metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[6-(Hy­dr­oxy­meth­yl)pyridin-2-yl]methyl ferrocene-1-carboxyl­ate

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

(Received 20 October 2011; accepted 23 October 2011; online 29 October 2011)

The crystal structure of the title ferrocene derivative, [Fe(C5H5)(C13H12NO3)], shows strong inter­molecular O—H⋯N hydrogen bonds between the alcohol function and the pyridine group of a neighbouring mol­ecule, while the pyridine function forms another hydrogen bond with the alcohol function of another neighbouring mol­ecule, resulting in the formation of chains along the a-axis direction.

Related literature

For analogous pyridino­ferrocene derivatives and the synthesis of the title compound, see: Izumi et al. (1984[Izumi, T., Tezuka, T., Yusa, S. & Kasahara, A. (1984). Bull. Chem. Soc. Jpn, 57, 2435-2439.], 1988[Izumi, T., Murakami, S. & Kasahara, A. (1988). Bull. Chem. Soc. Jpn, 61, 3565-3568.]). For a review on ferrocene derivatives as anti­cancer agents, see: Hillard & Jaouen (2011[Hillard, E. A. & Jaouen, G. (2011). Organometallics, 30, 20-27.]). For related structures, see: Auzias et al. (2008[Auzias, M., Therrien, B., Süss-Fink, G., Štěpnička, P., Ang, W. H. & Dyson, P. J. (2008). Inorg. Chem. 47, 578-583.], 2009[Auzias, M., Gueniat, J., Therrien, B., Süss-Fink, G., Renfrew, A. K. & Dyson, P. J. (2009). J. Organomet. Chem. 694, 855-861.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H12NO3)]

  • Mr = 351.18

  • Tetragonal, P 41 21 2

  • a = 7.5477 (3) Å

  • c = 53.351 (4) Å

  • V = 3039.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 173 K

  • 0.17 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 13026 measured reflections

  • 2808 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.083

  • S = 0.86

  • 2808 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1024 Friedel pairs

  • Flack parameter: 0.02 (3)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART and SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferrocene derivatives are known to exert antiproliferative effects on cancers (Hillard & Jaouen, 2011) and, in this paper, the molecular structure of a ferrocene derivative, {6-(hydroxymethyl)pyridin-2-yl}methyl ferrocene-1-carboxylate, is presented. However, a biological evaluation was not possible due to the low water-solubility of the compound.

The title compound is obtained following a previsouly published procedure (Izumi et al., 1984; Izumi et al., 1988) using ferrocenoyl chloride and 2,6-pyridinedimethanol in the presence of triethylamine. After purification, the compound crystallizes in the tetragonal space group P 41212 with eight molecules per unit cell. These molecules are pilled along the c axis (c = 53.351 (4) Å). In the solid state, the ferrocene adopts an eclipsed conformation, and the pyridyl substituent is positionned perpendicular to the plane of the η5-C5H4COOCH2– moiety. Otherwise, the metrical parameters are normal and compare well to those of analogous functionalized-ferrocenyl molecules (Auzias et al., 2008; Auzias et al., 2009).

In the crystal packing, the pyridyl and the alcohol functions are involved in strong H-bonded interactions with two neighbouring symmetry-related molecules: The N—O separation being 2.827 (4) Å with the O—H···N angle being 159 (6)°.

Related literature top

For analogous pyridinoferrocene derivatives and the synthesis of the title compound; see: Izumi et al. (1984, 1988). For a review on ferrocene derivatives as anticancer agents, see: Hillard & Jaouen (2011). For related structures, see: Auzias et al. (2008, 2009).

Experimental top

Crystals suitable for X-ray diffraction analysis were obtained, after days, by slow diffusion of diethyl ether into a chloroform solution of the title complex.

Refinement top

All H atoms, except for OH, were included in calculated positions (C—H = 0.93 Å for Carom, 0.97 Å for CH2) and treated as riding atoms with the constraint Uiso(H) = 1.2 Ueq(carrier) applied.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART and SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of {6-(hydroxymethyl)pyridin-2-yl}methyl ferrocene-1-carboxylate. Displacement ellipsoids are drawn at the 50% probability level.
[6-(Hydroxymethyl)pyridin-2-yl]methyl ferrocene-1-carboxylate top
Crystal data top
[Fe(C5H5)(C13H12NO3)]Dx = 1.535 Mg m3
Mr = 351.18Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212Cell parameters from 9687 reflections
Hall symbol: P 4abw 2nwθ = 1.5–26.0°
a = 7.5477 (3) ŵ = 1.01 mm1
c = 53.351 (4) ÅT = 173 K
V = 3039.3 (3) Å3Block, orange
Z = 80.17 × 0.14 × 0.12 mm
F(000) = 1456
Data collection top
Bruker SMART CCD
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.6°, θmin = 1.5°
Detector resolution: 0 pixels mm-1h = 98
ω scansk = 99
13026 measured reflectionsl = 6464
2808 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0458P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.24 e Å3
212 parametersΔρmin = 0.57 e Å3
0 restraintsAbsolute structure: Flack (1983), 1024 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Fe(C5H5)(C13H12NO3)]Z = 8
Mr = 351.18Mo Kα radiation
Tetragonal, P41212µ = 1.01 mm1
a = 7.5477 (3) ÅT = 173 K
c = 53.351 (4) Å0.17 × 0.14 × 0.12 mm
V = 3039.3 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2092 reflections with I > 2σ(I)
13026 measured reflectionsRint = 0.072
2808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.24 e Å3
S = 0.86Δρmin = 0.57 e Å3
2808 reflectionsAbsolute structure: Flack (1983), 1024 Friedel pairs
212 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Experimental. A crystal was mounted at 173 K on a Bruker SMART CCD PLATFORM using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, ϕ oscillation scans 0 - 200°, step Δϕ = 0.5°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.16190 (7)0.78987 (6)0.032064 (10)0.03038 (14)
O20.0794 (3)0.8358 (3)0.09355 (4)0.0367 (6)
O10.2404 (3)0.9840 (3)0.06481 (6)0.0436 (7)
C110.0980 (5)0.9287 (5)0.07208 (7)0.0323 (8)
C70.1223 (5)0.5232 (5)0.03604 (7)0.0393 (9)
H70.11920.46060.05100.047*
C10.0706 (5)0.9566 (4)0.05913 (7)0.0307 (8)
C50.0887 (5)1.0483 (5)0.03606 (7)0.0335 (8)
H50.00171.10440.02730.040*
C90.2208 (5)0.6541 (5)0.00017 (8)0.0432 (10)
H90.29450.69260.01300.052*
C40.2692 (5)1.0391 (5)0.02876 (8)0.0375 (9)
H40.31801.08940.01440.045*
N10.5056 (4)0.6281 (4)0.10764 (5)0.0300 (7)
C130.3422 (4)0.6468 (4)0.09774 (6)0.0304 (8)
C140.6050 (5)0.4895 (5)0.10050 (6)0.0318 (9)
C170.2723 (5)0.5255 (5)0.08130 (7)0.0365 (9)
H170.15740.53860.07530.044*
C100.0354 (5)0.6827 (5)0.00140 (7)0.0400 (9)
H100.03440.74310.01010.048*
C20.2408 (5)0.8887 (5)0.06595 (7)0.0318 (8)
H20.26730.82270.08020.038*
C160.3757 (5)0.3827 (5)0.07373 (7)0.0381 (10)
H160.33210.30070.06230.046*
C150.5450 (5)0.3646 (5)0.08355 (7)0.0361 (9)
H150.61670.27020.07880.043*
C30.3618 (5)0.9408 (5)0.04698 (8)0.0379 (9)
H30.48210.91450.04660.046*
C80.2748 (6)0.5564 (5)0.02136 (8)0.0426 (10)
H80.38970.52070.02510.051*
C190.7864 (5)0.4814 (5)0.11208 (8)0.0399 (10)
H19A0.77480.46220.13000.048*
H19B0.84580.59390.10960.048*
C60.0237 (5)0.6013 (5)0.02401 (7)0.0385 (9)
H60.13980.60010.02980.046*
C120.2403 (5)0.8036 (5)0.10734 (7)0.0418 (9)
H12A0.31480.90810.10640.050*
H12B0.21100.78420.12480.050*
O30.8909 (4)0.3441 (4)0.10162 (6)0.0475 (7)
H3O0.935 (8)0.248 (8)0.1126 (13)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0306 (3)0.0287 (3)0.0318 (2)0.0000 (2)0.0007 (2)0.0016 (2)
O20.0287 (13)0.0459 (16)0.0356 (14)0.0041 (12)0.0036 (11)0.0020 (13)
O10.0284 (16)0.0444 (16)0.0581 (18)0.0058 (12)0.0066 (13)0.0012 (14)
C110.033 (2)0.029 (2)0.035 (2)0.0008 (16)0.0008 (16)0.0083 (16)
C70.050 (3)0.034 (2)0.034 (2)0.0004 (17)0.0023 (18)0.0036 (17)
C10.025 (2)0.031 (2)0.036 (2)0.0003 (14)0.0020 (15)0.0020 (16)
C50.034 (2)0.031 (2)0.035 (2)0.0041 (15)0.0046 (16)0.0000 (16)
C90.051 (3)0.038 (2)0.040 (2)0.001 (2)0.0090 (18)0.0070 (19)
C40.035 (2)0.038 (2)0.039 (2)0.0072 (16)0.0006 (17)0.0016 (17)
N10.0288 (17)0.0290 (18)0.0323 (16)0.0008 (13)0.0012 (13)0.0023 (13)
C130.0292 (19)0.0329 (19)0.0293 (17)0.0014 (17)0.0016 (14)0.0011 (14)
C140.032 (2)0.031 (2)0.033 (2)0.0004 (15)0.0016 (15)0.0056 (16)
C170.036 (2)0.039 (2)0.034 (2)0.0064 (17)0.0060 (17)0.0020 (17)
C100.046 (3)0.040 (2)0.034 (2)0.0031 (18)0.0052 (17)0.0045 (19)
C20.032 (2)0.035 (2)0.0285 (18)0.0001 (15)0.0023 (15)0.0006 (15)
C160.047 (3)0.030 (2)0.038 (2)0.0062 (17)0.0044 (18)0.0002 (16)
C150.047 (2)0.028 (2)0.033 (2)0.0003 (18)0.0017 (17)0.0027 (16)
C30.028 (2)0.041 (2)0.045 (2)0.0030 (18)0.0017 (17)0.0012 (17)
C80.044 (2)0.042 (2)0.041 (2)0.0041 (19)0.0026 (19)0.0038 (18)
C190.042 (2)0.036 (2)0.042 (2)0.0028 (18)0.0048 (19)0.0052 (17)
C60.041 (2)0.037 (2)0.037 (2)0.0010 (17)0.0001 (18)0.0021 (17)
C120.036 (2)0.051 (3)0.039 (2)0.0074 (17)0.0099 (16)0.0056 (19)
O30.0446 (17)0.0500 (18)0.0478 (17)0.0159 (14)0.0041 (13)0.0078 (15)
Geometric parameters (Å, º) top
Fe1—C12.035 (3)C4—H40.9300
Fe1—C52.038 (4)N1—C141.342 (4)
Fe1—C82.039 (4)N1—C131.349 (4)
Fe1—C62.042 (4)C13—C171.373 (5)
Fe1—C22.045 (3)C13—C121.502 (5)
Fe1—C72.046 (4)C14—C151.382 (5)
Fe1—C92.051 (4)C14—C191.504 (5)
Fe1—C32.051 (4)C17—C161.390 (5)
Fe1—C42.056 (3)C17—H170.9300
Fe1—C102.060 (4)C10—C61.425 (5)
O2—C111.350 (4)C10—H100.9300
O2—C121.440 (4)C2—C31.419 (5)
O1—C111.217 (4)C2—H20.9300
C11—C11.464 (5)C16—C151.388 (5)
C7—C61.404 (5)C16—H160.9300
C7—C81.414 (5)C15—H150.9300
C7—H70.9300C3—H30.9300
C1—C51.419 (5)C8—H80.9300
C1—C21.430 (5)C19—O31.416 (4)
C5—C41.418 (5)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C9—C101.418 (5)C6—H60.9300
C9—C81.425 (6)C12—H12A0.9700
C9—H90.9300C12—H12B0.9700
C4—C31.408 (5)O3—H3O0.99 (6)
C1—Fe1—C540.77 (13)C8—C9—Fe169.2 (2)
C1—Fe1—C8150.96 (15)C10—C9—H9125.9
C5—Fe1—C8165.83 (15)C8—C9—H9125.9
C1—Fe1—C6110.37 (15)Fe1—C9—H9126.3
C5—Fe1—C6120.19 (15)C3—C4—C5108.2 (4)
C8—Fe1—C667.99 (16)C3—C4—Fe169.8 (2)
C1—Fe1—C241.02 (13)C5—C4—Fe169.07 (19)
C5—Fe1—C268.73 (14)C3—C4—H4125.9
C8—Fe1—C2116.19 (16)C5—C4—H4125.9
C6—Fe1—C2129.80 (14)Fe1—C4—H4126.9
C1—Fe1—C7119.02 (14)C14—N1—C13118.7 (3)
C5—Fe1—C7152.99 (14)N1—C13—C17122.1 (3)
C8—Fe1—C740.51 (14)N1—C13—C12114.6 (3)
C6—Fe1—C740.19 (15)C17—C13—C12123.1 (3)
C2—Fe1—C7108.06 (15)N1—C14—C15122.3 (3)
C1—Fe1—C9167.76 (15)N1—C14—C19115.1 (3)
C5—Fe1—C9128.65 (16)C15—C14—C19122.6 (3)
C8—Fe1—C940.78 (15)C13—C17—C16119.1 (4)
C6—Fe1—C967.92 (15)C13—C17—H17120.4
C2—Fe1—C9149.40 (15)C16—C17—H17120.4
C7—Fe1—C968.11 (15)C9—C10—C6107.1 (4)
C1—Fe1—C368.30 (15)C9—C10—Fe169.5 (2)
C5—Fe1—C368.11 (14)C6—C10—Fe169.0 (2)
C8—Fe1—C3106.35 (16)C9—C10—H10126.5
C6—Fe1—C3166.67 (15)C6—C10—H10126.5
C2—Fe1—C340.54 (14)Fe1—C10—H10126.6
C7—Fe1—C3127.87 (15)C3—C2—C1107.3 (3)
C9—Fe1—C3116.32 (15)C3—C2—Fe170.0 (2)
C1—Fe1—C468.18 (15)C1—C2—Fe169.1 (2)
C5—Fe1—C440.54 (14)C3—C2—H2126.4
C8—Fe1—C4127.05 (15)C1—C2—H2126.4
C6—Fe1—C4152.84 (16)Fe1—C2—H2126.1
C2—Fe1—C468.10 (15)C15—C16—C17118.9 (4)
C7—Fe1—C4165.19 (15)C15—C16—H16120.5
C9—Fe1—C4107.45 (16)C17—C16—H16120.5
C3—Fe1—C440.10 (15)C14—C15—C16118.8 (3)
C1—Fe1—C10130.51 (16)C14—C15—H15120.6
C5—Fe1—C10109.47 (16)C16—C15—H15120.6
C8—Fe1—C1068.39 (17)C4—C3—C2108.6 (3)
C6—Fe1—C1040.65 (14)C4—C3—Fe170.1 (2)
C2—Fe1—C10168.74 (14)C2—C3—Fe169.5 (2)
C7—Fe1—C1068.17 (16)C4—C3—H3125.7
C9—Fe1—C1040.37 (15)C2—C3—H3125.7
C3—Fe1—C10150.13 (16)Fe1—C3—H3126.3
C4—Fe1—C10118.30 (16)C7—C8—C9107.8 (4)
C11—O2—C12115.7 (3)C7—C8—Fe170.0 (2)
O1—C11—O2122.7 (3)C9—C8—Fe170.0 (2)
O1—C11—C1124.6 (4)C7—C8—H8126.1
O2—C11—C1112.6 (3)C9—C8—H8126.1
C6—C7—C8108.1 (3)Fe1—C8—H8125.4
C6—C7—Fe169.8 (2)O3—C19—C14112.0 (3)
C8—C7—Fe169.5 (2)O3—C19—H19A109.2
C6—C7—H7125.9C14—C19—H19A109.2
C8—C7—H7125.9O3—C19—H19B109.2
Fe1—C7—H7126.4C14—C19—H19B109.2
C5—C1—C2108.0 (3)H19A—C19—H19B107.9
C5—C1—C11124.3 (3)C7—C6—C10108.8 (4)
C2—C1—C11127.6 (3)C7—C6—Fe170.0 (2)
C5—C1—Fe169.7 (2)C10—C6—Fe170.3 (2)
C2—C1—Fe169.8 (2)C7—C6—H6125.6
C11—C1—Fe1122.7 (2)C10—C6—H6125.6
C4—C5—C1107.9 (3)Fe1—C6—H6125.6
C4—C5—Fe170.4 (2)O2—C12—C13113.0 (3)
C1—C5—Fe169.5 (2)O2—C12—H12A109.0
C4—C5—H5126.1C13—C12—H12A109.0
C1—C5—H5126.1O2—C12—H12B109.0
Fe1—C5—H5125.6C13—C12—H12B109.0
C10—C9—C8108.2 (4)H12A—C12—H12B107.8
C10—C9—Fe170.2 (2)C19—O3—H3O119 (4)
C12—O2—C11—O10.8 (5)C8—C9—C10—Fe158.9 (3)
C12—O2—C11—C1179.9 (3)C1—Fe1—C10—C9168.4 (2)
C1—Fe1—C7—C687.7 (2)C5—Fe1—C10—C9127.4 (2)
C5—Fe1—C7—C652.7 (4)C8—Fe1—C10—C937.7 (2)
C8—Fe1—C7—C6119.4 (3)C6—Fe1—C10—C9118.6 (4)
C2—Fe1—C7—C6131.1 (2)C2—Fe1—C10—C9153.9 (7)
C9—Fe1—C7—C681.3 (2)C7—Fe1—C10—C981.4 (3)
C3—Fe1—C7—C6171.7 (2)C3—Fe1—C10—C947.6 (4)
C4—Fe1—C7—C6156.5 (6)C4—Fe1—C10—C983.8 (3)
C10—Fe1—C7—C637.6 (2)C1—Fe1—C10—C673.0 (3)
C1—Fe1—C7—C8152.9 (2)C5—Fe1—C10—C6114.0 (2)
C5—Fe1—C7—C8172.1 (3)C8—Fe1—C10—C680.9 (3)
C6—Fe1—C7—C8119.4 (3)C2—Fe1—C10—C635.2 (9)
C2—Fe1—C7—C8109.5 (2)C7—Fe1—C10—C637.2 (2)
C9—Fe1—C7—C838.2 (2)C9—Fe1—C10—C6118.6 (4)
C3—Fe1—C7—C868.8 (3)C3—Fe1—C10—C6166.3 (3)
C4—Fe1—C7—C837.0 (7)C4—Fe1—C10—C6157.5 (2)
C10—Fe1—C7—C881.8 (3)C5—C1—C2—C30.3 (4)
O1—C11—C1—C51.6 (6)C11—C1—C2—C3176.2 (3)
O2—C11—C1—C5179.3 (3)Fe1—C1—C2—C359.8 (2)
O1—C11—C1—C2176.8 (4)C5—C1—C2—Fe159.5 (2)
O2—C11—C1—C24.1 (5)C11—C1—C2—Fe1116.3 (3)
O1—C11—C1—Fe188.2 (4)C1—Fe1—C2—C3118.5 (3)
O2—C11—C1—Fe192.8 (3)C5—Fe1—C2—C380.8 (2)
C8—Fe1—C1—C5165.9 (3)C8—Fe1—C2—C384.7 (3)
C6—Fe1—C1—C5113.0 (2)C6—Fe1—C2—C3167.0 (2)
C2—Fe1—C1—C5119.1 (3)C7—Fe1—C2—C3127.7 (2)
C7—Fe1—C1—C5156.5 (2)C9—Fe1—C2—C350.4 (4)
C9—Fe1—C1—C533.4 (8)C4—Fe1—C2—C337.0 (2)
C3—Fe1—C1—C581.2 (2)C10—Fe1—C2—C3163.7 (7)
C4—Fe1—C1—C537.9 (2)C5—Fe1—C2—C137.74 (19)
C10—Fe1—C1—C571.4 (3)C8—Fe1—C2—C1156.8 (2)
C5—Fe1—C1—C2119.1 (3)C6—Fe1—C2—C174.5 (3)
C8—Fe1—C1—C246.8 (4)C7—Fe1—C2—C1113.7 (2)
C6—Fe1—C1—C2127.9 (2)C9—Fe1—C2—C1168.9 (3)
C7—Fe1—C1—C284.4 (2)C3—Fe1—C2—C1118.5 (3)
C9—Fe1—C1—C2152.5 (7)C4—Fe1—C2—C181.5 (2)
C3—Fe1—C1—C237.9 (2)C10—Fe1—C2—C145.2 (9)
C4—Fe1—C1—C281.3 (2)C13—C17—C16—C151.7 (6)
C10—Fe1—C1—C2169.5 (2)N1—C14—C15—C160.4 (5)
C5—Fe1—C1—C11118.5 (4)C19—C14—C15—C16179.8 (3)
C8—Fe1—C1—C1175.6 (4)C17—C16—C15—C140.1 (6)
C6—Fe1—C1—C115.5 (3)C5—C4—C3—C20.5 (4)
C2—Fe1—C1—C11122.4 (4)Fe1—C4—C3—C259.0 (3)
C7—Fe1—C1—C1138.0 (4)C5—C4—C3—Fe158.5 (2)
C9—Fe1—C1—C1185.1 (8)C1—C2—C3—C40.1 (4)
C3—Fe1—C1—C11160.3 (3)Fe1—C2—C3—C459.4 (3)
C4—Fe1—C1—C11156.3 (3)C1—C2—C3—Fe159.3 (2)
C10—Fe1—C1—C1147.1 (4)C1—Fe1—C3—C481.5 (2)
C2—C1—C5—C40.6 (4)C5—Fe1—C3—C437.4 (2)
C11—C1—C5—C4176.7 (3)C8—Fe1—C3—C4128.8 (2)
Fe1—C1—C5—C460.2 (3)C6—Fe1—C3—C4168.3 (6)
C2—C1—C5—Fe159.6 (2)C2—Fe1—C3—C4119.8 (3)
C11—C1—C5—Fe1116.4 (3)C7—Fe1—C3—C4167.9 (2)
C1—Fe1—C5—C4118.7 (3)C9—Fe1—C3—C486.1 (3)
C8—Fe1—C5—C432.4 (7)C10—Fe1—C3—C453.8 (4)
C6—Fe1—C5—C4154.6 (2)C1—Fe1—C3—C238.4 (2)
C2—Fe1—C5—C480.8 (2)C5—Fe1—C3—C282.4 (2)
C7—Fe1—C5—C4169.0 (3)C8—Fe1—C3—C2111.4 (2)
C9—Fe1—C5—C469.9 (3)C6—Fe1—C3—C248.5 (7)
C3—Fe1—C5—C437.0 (2)C7—Fe1—C3—C272.2 (3)
C10—Fe1—C5—C4111.1 (2)C9—Fe1—C3—C2154.1 (2)
C8—Fe1—C5—C1151.1 (6)C4—Fe1—C3—C2119.8 (3)
C6—Fe1—C5—C186.7 (2)C10—Fe1—C3—C2173.7 (3)
C2—Fe1—C5—C138.0 (2)C6—C7—C8—C90.8 (4)
C7—Fe1—C5—C150.2 (4)Fe1—C7—C8—C960.1 (3)
C9—Fe1—C5—C1171.4 (2)C6—C7—C8—Fe159.3 (3)
C3—Fe1—C5—C181.7 (2)C10—C9—C8—C70.6 (4)
C4—Fe1—C5—C1118.7 (3)Fe1—C9—C8—C760.1 (3)
C10—Fe1—C5—C1130.2 (2)C10—C9—C8—Fe159.5 (3)
C1—Fe1—C9—C1046.3 (8)C1—Fe1—C8—C755.3 (4)
C5—Fe1—C9—C1073.6 (3)C5—Fe1—C8—C7165.3 (6)
C8—Fe1—C9—C10119.5 (3)C6—Fe1—C8—C737.3 (2)
C6—Fe1—C9—C1038.1 (2)C2—Fe1—C8—C787.5 (2)
C2—Fe1—C9—C10170.3 (3)C9—Fe1—C8—C7118.6 (3)
C7—Fe1—C9—C1081.6 (2)C3—Fe1—C8—C7129.9 (2)
C3—Fe1—C9—C10155.8 (2)C4—Fe1—C8—C7168.9 (2)
C4—Fe1—C9—C10113.4 (2)C10—Fe1—C8—C781.3 (2)
C1—Fe1—C9—C8165.8 (6)C1—Fe1—C8—C9173.8 (3)
C5—Fe1—C9—C8166.8 (2)C5—Fe1—C8—C946.7 (7)
C6—Fe1—C9—C881.4 (2)C6—Fe1—C8—C981.3 (2)
C2—Fe1—C9—C850.7 (4)C2—Fe1—C8—C9154.0 (2)
C7—Fe1—C9—C837.9 (2)C7—Fe1—C8—C9118.6 (3)
C3—Fe1—C9—C884.7 (3)C3—Fe1—C8—C9111.5 (2)
C4—Fe1—C9—C8127.0 (2)C4—Fe1—C8—C972.6 (3)
C10—Fe1—C9—C8119.5 (3)C10—Fe1—C8—C937.3 (2)
C1—C5—C4—C30.7 (4)N1—C14—C19—O3173.3 (3)
Fe1—C5—C4—C358.9 (3)C15—C14—C19—O36.2 (5)
C1—C5—C4—Fe159.7 (2)C8—C7—C6—C100.7 (4)
C1—Fe1—C4—C381.8 (3)Fe1—C7—C6—C1059.9 (3)
C5—Fe1—C4—C3119.9 (3)C8—C7—C6—Fe159.1 (3)
C8—Fe1—C4—C369.6 (3)C9—C10—C6—C70.4 (4)
C6—Fe1—C4—C3174.1 (3)Fe1—C10—C6—C759.7 (3)
C2—Fe1—C4—C337.4 (2)C9—C10—C6—Fe159.3 (3)
C7—Fe1—C4—C340.3 (7)C1—Fe1—C6—C7111.3 (2)
C9—Fe1—C4—C3110.4 (2)C5—Fe1—C6—C7155.3 (2)
C10—Fe1—C4—C3152.8 (2)C8—Fe1—C6—C737.6 (2)
C1—Fe1—C4—C538.1 (2)C2—Fe1—C6—C768.8 (3)
C8—Fe1—C4—C5170.5 (2)C9—Fe1—C6—C781.8 (2)
C6—Fe1—C4—C554.3 (5)C3—Fe1—C6—C729.5 (8)
C2—Fe1—C4—C582.4 (2)C4—Fe1—C6—C7167.1 (3)
C7—Fe1—C4—C5160.1 (5)C10—Fe1—C6—C7119.6 (3)
C9—Fe1—C4—C5129.8 (2)C1—Fe1—C6—C10129.1 (2)
C3—Fe1—C4—C5119.9 (3)C5—Fe1—C6—C1085.1 (3)
C10—Fe1—C4—C587.3 (3)C8—Fe1—C6—C1082.0 (3)
C14—N1—C13—C172.3 (5)C2—Fe1—C6—C10171.6 (2)
C14—N1—C13—C12178.8 (3)C7—Fe1—C6—C10119.6 (3)
C13—N1—C14—C150.6 (5)C9—Fe1—C6—C1037.8 (2)
C13—N1—C14—C19178.8 (3)C3—Fe1—C6—C10149.1 (6)
N1—C13—C17—C162.8 (5)C4—Fe1—C6—C1047.5 (5)
C12—C13—C17—C16179.0 (4)C11—O2—C12—C1382.9 (4)
C8—C9—C10—C60.1 (4)N1—C13—C12—O2170.6 (3)
Fe1—C9—C10—C659.0 (3)C17—C13—C12—O213.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N1i0.99 (6)1.88 (7)2.827 (4)159 (6)
Symmetry code: (i) x3/2, y1/2, z+1/4.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H12NO3)]
Mr351.18
Crystal system, space groupTetragonal, P41212
Temperature (K)173
a, c (Å)7.5477 (3), 53.351 (4)
V3)3039.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.17 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13026, 2808, 2092
Rint0.072
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.083, 0.86
No. of reflections2808
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.57
Absolute structureFlack (1983), 1024 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 1999), SMART and SAINT (Bruker, 1999), SAINT (Bruker, 1999), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

A generous loan [gift?] of ruthenium chloride hydrate from the Johnson Matthey Technology Centre is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAuzias, M., Gueniat, J., Therrien, B., Süss-Fink, G., Renfrew, A. K. & Dyson, P. J. (2009). J. Organomet. Chem. 694, 855–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationAuzias, M., Therrien, B., Süss-Fink, G., Štěpnička, P., Ang, W. H. & Dyson, P. J. (2008). Inorg. Chem. 47, 578–583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHillard, E. A. & Jaouen, G. (2011). Organometallics, 30, 20–27.  Web of Science CrossRef CAS Google Scholar
First citationIzumi, T., Murakami, S. & Kasahara, A. (1988). Bull. Chem. Soc. Jpn, 61, 3565–3568.  CrossRef CAS Web of Science Google Scholar
First citationIzumi, T., Tezuka, T., Yusa, S. & Kasahara, A. (1984). Bull. Chem. Soc. Jpn, 57, 2435–2439.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds