metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(di­methyl sulfoxide-κO)­disaccharinatocadmium

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 19 October 2011; accepted 25 October 2011; online 29 October 2011)

The title compound, [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2], contains a Cd2+ cation in an octahedral coordination environment. The metal atom is surrounded by the two different neutral ligands dimethyl sulfoxide (DMSO) and water, each coordin­ating through the O atom. The anionic saccharinate (sac; 1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothia­zol-2-ide) ligand coordin­ates through the N atom. Each of the three similar ligand pairs is in a trans configuration with respect to each other. The Cd atom lies on a crystallographic center of symmetry. The DMSO ligand coordinates through the lone pair of electrons on the O atom, as can be seen from the Cd—O—S bond angle of 123.96 (9)°.

Related literature

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006[Baran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980-1999.]). For cadmium saccharinate complexes, see: Deng et al. (2008[Deng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg. Chim. Acta, 361, 1542-1546.]) and for cadmium complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011[Batsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225-231.]). For a cadmium complex that contains both saccharinate and DMSO, see: Yilmaz et al. (2003[Yilmaz, V. T., Hamamci, S. & Thöne, C. (2003). Z. Anorg. Allg. Chem. 629, 711-715.]). For the preparation of cadmium precursor complexes, see: Haider et al. (1984[Haider, S. Z., Malik, K. M. A., Das, S. & Hursthouse, M. B. (1984). Acta Cryst. C40, 1147-1150.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]

  • Mr = 669.03

  • Monoclinic, P 21 /c

  • a = 10.2613 (5) Å

  • b = 15.4294 (8) Å

  • c = 7.9951 (4) Å

  • β = 98.889 (1)°

  • V = 1250.63 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 173 K

  • 0.14 × 0.11 × 0.08 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.843, Tmax = 0.906

  • 12452 measured reflections

  • 3121 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.03

  • 3121 reflections

  • 170 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one 1,1-dioxide; Hsac) is a widely used artificial sweetening agent. The imino hydrogen is acidic and can be readily deprotonated. The coordination chemistry of this anion is versatile due to the different coordination sites to metallic centers it can accommodate, i.e., one N, one O (carbonylic) and two O (sulfonic) atoms. These donor atoms of the anion can thus readily generate either N– or O-monodentate or bidentate (N, O) coordination. Saccharin is normally used as the sodium or calcium salt which dramatically improves water solubility. Most metal complexes contain the deprotonated form of saccharin, and this saccharinate anion (sac) is commercially available as the sodium salt, used in the present study. The reaction of sodium saccharinate with a variety of divalent transition metal ions results in coordination complexes with general formula [M(sac)2(H2O)4].2H2O, (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd), which all show a clear preference to bind through the deprotonated anionic N-atom (Baran and Yilmaz, 2006). These octahedral complexes contain two N-bonded sac ligands in trans positions, and complexes of the type [M(sac)2(H2O)4].2H2O are thus commonly used as precursors in the synthesis of mixed-ligand saccharinate complexes. The aqua ligands in these metal complexes are labile and readily displaced by direct reaction of neutral ligands. The addition of the ligands to the solutions of the complexes usually results in the substitution of all four aqua ligands, thereby forming stable new mixed-ligand complexes. In cases where the incoming neutral ligand is relatively bulky, as in the present study, it causes steric hindrance and only two of the four aqua ligands become displaced in order for the Cd center to remain octahedral. Although there are a number of Cd(II) saccharinate complexes previously reported (Batsanov et al., 2011, and refs. therein), we are aware of only one other report that contains both saccharinate and dmso as ligands in a structurally characterized Cd(II) complex (Yilmaz et al., 2003).

Related literature top

For a general review article on the coordination chemistry of saccharinate ligands, see: Baran & Yilmaz (2006). For cadmium(II) saccharinate complexes, see: Deng et al. (2008) and for cadmium(II) complexes with saccharinate as a non-coordinating ligand, see: Batsanov et al. (2011). For a cadmium(II) complex that contains both saccharinate and DMSO, see: Yilmaz et al. (2003). For the preparation of cadmium(II) precursor complexes, see: Haider et al. (1984).

Experimental top

[Cd(sac)2(H2O)4].2H2O was prepared as per literature method (Haider et al., 1984). Colorless crystals of [Cd(sac)2(H2O)4].2H2O (1.13 g; 2.10 mmol) was placed in a 100 ml beaker and dissolved in excess amount of dimethyl sulfoxide (dmso) (20 ml). The reaction mixture was gently heated on a heating mantle with stirring to reduce the volume of dmso to ~7 ml. The beaker was removed from the heat source and allowed to stand for 6 days during which time large colorless blocky crystals of the title compound were obtained. Yield (1.30 g, 92%); Mp 114°C; 13C NMR (CD3OD, 101 MHz) d(p.p.m.): 40.39 (CH3-dmso), 121.20 (C6-ring), 124.91 (C6-ring), 133.42 (C6-ring), 134.21 (C6-ring), 134.24 (C6-ring), 144.90 (C6-ring) 171.90 (C=O); IR (ATR) 3481, 3016 n(OH), 1646, 1609 n(C=O), 1583, 1460 n(C=C), 1271, 1256 n(O=S=O); 1054, 1036 n(S=O).

Refinement top

All non-H atoms were refined anisotropically. All hydrogen atoms could be found in the difference electron density maps. All, except H5A and H5B on O5, were placed in idealized positions refining in riding models with Uiso set at 1.2 or 1.5 times those of their parent atoms. The water hydrogen atoms H5A and H5B were located in the difference electron density maps and refined with independent isotropic temperature factors and simple bond length constraints of d(O—H) = 0.980 (2) Å. The structure was refined to R factor of 0.0253.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP molecular structure of the title complex, shown with 50% probability ellipsoids. [Symmetry codes: (i) 1-x, 2-y, -z]
Diaquabis(dimethyl sulfoxide)bis(1,1,3-trioxo-2,3-dihydro-1λ6,2-benzothiazol-2-ido)cadmium top
Crystal data top
[Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]F(000) = 676
Mr = 669.03Dx = 1.777 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12452 reflections
a = 10.2613 (5) Åθ = 2.0–28.4°
b = 15.4294 (8) ŵ = 1.26 mm1
c = 7.9951 (4) ÅT = 173 K
β = 98.889 (1)°Plate, colourless
V = 1250.63 (11) Å30.14 × 0.11 × 0.08 mm
Z = 2
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3121 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
0.5° ϕ scans and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1313
Tmin = 0.843, Tmax = 0.906k = 2019
12452 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.026P)2 + 0.4033P]
where P = (Fo2 + 2Fc2)/3
3121 reflections(Δ/σ)max = 0.001
170 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]V = 1250.63 (11) Å3
Mr = 669.03Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.2613 (5) ŵ = 1.26 mm1
b = 15.4294 (8) ÅT = 173 K
c = 7.9951 (4) Å0.14 × 0.11 × 0.08 mm
β = 98.889 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3121 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2624 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.906Rint = 0.038
12452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
3121 reflectionsΔρmin = 0.41 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50001.00000.00000.01487 (7)
S10.52294 (5)0.80523 (4)0.19576 (7)0.02107 (12)
S20.26624 (5)0.99004 (4)0.27847 (6)0.01863 (12)
O10.37534 (15)1.02578 (12)0.39322 (19)0.0269 (4)
O20.23352 (16)0.90145 (11)0.3102 (2)0.0286 (4)
O30.17818 (14)1.06754 (10)0.15887 (18)0.0236 (3)
O40.52173 (15)0.85326 (10)0.02902 (18)0.0226 (3)
O50.62293 (15)1.02147 (11)0.25981 (19)0.0219 (3)
H5A0.7063 (14)0.9905 (16)0.261 (4)0.053 (10)*
H5B0.599 (3)1.0050 (18)0.3695 (18)0.056 (11)*
N10.28899 (17)1.00406 (12)0.0832 (2)0.0187 (4)
C10.12665 (19)1.05728 (14)0.2691 (3)0.0173 (4)
C20.0586 (2)1.08352 (15)0.3962 (3)0.0226 (5)
H20.08421.06550.51010.027*
C30.0494 (2)1.13759 (16)0.3494 (3)0.0285 (5)
H30.09981.15640.43290.034*
C40.0848 (2)1.16459 (17)0.1830 (3)0.0315 (6)
H40.15901.20160.15480.038*
C50.0139 (2)1.13854 (15)0.0564 (3)0.0240 (5)
H50.03821.15720.05740.029*
C60.09327 (19)1.08447 (14)0.1024 (3)0.0173 (4)
C70.1890 (2)1.05113 (14)0.0059 (3)0.0181 (4)
C80.3957 (2)0.72722 (17)0.1524 (3)0.0338 (6)
H8A0.31000.75650.13400.051*
H8B0.39960.68740.24850.051*
H8C0.40710.69450.05050.051*
C90.6623 (2)0.73625 (17)0.2127 (4)0.0379 (6)
H9A0.65710.70070.11030.057*
H9B0.66420.69850.31160.057*
H9C0.74280.77140.22540.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01608 (10)0.01350 (11)0.01516 (10)0.00098 (8)0.00279 (7)0.00131 (8)
S10.0264 (3)0.0166 (3)0.0201 (2)0.0016 (2)0.0034 (2)0.0023 (2)
S20.0167 (2)0.0241 (3)0.0156 (2)0.0032 (2)0.00400 (19)0.0044 (2)
O10.0193 (8)0.0431 (10)0.0180 (8)0.0014 (7)0.0016 (6)0.0029 (7)
O20.0331 (9)0.0243 (9)0.0296 (9)0.0055 (7)0.0089 (7)0.0086 (7)
O30.0227 (8)0.0323 (9)0.0156 (7)0.0056 (7)0.0027 (6)0.0038 (7)
O40.0322 (9)0.0142 (8)0.0219 (8)0.0017 (6)0.0060 (7)0.0041 (6)
O50.0233 (8)0.0270 (9)0.0156 (7)0.0019 (6)0.0039 (6)0.0007 (6)
N10.0180 (8)0.0238 (10)0.0149 (8)0.0040 (7)0.0045 (7)0.0028 (8)
C10.0144 (9)0.0180 (10)0.0191 (10)0.0006 (8)0.0013 (8)0.0018 (8)
C20.0245 (11)0.0245 (12)0.0194 (10)0.0031 (9)0.0055 (9)0.0010 (9)
C30.0290 (12)0.0309 (13)0.0286 (12)0.0065 (10)0.0136 (10)0.0020 (11)
C40.0244 (12)0.0355 (14)0.0356 (13)0.0106 (11)0.0076 (10)0.0008 (12)
C50.0220 (11)0.0272 (13)0.0225 (10)0.0047 (9)0.0026 (9)0.0031 (10)
C60.0155 (9)0.0181 (10)0.0179 (10)0.0020 (8)0.0017 (8)0.0013 (8)
C70.0165 (9)0.0202 (11)0.0176 (10)0.0009 (8)0.0029 (8)0.0007 (9)
C80.0393 (14)0.0272 (13)0.0339 (13)0.0102 (11)0.0024 (11)0.0086 (11)
C90.0325 (13)0.0331 (15)0.0490 (16)0.0124 (11)0.0089 (12)0.0184 (13)
Geometric parameters (Å, º) top
Cd1—O5i2.2817 (15)C1—C21.379 (3)
Cd1—O52.2817 (15)C1—C61.388 (3)
Cd1—O42.2833 (15)C2—C31.391 (3)
Cd1—O4i2.2833 (15)C2—H20.9500
Cd1—N1i2.3620 (17)C3—C41.388 (3)
Cd1—N12.3620 (17)C3—H30.9500
S1—O41.5236 (15)C4—C51.394 (3)
S1—C81.770 (2)C4—H40.9500
S1—C91.771 (2)C5—C61.384 (3)
S2—O21.4393 (17)C5—H50.9500
S2—O11.4429 (17)C6—C71.498 (3)
S2—N11.6286 (17)C8—H8A0.9800
S2—C11.761 (2)C8—H8B0.9800
O3—C71.237 (2)C8—H8C0.9800
O5—H5A0.979 (2)C9—H9A0.9800
O5—H5B0.979 (2)C9—H9B0.9800
N1—C71.364 (3)C9—H9C0.9800
O5i—Cd1—O5180.0C2—C1—S2129.98 (17)
O5i—Cd1—O488.86 (6)C6—C1—S2107.30 (15)
O5—Cd1—O491.14 (6)C1—C2—C3116.8 (2)
O5i—Cd1—O4i91.14 (6)C1—C2—H2121.6
O5—Cd1—O4i88.86 (6)C3—C2—H2121.6
O4—Cd1—O4i180.0C4—C3—C2121.1 (2)
O5i—Cd1—N1i98.15 (6)C4—C3—H3119.4
O5—Cd1—N1i81.85 (6)C2—C3—H3119.4
O4—Cd1—N1i85.58 (6)C3—C4—C5121.4 (2)
O4i—Cd1—N1i94.42 (6)C3—C4—H4119.3
O5i—Cd1—N181.85 (6)C5—C4—H4119.3
O5—Cd1—N198.15 (6)C6—C5—C4117.6 (2)
O4—Cd1—N194.42 (6)C6—C5—H5121.2
O4i—Cd1—N185.58 (6)C4—C5—H5121.2
N1i—Cd1—N1180.00 (9)C5—C6—C1120.35 (19)
O4—S1—C8104.67 (10)C5—C6—C7128.20 (19)
O4—S1—C9104.85 (11)C1—C6—C7111.39 (18)
C8—S1—C999.72 (13)O3—C7—N1124.79 (19)
O2—S2—O1115.48 (10)O3—C7—C6122.33 (19)
O2—S2—N1111.53 (10)N1—C7—C6112.85 (17)
O1—S2—N1110.29 (9)S1—C8—H8A109.5
O2—S2—C1110.89 (9)S1—C8—H8B109.5
O1—S2—C1110.36 (10)H8A—C8—H8B109.5
N1—S2—C196.72 (9)S1—C8—H8C109.5
S1—O4—Cd1123.96 (9)H8A—C8—H8C109.5
Cd1—O5—H5A107.3 (19)H8B—C8—H8C109.5
Cd1—O5—H5B126.8 (19)S1—C9—H9A109.5
H5A—O5—H5B102 (3)S1—C9—H9B109.5
C7—N1—S2111.33 (14)H9A—C9—H9B109.5
C7—N1—Cd1121.01 (13)S1—C9—H9C109.5
S2—N1—Cd1122.67 (9)H9A—C9—H9C109.5
C2—C1—C6122.70 (19)H9B—C9—H9C109.5
C8—S1—O4—Cd1124.57 (12)O1—S2—C1—C258.7 (2)
C9—S1—O4—Cd1130.95 (13)N1—S2—C1—C2173.3 (2)
O5i—Cd1—O4—S1143.39 (10)O2—S2—C1—C6111.05 (16)
O5—Cd1—O4—S136.61 (10)O1—S2—C1—C6119.69 (15)
O4i—Cd1—O4—S1140 (100)N1—S2—C1—C65.10 (16)
N1i—Cd1—O4—S1118.34 (11)C6—C1—C2—C31.7 (3)
N1—Cd1—O4—S161.66 (11)S2—C1—C2—C3179.95 (18)
O2—S2—N1—C7109.33 (16)C1—C2—C3—C41.0 (4)
O1—S2—N1—C7120.95 (16)C2—C3—C4—C50.1 (4)
C1—S2—N1—C76.30 (17)C3—C4—C5—C60.1 (4)
O2—S2—N1—Cd195.51 (12)C4—C5—C6—C10.5 (3)
O1—S2—N1—Cd134.20 (14)C4—C5—C6—C7176.6 (2)
C1—S2—N1—Cd1148.86 (11)C2—C1—C6—C51.5 (3)
O5i—Cd1—N1—C745.91 (16)S2—C1—C6—C5179.89 (17)
O5—Cd1—N1—C7134.09 (16)C2—C1—C6—C7176.04 (19)
O4—Cd1—N1—C7134.12 (16)S2—C1—C6—C72.5 (2)
O4i—Cd1—N1—C745.88 (16)S2—N1—C7—O3176.23 (18)
N1i—Cd1—N1—C7142 (3)Cd1—N1—C7—O328.1 (3)
O5i—Cd1—N1—S2161.27 (12)S2—N1—C7—C65.7 (2)
O5—Cd1—N1—S218.73 (12)Cd1—N1—C7—C6149.94 (14)
O4—Cd1—N1—S273.06 (11)C5—C6—C7—O32.6 (4)
O4i—Cd1—N1—S2106.94 (11)C1—C6—C7—O3180.0 (2)
N1i—Cd1—N1—S211 (2)C5—C6—C7—N1175.5 (2)
O2—S2—C1—C270.5 (2)C1—C6—C7—N11.8 (3)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H4NO3S)2(C2H6OS)2(H2O)2]
Mr669.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.2613 (5), 15.4294 (8), 7.9951 (4)
β (°) 98.889 (1)
V3)1250.63 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.14 × 0.11 × 0.08
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.843, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
12452, 3121, 2624
Rint0.038
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.03
No. of reflections3121
No. of parameters170
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

 

Acknowledgements

WEvZ gratefully acknowledges financial support from the University of KwaZulu-Natal. FSWP thanks the National Research Foundation (NRF) for an Innovative Grant.

References

First citationBaran, E. J. & Yilmaz, V. T. (2006). Coord. Chem. Rev. 250, 1980–1999.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBatsanov, A. S., Bilton, C., Deng, R. M. K., Dillon, K. B., Goeta, A. E., Howard, J. A. K., Shepherd, H. J., Simon, S. & Tembwe, I. (2011). Inorg. Chim. Acta, 365, 225–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDeng, R. M. K., Dillon, K. B., Goeta, A. E. & Sekwale, M. S. (2008). Inorg. Chim. Acta, 361, 1542–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaider, S. Z., Malik, K. M. A., Das, S. & Hursthouse, M. B. (1984). Acta Cryst. C40, 1147–1150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYilmaz, V. T., Hamamci, S. & Thöne, C. (2003). Z. Anorg. Allg. Chem. 629, 711–715.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds