metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[1-(2-chloro­eth­yl)-3-(pyridin-4-ylmethyl-κN)urea](η6-hexa­methyl­benzene)­ruthenium(II) chloro­form monosolvate

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

(Received 20 October 2011; accepted 21 October 2011; online 29 October 2011)

The RuII atom in the title compound, [RuCl2(C12H18)(C9H12ClN3O)]·CHCl3, exhibits a typical piano-stool coordination, defined by a hexa­methyl­benzene ligand, two chloride ligands and a pyridyl­urea ligand coordinated through the pyridine N atom. In the crystal, a dimeric structure is observed due to two strong N—H⋯Cl inter­actions between the NH groups of urea and the two chloride ligands of neighbouring mol­ecules. In addition, the C=O group of the urea moiety inter­acts with the solvent mol­ecule through weak C—H⋯O interactions.

Related literature

For the synthesis of 1-(chloro­eth­yl)-3-(pyridin-4-ylmeth­yl)­urea, see: Nakao et al. (1974[Nakao, H., Fukushima, M., Shimizu, F. & Arakawa, M. (1974). Yakugaku Zasshi, 94, 1032-1037.]). For a review on arene ruthenium chemistry, see: Therrien (2009[Therrien, B. (2009). Coord. Chem. Rev. 253, 493-519.]). For a review on arene ruthenium complexes as anti­cancer agents, see: Süss-Fink (2010[Süss-Fink, G. (2010). Dalton Trans. 39, 1673-1688.]). For a review on multi-functional arene ruthenium complexes, see: Therrien & Smith (2011[Therrien, B. & Smith, G. S. (2011). Dalton Trans. 40, 10793-10800.]). For related structures, see: Auzias et al. (2008[Auzias, M., Therrien, B., Süss-Fink, G., Štěpnička, P., Ang, W. H. & Dyson, P. J. (2008). Inorg. Chem. 47, 578-583.], 2009[Auzias, M., Gueniat, J., Therrien, B., Süss-Fink, G., Renfrew, A. K. & Dyson, P. J. (2009). J. Organomet. Chem. 694, 855-861.]); Govender et al. (2009[Govender, P., Antonels, N. C., Mattsson, J., Renfrew, A. K., Dyson, P. J., Moss, J. R., Therrien, B. & Smith, G. S. (2009). J. Organomet. Chem. 694, 3470-3476.]); Therrien et al. (2004[Therrien, B., Vieille-Petit, L., Jeanneret-Gris, J., Štěpnička, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456-2463.]); Therrien & Süss-Fink (2004[Therrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219-224.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C12H18)(C9H12ClN3O)]·CHCl3

  • Mr = 667.27

  • Monoclinic, P 21 /c

  • a = 15.0947 (16) Å

  • b = 13.3402 (10) Å

  • c = 15.4847 (16) Å

  • β = 116.026 (11)°

  • V = 2801.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.457, Tmax = 0.822

  • 21527 measured reflections

  • 5514 independent reflections

  • 3710 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 0.89

  • 5514 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2a⋯Cl2i 0.86 2.62 3.270 (3) 133
N3—H3a⋯Cl1i 0.86 2.49 3.226 (4) 144
C22—H22⋯O1ii 0.98 1.95 2.908 (5) 165
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Introduction of biologically active components into arene ruthenium(II) complexes, promising new class of metal-based drugs (Süss-Fink, 2010), is often performed by coordination of functionalized ligands. Therefore, it is not surprising that pyridyl-functionalized ligands have been coupled to arene ruthenium(II) units to generate multi-functional metallo-drugs (Therrien & Smith, 2011). In this respect, the pyridyl-functionalized ligand 1-(chloroethyl)-3-(pyridin-4-ylmethyl)urea, an antileukemic agent (Nakao et al., 1974), has been coordinated to (η6-hexamethylbenzene)RuCl2 unit (Scheme 1). The single-crystal X-ray structure analysis of the neutral complex dichlorido{1-(chloroethyl)-3-(pyridin-4-ylmethyl)urea-κN} (η6-hexamethylbenzene)ruthenium(II) is presented.

The complex shows a three-legged piano-stool geometry with the RuII metal center being surrounded by a hexamethylbenzene ligand, two terminal chlorido and a N-coordinated pyridyl urea ligand, see Fig. 1. The pyridyl-functionalized ligand, 1-(chloroethyl)-3-(pyridin-4-ylmethyl)urea, acts as a monodentate ligand and the Ru—N distance at 2.137 (3) Å is comparable to those found in analogous (η6-arene)RuCl2(pyridyl-functionalized) complexes (Govender et al., 2009; Auzias et al., 2008; Auzias et al., 2009). The aromatic ring of the hexamethylbenzene is planar and the Ru-centroid distance is 1.670 Å (centroid being defined by C10 to C15). Otherwise, the Ru—Cl distances are 2.4066 (11) and 2.4173 (10) Å, respectively, which are similar to those found in other dichlorido arene ruthenium complexes (Therrien & Süss-Fink, 2004; Therrien et al., 2004).

In the crystal packing, both chlorido ligands are involved in H-bonded interaction with the NH moieties of a neighbouring molecule, thus forming a symmetry-related dimeric structure (Fig. 2). The N—Cl separations are respectively 3.270 (3) Å (N—H···Cl = 133.0°) for N(2)—Cl(2) and 3.226 (4) Å (N—H···Cl = 144.3°) for N(3)—Cl(1). In addition, the carbonyl group of urea interacts with chloroform: The O—C distance being 2.908 (5) Å with a C(22)—H(22)···O(1) angle of 165.3°.

Related literature top

For the synthesis of 1-(chloroethyl)-3-(pyridin-4-ylmethyl)urea, see: Nakao et al. (1974). For a review on arene ruthenium chemistry, see: Therrien (2009). For a review on arene ruthenium complexes as anticancer agents, see: Süss-Fink (2010). For a review on multi-functional arene ruthenium complexes, see: Therrien & Smith (2011). For related structures, see: Auzias et al. (2008); Auzias et al. (2009); Govender et al. (2009); Therrien et al. (2004); Therrien & Süss-Fink (2004).

Experimental top

Crystals suitable for X-ray diffraction analysis were obtained, after days, by slow diffusion of diethyl ether into a chloroform solution of the title complex.

Refinement top

All H atoms were included in calculated positions (C—H = 0.93 Å for Carom, 0.98 for Å CH, 0.97 Å for CH2, 0.96 Å for CH3; N—H = 0.86 Å for NH2) and treated as riding atoms with the constraint Uiso(H) = 1.2 (1.5 for methyl) Ueq(carrier) applied.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART and SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (η6-C12H18)RuCl2(C9H12N3OCl-κN), CHCl3 being omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Dimeric structures observed in the crystal (symmetry code: (i) -x, 2 - y, 1 - z).
Dichlorido[1-(2-chloroethyl)-3-(pyridin-4-ylmethyl-κN)urea](η6- hexamethylbenzene)ruthenium(II) chloroform monosolvate top
Crystal data top
[RuCl2(C12H18)(C9H12ClN3O)]·CHCl3F(000) = 1352
Mr = 667.27Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 15.0947 (16) Åθ = 2.1–26.0°
b = 13.3402 (10) ŵ = 1.15 mm1
c = 15.4847 (16) ÅT = 173 K
β = 116.026 (11)°Block, orange
V = 2801.9 (5) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5514 independent reflections
Radiation source: fine-focus sealed tube3710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 0 pixels mm-1θmax = 26.2°, θmin = 2.1°
ω scansh = 1818
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 1616
Tmin = 0.457, Tmax = 0.822l = 1919
21527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
5514 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[RuCl2(C12H18)(C9H12ClN3O)]·CHCl3V = 2801.9 (5) Å3
Mr = 667.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0947 (16) ŵ = 1.15 mm1
b = 13.3402 (10) ÅT = 173 K
c = 15.4847 (16) Å0.18 × 0.16 × 0.15 mm
β = 116.026 (11)°
Data collection top
Bruker SMART CCD
diffractometer
5514 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
3710 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.822Rint = 0.065
21527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.89Δρmax = 0.85 e Å3
5514 reflectionsΔρmin = 0.64 e Å3
304 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Bruker SMART CCD PLATFORM using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, ϕ oscillation scans 0 - 200°, step Δϕ = 1.2°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0763 (3)1.0688 (3)0.3231 (3)0.0314 (8)
H10.05541.08270.25820.038*
C20.0574 (3)1.1379 (3)0.3791 (3)0.0315 (8)
H20.02391.19690.35170.038*
C30.0881 (3)1.1196 (3)0.4760 (2)0.0293 (8)
C40.1342 (3)1.0295 (3)0.5119 (2)0.0319 (8)
H40.15461.01360.57630.038*
C50.1502 (3)0.9633 (3)0.4521 (2)0.0277 (8)
H50.18050.90250.47750.033*
C60.0740 (3)1.2009 (3)0.5368 (3)0.0431 (10)
H6A0.12521.25080.55060.052*
H6B0.01131.23350.49900.052*
C70.1606 (3)1.1672 (3)0.7066 (3)0.0329 (9)
C80.2363 (4)1.1468 (3)0.8819 (3)0.0481 (11)
H8A0.21821.16560.93250.058*
H8B0.28931.19050.88570.058*
C90.2702 (4)1.0415 (3)0.8952 (3)0.0542 (12)
H9A0.28691.02210.84380.065*
H9B0.21780.99790.89290.065*
C100.2959 (3)0.9910 (3)0.3080 (3)0.0308 (8)
C110.3306 (3)0.9061 (3)0.3727 (3)0.0325 (9)
C120.3144 (3)0.8079 (3)0.3328 (3)0.0334 (9)
C130.2627 (3)0.7923 (3)0.2310 (3)0.0370 (9)
C140.2329 (3)0.8764 (3)0.1692 (3)0.0340 (9)
C150.2476 (3)0.9765 (3)0.2079 (3)0.0307 (8)
C160.3118 (3)1.0957 (3)0.3491 (3)0.0418 (10)
H16A0.37651.11840.36110.063*
H16B0.30561.09530.40820.063*
H16C0.26331.13990.30410.063*
C170.3823 (3)0.9204 (4)0.4789 (3)0.0501 (12)
H17A0.36090.87000.50990.075*
H17B0.36710.98560.49500.075*
H17C0.45220.91480.50020.075*
C180.3501 (3)0.7182 (3)0.3984 (4)0.0512 (12)
H18A0.40810.73600.45520.077*
H18B0.36530.66470.36570.077*
H18C0.29950.69680.41590.077*
C190.2403 (4)0.6873 (3)0.1928 (4)0.0539 (12)
H19A0.18910.68870.12810.081*
H19B0.21910.64840.23240.081*
H19C0.29860.65780.19330.081*
C200.1823 (4)0.8636 (4)0.0627 (3)0.0497 (12)
H20A0.17170.79360.04750.075*
H20B0.22260.89120.03500.075*
H20C0.12000.89780.03730.075*
C210.2080 (4)1.0643 (3)0.1401 (3)0.0472 (11)
H21A0.20771.12310.17570.071*
H21B0.14201.04990.09320.071*
H21C0.24901.07570.10810.071*
C220.5602 (3)0.8544 (4)0.2762 (3)0.0569 (13)
H220.62420.85410.27430.068*
Cl10.01290 (7)0.91323 (7)0.14482 (6)0.0321 (2)
Cl20.10728 (6)0.75212 (7)0.33295 (6)0.0290 (2)
Cl30.37626 (11)1.02837 (11)1.00899 (10)0.0704 (4)
Cl40.57449 (13)0.80206 (15)0.38502 (12)0.0914 (5)
Cl50.52064 (12)0.97922 (13)0.27048 (12)0.0865 (5)
Cl60.47653 (12)0.78766 (16)0.17822 (13)0.1018 (6)
N10.1238 (2)0.9823 (2)0.35846 (19)0.0262 (6)
N20.0757 (2)1.1693 (3)0.6257 (2)0.0369 (8)
H2A0.02181.15140.62750.044*
N30.1523 (2)1.1586 (3)0.7894 (2)0.0425 (9)
H3A0.09441.16020.78710.051*
O10.2414 (2)1.1743 (2)0.7056 (2)0.0440 (7)
Ru10.17329 (2)0.88883 (2)0.276570 (18)0.02275 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.029 (2)0.0265 (18)0.0039 (18)0.0134 (16)0.0031 (15)
C20.037 (2)0.025 (2)0.0315 (19)0.0073 (16)0.0139 (17)0.0005 (14)
C30.0322 (19)0.025 (2)0.0296 (18)0.0008 (17)0.0128 (15)0.0022 (15)
C40.045 (2)0.030 (2)0.0215 (17)0.0005 (18)0.0150 (17)0.0023 (15)
C50.034 (2)0.026 (2)0.0232 (17)0.0017 (16)0.0119 (15)0.0012 (14)
C60.057 (3)0.038 (3)0.034 (2)0.009 (2)0.019 (2)0.0087 (17)
C70.035 (2)0.035 (2)0.0310 (19)0.0032 (17)0.0159 (18)0.0065 (16)
C80.061 (3)0.042 (3)0.044 (2)0.004 (2)0.025 (2)0.0036 (19)
C90.079 (3)0.039 (3)0.049 (3)0.004 (3)0.032 (3)0.003 (2)
C100.0269 (19)0.025 (2)0.042 (2)0.0063 (16)0.0170 (17)0.0009 (16)
C110.0207 (18)0.034 (2)0.041 (2)0.0014 (16)0.0122 (16)0.0043 (16)
C120.0260 (19)0.028 (2)0.052 (2)0.0036 (16)0.0227 (18)0.0054 (17)
C130.039 (2)0.032 (2)0.051 (2)0.0029 (18)0.030 (2)0.0056 (18)
C140.038 (2)0.039 (2)0.038 (2)0.0013 (18)0.0287 (18)0.0022 (17)
C150.034 (2)0.029 (2)0.037 (2)0.0033 (17)0.0223 (17)0.0045 (16)
C160.040 (2)0.030 (3)0.046 (2)0.0052 (18)0.0104 (19)0.0070 (18)
C170.037 (2)0.063 (3)0.037 (2)0.007 (2)0.0039 (19)0.005 (2)
C180.043 (3)0.038 (3)0.072 (3)0.008 (2)0.025 (2)0.019 (2)
C190.065 (3)0.034 (3)0.075 (3)0.001 (2)0.043 (3)0.015 (2)
C200.066 (3)0.053 (3)0.042 (2)0.008 (2)0.035 (2)0.012 (2)
C210.062 (3)0.037 (3)0.043 (2)0.002 (2)0.023 (2)0.0124 (19)
C220.032 (2)0.091 (4)0.050 (3)0.000 (2)0.019 (2)0.005 (2)
Cl10.0302 (5)0.0372 (6)0.0252 (4)0.0009 (4)0.0087 (4)0.0016 (3)
Cl20.0344 (5)0.0260 (5)0.0303 (4)0.0030 (4)0.0175 (4)0.0010 (3)
Cl30.0693 (9)0.0665 (9)0.0635 (8)0.0216 (7)0.0180 (7)0.0133 (6)
Cl40.0794 (10)0.1231 (15)0.0785 (10)0.0040 (10)0.0411 (9)0.0225 (9)
Cl50.0725 (10)0.0923 (12)0.0855 (10)0.0146 (9)0.0261 (8)0.0067 (8)
Cl60.0634 (9)0.1366 (17)0.0902 (11)0.0102 (10)0.0196 (8)0.0544 (11)
N10.0291 (16)0.0251 (17)0.0252 (15)0.0010 (13)0.0126 (13)0.0041 (12)
N20.0338 (18)0.044 (2)0.0356 (17)0.0001 (15)0.0176 (15)0.0114 (15)
N30.0305 (18)0.065 (3)0.0322 (18)0.0021 (17)0.0140 (15)0.0040 (16)
O10.0320 (15)0.058 (2)0.0486 (16)0.0000 (14)0.0239 (13)0.0006 (14)
Ru10.02661 (15)0.02014 (15)0.02310 (14)0.00008 (13)0.01238 (11)0.00021 (12)
Geometric parameters (Å, º) top
C1—N11.342 (5)C13—C191.500 (6)
C1—C21.379 (5)C13—Ru12.194 (4)
C1—H10.9300C14—C151.440 (5)
C2—C31.385 (5)C14—C201.492 (5)
C2—H20.9300C14—Ru12.217 (3)
C3—C41.378 (5)C15—C211.510 (5)
C3—C61.511 (5)C15—Ru12.192 (3)
C4—C51.374 (5)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—N11.349 (4)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—N21.430 (5)C17—H17B0.9600
C6—H6A0.9700C17—H17C0.9600
C6—H6B0.9700C18—H18A0.9600
C7—O11.229 (4)C18—H18B0.9600
C7—N21.343 (5)C18—H18C0.9600
C7—N31.346 (5)C19—H19A0.9600
C8—N31.446 (6)C19—H19B0.9600
C8—C91.478 (6)C19—H19C0.9600
C8—H8A0.9700C20—H20A0.9600
C8—H8B0.9700C20—H20B0.9600
C9—Cl31.796 (5)C20—H20C0.9600
C9—H9A0.9700C21—H21A0.9600
C9—H9B0.9700C21—H21B0.9600
C10—C151.408 (5)C21—H21C0.9600
C10—C111.449 (5)C22—Cl61.734 (5)
C10—C161.510 (5)C22—Cl41.748 (5)
C10—Ru12.174 (4)C22—Cl51.758 (6)
C11—C121.423 (5)C22—H220.9800
C11—C171.491 (6)Cl1—Ru12.4072 (10)
C11—Ru12.192 (4)Cl2—Ru12.4176 (9)
C12—C131.435 (6)N1—Ru12.133 (3)
C12—C181.507 (6)N2—H2A0.8600
C12—Ru12.198 (4)N3—H3A0.8600
C13—C141.414 (6)
N1—C1—C2122.7 (3)H17A—C17—H17B109.5
N1—C1—H1118.7C11—C17—H17C109.5
C2—C1—H1118.7H17A—C17—H17C109.5
C1—C2—C3120.0 (3)H17B—C17—H17C109.5
C1—C2—H2120.0C12—C18—H18A109.5
C3—C2—H2120.0C12—C18—H18B109.5
C4—C3—C2117.4 (3)H18A—C18—H18B109.5
C4—C3—C6124.0 (3)C12—C18—H18C109.5
C2—C3—C6118.5 (3)H18A—C18—H18C109.5
C5—C4—C3119.7 (3)H18B—C18—H18C109.5
C5—C4—H4120.1C13—C19—H19A109.5
C3—C4—H4120.1C13—C19—H19B109.5
N1—C5—C4123.2 (3)H19A—C19—H19B109.5
N1—C5—H5118.4C13—C19—H19C109.5
C4—C5—H5118.4H19A—C19—H19C109.5
N2—C6—C3116.1 (4)H19B—C19—H19C109.5
N2—C6—H6A108.3C14—C20—H20A109.5
C3—C6—H6A108.3C14—C20—H20B109.5
N2—C6—H6B108.3H20A—C20—H20B109.5
C3—C6—H6B108.3C14—C20—H20C109.5
H6A—C6—H6B107.4H20A—C20—H20C109.5
O1—C7—N2122.2 (3)H20B—C20—H20C109.5
O1—C7—N3121.7 (4)C15—C21—H21A109.5
N2—C7—N3116.1 (3)C15—C21—H21B109.5
N3—C8—C9109.9 (4)H21A—C21—H21B109.5
N3—C8—H8A109.7C15—C21—H21C109.5
C9—C8—H8A109.7H21A—C21—H21C109.5
N3—C8—H8B109.7H21B—C21—H21C109.5
C9—C8—H8B109.7Cl6—C22—Cl4111.9 (3)
H8A—C8—H8B108.2Cl6—C22—Cl5110.0 (3)
C8—C9—Cl3109.5 (3)Cl4—C22—Cl5108.8 (3)
C8—C9—H9A109.8Cl6—C22—H22108.7
Cl3—C9—H9A109.8Cl4—C22—H22108.7
C8—C9—H9B109.8Cl5—C22—H22108.7
Cl3—C9—H9B109.8C1—N1—C5116.9 (3)
H9A—C9—H9B108.2C1—N1—Ru1121.6 (2)
C15—C10—C11120.7 (3)C5—N1—Ru1121.0 (2)
C15—C10—C16120.0 (3)C7—N2—C6120.8 (3)
C11—C10—C16119.3 (3)C7—N2—H2A119.6
C15—C10—Ru171.9 (2)C6—N2—H2A119.6
C11—C10—Ru171.3 (2)C7—N3—C8123.0 (4)
C16—C10—Ru1129.5 (3)C7—N3—H3A118.5
C12—C11—C10118.5 (3)C8—N3—H3A118.5
C12—C11—C17120.2 (4)N1—Ru1—C1089.18 (12)
C10—C11—C17121.2 (4)N1—Ru1—C15111.30 (12)
C12—C11—Ru171.3 (2)C10—Ru1—C1537.62 (14)
C10—C11—Ru170.0 (2)N1—Ru1—C1195.27 (13)
C17—C11—Ru1130.5 (3)C10—Ru1—C1138.75 (14)
C11—C12—C13121.2 (3)C15—Ru1—C1168.98 (14)
C11—C12—C18119.7 (4)N1—Ru1—C13163.60 (13)
C13—C12—C18119.1 (4)C10—Ru1—C1381.75 (14)
C11—C12—Ru170.9 (2)C15—Ru1—C1368.85 (14)
C13—C12—Ru170.8 (2)C11—Ru1—C1369.16 (15)
C18—C12—Ru1130.9 (3)N1—Ru1—C12125.62 (13)
C14—C13—C12119.1 (4)C10—Ru1—C1268.74 (14)
C14—C13—C19121.6 (4)C15—Ru1—C1280.87 (14)
C12—C13—C19119.3 (4)C11—Ru1—C1237.82 (14)
C14—C13—Ru172.2 (2)C13—Ru1—C1238.13 (15)
C12—C13—Ru171.1 (2)N1—Ru1—C14148.47 (13)
C19—C13—Ru1127.6 (3)C10—Ru1—C1468.22 (14)
C13—C14—C15120.6 (3)C15—Ru1—C1438.12 (14)
C13—C14—C20120.9 (4)C11—Ru1—C1480.92 (14)
C15—C14—C20118.5 (4)C13—Ru1—C1437.39 (15)
C13—C14—Ru170.42 (19)C12—Ru1—C1467.60 (14)
C15—C14—Ru169.99 (18)N1—Ru1—Cl186.60 (8)
C20—C14—Ru1131.1 (3)C10—Ru1—Cl1123.07 (10)
C10—C15—C14119.7 (3)C15—Ru1—Cl193.15 (10)
C10—C15—C21121.0 (4)C11—Ru1—Cl1161.48 (10)
C14—C15—C21119.2 (3)C13—Ru1—Cl1109.80 (11)
C10—C15—Ru170.52 (19)C12—Ru1—Cl1147.30 (11)
C14—C15—Ru171.89 (19)C14—Ru1—Cl187.87 (10)
C21—C15—Ru1128.4 (3)N1—Ru1—Cl285.37 (8)
C10—C16—H16A109.5C10—Ru1—Cl2146.83 (10)
C10—C16—H16B109.5C15—Ru1—Cl2163.25 (10)
H16A—C16—H16B109.5C11—Ru1—Cl2109.23 (10)
C10—C16—H16C109.5C13—Ru1—Cl294.75 (11)
H16A—C16—H16C109.5C12—Ru1—Cl288.16 (10)
H16B—C16—H16C109.5C14—Ru1—Cl2125.58 (11)
C11—C17—H17A109.5Cl1—Ru1—Cl289.28 (3)
C11—C17—H17B109.5
N1—C1—C2—C30.3 (6)C14—C15—Ru1—C10132.0 (3)
C1—C2—C3—C42.2 (6)C21—C15—Ru1—C10114.7 (4)
C1—C2—C3—C6174.7 (4)C10—C15—Ru1—C1129.5 (2)
C2—C3—C4—C51.6 (6)C14—C15—Ru1—C11102.5 (2)
C6—C3—C4—C5175.1 (4)C21—C15—Ru1—C11144.2 (4)
C3—C4—C5—N11.0 (6)C10—C15—Ru1—C13104.5 (2)
C4—C3—C6—N223.1 (6)C14—C15—Ru1—C1327.5 (2)
C2—C3—C6—N2160.2 (4)C21—C15—Ru1—C13140.8 (4)
N3—C8—C9—Cl3178.7 (3)C10—C15—Ru1—C1266.9 (2)
C15—C10—C11—C120.2 (5)C14—C15—Ru1—C1265.1 (2)
C16—C10—C11—C12179.6 (3)C21—C15—Ru1—C12178.5 (4)
Ru1—C10—C11—C1254.1 (3)C10—C15—Ru1—C14132.0 (3)
C15—C10—C11—C17179.7 (3)C21—C15—Ru1—C14113.3 (4)
C16—C10—C11—C170.5 (5)C10—C15—Ru1—Cl1145.5 (2)
Ru1—C10—C11—C17126.0 (3)C14—C15—Ru1—Cl182.5 (2)
C15—C10—C11—Ru154.3 (3)C21—C15—Ru1—Cl130.8 (4)
C16—C10—C11—Ru1125.5 (3)C10—C15—Ru1—Cl2116.5 (4)
C10—C11—C12—C131.6 (5)C14—C15—Ru1—Cl215.5 (5)
C17—C11—C12—C13178.5 (3)C21—C15—Ru1—Cl2128.8 (4)
Ru1—C11—C12—C1351.9 (3)C12—C11—Ru1—N1146.6 (2)
C10—C11—C12—C18179.8 (3)C10—C11—Ru1—N182.1 (2)
C17—C11—C12—C180.2 (5)C17—C11—Ru1—N132.4 (4)
Ru1—C11—C12—C18126.8 (3)C12—C11—Ru1—C10131.3 (3)
C10—C11—C12—Ru153.4 (3)C17—C11—Ru1—C10114.5 (5)
C17—C11—C12—Ru1126.6 (3)C12—C11—Ru1—C15102.6 (2)
C11—C12—C13—C144.0 (5)C10—C11—Ru1—C1528.7 (2)
C18—C12—C13—C14177.3 (3)C17—C11—Ru1—C15143.2 (4)
Ru1—C12—C13—C1455.9 (3)C12—C11—Ru1—C1328.1 (2)
C11—C12—C13—C19175.1 (3)C10—C11—Ru1—C13103.2 (2)
C18—C12—C13—C193.5 (5)C17—C11—Ru1—C13142.3 (4)
Ru1—C12—C13—C19123.2 (4)C10—C11—Ru1—C12131.3 (3)
C11—C12—C13—Ru151.9 (3)C17—C11—Ru1—C12114.2 (5)
C18—C12—C13—Ru1126.8 (3)C12—C11—Ru1—C1464.9 (2)
C12—C13—C14—C154.6 (5)C10—C11—Ru1—C1466.4 (2)
C19—C13—C14—C15174.5 (4)C17—C11—Ru1—C14179.2 (4)
Ru1—C13—C14—C1550.8 (3)C12—C11—Ru1—Cl1118.4 (3)
C12—C13—C14—C20177.7 (3)C10—C11—Ru1—Cl112.9 (5)
C19—C13—C14—C203.2 (6)C17—C11—Ru1—Cl1127.4 (4)
Ru1—C13—C14—C20126.9 (4)C12—C11—Ru1—Cl259.7 (2)
C12—C13—C14—Ru155.4 (3)C10—C11—Ru1—Cl2169.01 (18)
C19—C13—C14—Ru1123.8 (4)C17—C11—Ru1—Cl254.5 (4)
C11—C10—C15—C140.4 (5)C14—C13—Ru1—N1121.7 (5)
C16—C10—C15—C14179.8 (3)C12—C13—Ru1—N18.8 (6)
Ru1—C10—C15—C1454.4 (3)C19—C13—Ru1—N1121.7 (5)
C11—C10—C15—C21177.8 (3)C14—C13—Ru1—C1064.7 (2)
C16—C10—C15—C212.0 (5)C12—C13—Ru1—C1065.9 (2)
Ru1—C10—C15—C21123.7 (3)C19—C13—Ru1—C10178.7 (4)
C11—C10—C15—Ru154.1 (3)C14—C13—Ru1—C1528.0 (2)
C16—C10—C15—Ru1125.8 (3)C12—C13—Ru1—C15102.6 (2)
C13—C14—C15—C102.8 (5)C19—C13—Ru1—C15144.6 (4)
C20—C14—C15—C10179.4 (3)C14—C13—Ru1—C11102.7 (3)
Ru1—C14—C15—C1053.8 (3)C12—C13—Ru1—C1127.9 (2)
C13—C14—C15—C21175.4 (4)C19—C13—Ru1—C11140.7 (4)
C20—C14—C15—C212.4 (5)C14—C13—Ru1—C12130.6 (3)
Ru1—C14—C15—C21124.4 (3)C19—C13—Ru1—C12112.9 (5)
C13—C14—C15—Ru151.0 (3)C12—C13—Ru1—C14130.6 (3)
C20—C14—C15—Ru1126.8 (3)C19—C13—Ru1—C14116.6 (5)
C2—C1—N1—C52.2 (5)C14—C13—Ru1—Cl157.6 (2)
C2—C1—N1—Ru1169.6 (3)C12—C13—Ru1—Cl1171.85 (19)
C4—C5—N1—C12.8 (5)C19—C13—Ru1—Cl159.0 (4)
C4—C5—N1—Ru1169.0 (3)C14—C13—Ru1—Cl2148.5 (2)
O1—C7—N2—C613.3 (6)C12—C13—Ru1—Cl280.9 (2)
N3—C7—N2—C6165.5 (3)C19—C13—Ru1—Cl232.0 (4)
C3—C6—N2—C790.2 (5)C11—C12—Ru1—N142.4 (3)
O1—C7—N3—C86.5 (6)C13—C12—Ru1—N1176.9 (2)
N2—C7—N3—C8174.6 (4)C18—C12—Ru1—N170.8 (4)
C9—C8—N3—C779.5 (5)C11—C12—Ru1—C1030.3 (2)
C1—N1—Ru1—C1077.1 (3)C13—C12—Ru1—C10104.3 (2)
C5—N1—Ru1—C1094.3 (3)C18—C12—Ru1—C10143.5 (4)
C1—N1—Ru1—C1546.0 (3)C11—C12—Ru1—C1567.3 (2)
C5—N1—Ru1—C15125.4 (3)C13—C12—Ru1—C1567.2 (2)
C1—N1—Ru1—C11115.4 (3)C18—C12—Ru1—C15179.5 (4)
C5—N1—Ru1—C1156.0 (3)C13—C12—Ru1—C11134.6 (3)
C1—N1—Ru1—C13133.3 (5)C18—C12—Ru1—C11113.2 (5)
C5—N1—Ru1—C1338.1 (6)C11—C12—Ru1—C13134.6 (3)
C1—N1—Ru1—C12140.0 (3)C18—C12—Ru1—C13112.2 (5)
C5—N1—Ru1—C1231.4 (3)C11—C12—Ru1—C14104.6 (2)
C1—N1—Ru1—C1434.2 (4)C13—C12—Ru1—C1429.9 (2)
C5—N1—Ru1—C14137.2 (3)C18—C12—Ru1—C14142.2 (4)
C1—N1—Ru1—Cl146.1 (3)C11—C12—Ru1—Cl1148.85 (18)
C5—N1—Ru1—Cl1142.5 (3)C13—C12—Ru1—Cl114.3 (3)
C1—N1—Ru1—Cl2135.6 (3)C18—C12—Ru1—Cl198.0 (4)
C5—N1—Ru1—Cl253.0 (3)C11—C12—Ru1—Cl2125.4 (2)
C15—C10—Ru1—N1127.9 (2)C13—C12—Ru1—Cl2100.1 (2)
C11—C10—Ru1—N199.5 (2)C18—C12—Ru1—Cl212.2 (4)
C16—C10—Ru1—N113.5 (3)C13—C14—Ru1—N1152.7 (2)
C11—C10—Ru1—C15132.7 (3)C15—C14—Ru1—N117.9 (4)
C16—C10—Ru1—C15114.4 (4)C20—C14—Ru1—N192.9 (4)
C15—C10—Ru1—C11132.7 (3)C13—C14—Ru1—C10105.5 (3)
C16—C10—Ru1—C11112.9 (4)C15—C14—Ru1—C1029.2 (2)
C15—C10—Ru1—C1365.9 (2)C20—C14—Ru1—C10140.1 (4)
C11—C10—Ru1—C1366.8 (2)C13—C14—Ru1—C15134.8 (3)
C16—C10—Ru1—C13179.8 (4)C20—C14—Ru1—C15110.8 (5)
C15—C10—Ru1—C12103.1 (2)C13—C14—Ru1—C1167.4 (2)
C11—C10—Ru1—C1229.6 (2)C15—C14—Ru1—C1167.4 (2)
C16—C10—Ru1—C12142.6 (4)C20—C14—Ru1—C11178.2 (4)
C15—C10—Ru1—C1429.6 (2)C15—C14—Ru1—C13134.8 (3)
C11—C10—Ru1—C14103.1 (2)C20—C14—Ru1—C13114.4 (5)
C16—C10—Ru1—C14144.0 (4)C13—C14—Ru1—C1230.5 (2)
C15—C10—Ru1—Cl142.5 (2)C15—C14—Ru1—C12104.3 (2)
C11—C10—Ru1—Cl1175.13 (17)C20—C14—Ru1—C12144.9 (4)
C16—C10—Ru1—Cl171.9 (4)C13—C14—Ru1—Cl1127.4 (2)
C15—C10—Ru1—Cl2151.89 (18)C15—C14—Ru1—Cl197.8 (2)
C11—C10—Ru1—Cl219.2 (3)C20—C14—Ru1—Cl113.0 (4)
C16—C10—Ru1—Cl293.7 (4)C13—C14—Ru1—Cl239.8 (3)
C10—C15—Ru1—N157.9 (2)C15—C14—Ru1—Cl2174.57 (17)
C14—C15—Ru1—N1170.1 (2)C20—C14—Ru1—Cl274.6 (4)
C21—C15—Ru1—N156.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2a···Cl2i0.862.623.270 (3)133
N3—H3a···Cl1i0.862.493.226 (4)144
C22—H22···O1ii0.981.952.908 (5)165
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[RuCl2(C12H18)(C9H12ClN3O)]·CHCl3
Mr667.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.0947 (16), 13.3402 (10), 15.4847 (16)
β (°) 116.026 (11)
V3)2801.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.457, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
21527, 5514, 3710
Rint0.065
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 0.89
No. of reflections5514
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.64

Computer programs: SMART (Bruker, 1999), SMART and SAINT (Bruker, 1999), SAINT (Bruker, 1999), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2a···Cl2i0.862.6203.270 (3)133.0
N3—H3a···Cl1i0.862.4903.226 (4)144.3
C22—H22···O1ii0.981.9502.908 (5)165.3
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

A generous loan of ruthenium chloride hydrate from the Johnson Matthey Technology Centre is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAuzias, M., Gueniat, J., Therrien, B., Süss-Fink, G., Renfrew, A. K. & Dyson, P. J. (2009). J. Organomet. Chem. 694, 855–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationAuzias, M., Therrien, B., Süss-Fink, G., Štěpnička, P., Ang, W. H. & Dyson, P. J. (2008). Inorg. Chem. 47, 578–583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGovender, P., Antonels, N. C., Mattsson, J., Renfrew, A. K., Dyson, P. J., Moss, J. R., Therrien, B. & Smith, G. S. (2009). J. Organomet. Chem. 694, 3470–3476.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakao, H., Fukushima, M., Shimizu, F. & Arakawa, M. (1974). Yakugaku Zasshi, 94, 1032–1037.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSüss-Fink, G. (2010). Dalton Trans. 39, 1673–1688.  PubMed Google Scholar
First citationTherrien, B. (2009). Coord. Chem. Rev. 253, 493–519.  Web of Science CrossRef CAS Google Scholar
First citationTherrien, B. & Smith, G. S. (2011). Dalton Trans. 40, 10793–10800.  PubMed Google Scholar
First citationTherrien, B. & Süss-Fink, G. (2004). Inorg. Chim. Acta, 357, 219–224.  Web of Science CSD CrossRef CAS Google Scholar
First citationTherrien, B., Vieille-Petit, L., Jeanneret-Gris, J., Štěpnička, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456–2463.  Web of Science CSD CrossRef CAS Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds