0655 (10)0.0352 (7)0.0147 (7)0.0020 (6)0.0088 (7)
Cl40.0315 (7)0.0886 (12)0.0561 (9)0.0108 (8)0.0184 (7)0.0014 (9)
O10.0263 (18)0.045 (2)0.0298 (18)0.0024 (16)0.0042 (15)0.0069 (16)
O20.036 (2)0.066 (3)0.041 (2)0.012 (2)0.0132 (18)0.006 (2)
N10.028 (2)0.039 (2)0.032 (2)0.0007 (19)0.0082 (18)0.0029 (19)
C130.045 (3)0.033 (3)0.026 (2)0.003 (2)0.010 (2)0.001 (2)
N20.028 (2)0.044 (3)0.036 (2)0.004 (2)0.0001 (19)0.008 (2)
C120.028 (3)0.027 (3)0.034 (2)0.002 (2)0.011 (2)0.001 (2)
C140.039 (3)0.034 (3)0.026 (2)0.006 (2)0.000 (2)0.001 (2)
C110.028 (3)0.028 (3)0.025 (2)0.001 (2)0.003 (2)0.006 (2)
C280.043 (3)0.044 (3)0.040 (3)0.012 (3)0.011 (3)0.006 (3)
C290.027 (3)0.033 (3)0.031 (3)0.006 (2)0.001 (2)0.007 (2)
C190.028 (3)0.028 (3)0.028 (2)0.003 (2)0.008 (2)0.001 (2)
C250.035 (3)0.029 (3)0.030 (2)0.002 (2)0.008 (2)0.007 (2)
C230.026 (3)0.036 (3)0.034 (3)0.003 (2)0.003 (2)0.002 (2)
C180.033 (3)0.058 (4)0.044 (3)0.004 (3)0.015 (3)0.006 (3)
C220.034 (3)0.030 (3)0.026 (2)0.002 (2)0.005 (2)0.002 (2)
C240.024 (2)0.040 (3)0.039 (3)0.002 (2)0.013 (2)0.007 (2)
C210.028 (3)0.035 (3)0.030 (2)0.001 (2)0.010 (2)0.005 (2)
C160.028 (3)0.054 (4)0.039 (3)0.003 (3)0.000 (2)0.001 (3)
C150.030 (3)0.036 (3)0.031 (3)0.003 (2)0.005 (2)0.007 (2)
C270.059 (4)0.045 (3)0.028 (3)0.000 (3)0.005 (3)0.004 (2)
C260.044 (3)0.042 (3)0.032 (3)0.000 (3)0.013 (2)0.005 (2)
C170.027 (3)0.079 (5)0.054 (4)0.001 (3)0.008 (3)0.004 (3)
O4A0.030 (3)0.082 (6)0.055 (4)0.009 (4)0.010 (3)0.010 (4)
O4B0.030 (3)0.082 (6)0.055 (4)0.009 (4)0.010 (3)0.010 (4)
O30.083 (4)0.075 (4)0.063 (3)0.007 (3)0.007 (3)0.007 (3)
Geometric parameters (Å, º) top
I1—C122.096 (5)C28—H280.9300
Pd1—N12.009 (4)C29—C211.420 (7)
Pd1—O12.035 (3)C29—C251.423 (7)
Pd1—Cl12.2711 (14)C19—C151.416 (7)
Pd1—Cl22.3107 (14)C25—C261.409 (7)
I2—C222.099 (5)C25—C241.410 (7)
Cl3—C141.749 (5)C23—C241.354 (7)
Cl4—C241.735 (5)C23—C221.408 (7)
O1—C111.316 (6)C23—H230.9300
O2—C211.347 (6)C18—C171.407 (8)
O2—H20.8200C18—H80.9300
N1—C181.327 (7)C22—C211.369 (7)
N1—C191.373 (6)C16—C171.338 (8)
C13—C141.358 (8)C16—C151.419 (7)
C13—C121.405 (7)C16—H60.9300
C13—H30.9300C27—C261.366 (8)
N2—C281.319 (7)C27—H270.9300
N2—C291.360 (6)C26—H260.9300
N2—H2N0.82 (6)C17—H70.9300
C12—C111.385 (7)O4A—H1O40.8502
C14—C151.409 (7)O4A—H2O40.8499
C11—C191.440 (7)O3—H2O30.8488
C28—C271.384 (9)O3—H1O30.8483
N1—Pd1—O182.12 (15)C26—C25—C24125.5 (5)
N1—Pd1—Cl194.01 (12)C26—C25—C29117.7 (5)
O1—Pd1—Cl1175.98 (10)C24—C25—C29116.7 (5)
N1—Pd1—Cl2175.90 (12)C24—C23—C22120.6 (5)
O1—Pd1—Cl294.44 (10)C24—C23—H23119.7
Cl1—Pd1—Cl289.47 (6)C22—C23—H23119.7
C11—O1—Pd1111.8 (3)N1—C18—C17121.5 (5)
C21—O2—H2109.5N1—C18—H8119.2
C18—N1—C19119.4 (4)C17—C18—H8119.2
C18—N1—Pd1128.3 (4)C21—C22—C23121.1 (5)
C19—N1—Pd1112.3 (3)C21—C22—I2121.1 (4)
C14—C13—C12120.6 (5)C23—C22—I2117.8 (4)
C14—C13—H3119.7C23—C24—C25121.6 (5)
C12—C13—H3119.7C23—C24—Cl4119.5 (4)
C28—N2—C29123.7 (5)C25—C24—Cl4118.8 (4)
C28—N2—H2N118 (4)O2—C21—C22124.6 (5)
C29—N2—H2N118 (4)O2—C21—C29117.4 (4)
C11—C12—C13122.1 (5)C22—C21—C29118.0 (5)
C11—C12—I1119.3 (4)C17—C16—C15120.6 (5)
C13—C12—I1118.6 (4)C17—C16—H6119.7
C13—C14—C15121.8 (5)C15—C16—H6119.7
C13—C14—Cl3119.1 (4)C14—C15—C19116.5 (5)
C15—C14—Cl3119.0 (4)C14—C15—C16126.9 (5)
O1—C11—C12125.6 (4)C19—C15—C16116.6 (5)
O1—C11—C19118.6 (4)C26—C27—C28119.3 (5)
C12—C11—C19115.7 (4)C26—C27—H27120.4
N2—C28—C27120.3 (5)C28—C27—H27120.4
N2—C28—H28119.9C27—C26—C25120.9 (5)
C27—C28—H28119.9C27—C26—H26119.6
N2—C29—C21120.2 (5)C25—C26—H26119.6
N2—C29—C25117.9 (5)C16—C17—C18120.2 (5)
C21—C29—C25121.8 (4)C16—C17—H7119.9
N1—C19—C15121.7 (4)C18—C17—H7119.9
N1—C19—C11115.2 (4)H1O4—O4A—H2O4107.7
C15—C19—C11123.1 (4)H2O3—O3—H1O3105.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.182.782 (7)131
N2—H2N···O4A0.82 (6)1.92 (6)2.737 (10)174 (6)
N2—H2N···O4B0.82 (6)1.96 (6)2.683 (9)146 (6)
O4A—H1O4···O20.852.002.787 (10)155
C28—H28···O3i0.932.483.347 (8)155
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C9H6ClINO)[PdCl2(C9H4ClINO)]·2H2O
Mr824.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)34.3212 (10), 7.7028 (2), 18.4128 (5)
β (°) 104.455 (3)
V3)4713.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.89
Crystal size (mm)0.44 × 0.14 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.555, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24287, 4641, 3888
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.14
No. of reflections4641
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0265P)2 + 28.2625P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.61, 0.87

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CALC-OH (Nardelli, 1999), DIAMOND (Brandenburg, 2001), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
I1—C122.096 (5)Pd1—Cl22.3107 (14)
Pd1—N12.009 (4)I2—C222.099 (5)
Pd1—O12.035 (3)Cl3—C141.749 (5)
Pd1—Cl12.2711 (14)Cl4—C241.735 (5)
N1—Pd1—O182.12 (15)N1—Pd1—Cl2175.90 (12)
N1—Pd1—Cl194.01 (12)O1—Pd1—Cl294.44 (10)
O1—Pd1—Cl1175.98 (10)Cl1—Pd1—Cl289.47 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.182.782 (7)130.7
N2—H2N···O4A0.82 (6)1.92 (6)2.737 (10)174 (6)
N2—H2N···O4B0.82 (6)1.96 (6)2.683 (9)146 (6)
O4A—H1O4···O20.852.002.787 (10)154.6
C28—H28···O3i0.932.483.347 (8)154.7
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

This work was supported by a grant from the Slovak Grant Agency (VEGA No. 1/0079/08) and by the VVGS (PF 27/2011/CH).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBielawska, A., Poplawska, B., Surazyñski, A., Czarnomysy, R. & Bielawsky, K. (2010). Eur. J. Pharmacol. 643, 34–41.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruijnincx, P. C. A. & Sadler, P. J. (2008). Curr. Opin. Chem. Biol. 12, 197–206.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCui, J., Zhang, M., Wang, Y. & Li, Z. (2009). Inorg. Chem. Commun. 12, 839–841.  Web of Science CSD CrossRef CAS Google Scholar
First citationDing, W. Q., Liu, B., Vaught, J. L., Yamauchi, H. & Lind, S. E. (2005). Cancer Res. 65, 3389–3395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDi Vaira, M., Bazzicalupi, C., Orioli, P., Messori, L., Bruni, B. & Zatta, P. (2004). Inorg. Chem. 43, 3795–3797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFazaeli, Y., Najafi, E., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjilijadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef CAS Google Scholar
First citationGniewek, A., Ziółkowski, J. J. & Lis, T. (2006). Acta Cryst. E62, m1428–m1430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuney, E., Yilmaz, V. T. & Buyukgungor, O. (2011). Polyhedron, 30, 1968–1974.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKapteijn, G. M., Grove, D. M., Kooijman, H., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1996). Inorg. Chem. 35, 526–533.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMiyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K. (2005). Sci. Tech. Adv. Mater. 6, 660–666.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationProut, C. K. & Wheeler, A. G. (1966). J. Chem. Soc. A, pp. 1286–1290.  CSD CrossRef Google Scholar
First citationScrenci, D. & McKeage, M. J. (1999). J. Inorg. Biochem. 77, 105–110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, Ch., Jiang, F., Xu, Y., Yuan, D., Chen, L., Yan, Ch. & Hong, M. (2008). Cryst. Growth Des. 8, 2721–2728.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1508-m1509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds