inorganic compounds
Potassium pentaborate
aDepartment of Power Engineering, Xian Aeronautical College, Xian 710077, People's Republic of China
*Correspondence e-mail: 62010375@163.com
The title compound, K[B5O7(OH)2], was obtained from a hydrothermal reaction. The structure is composed of one K+ cation and a polyborate 1∞[B5O7(OH)2]− anion, which consists of two six-membered rings linked by a common BO4 tetrahedron. The [B5O7(OH)2]− units are linked together through two exocyclic O atoms to neighbouring units, forming a helical chain structure extending parallel to [010]. Adjacent chains are further connected into a three-dimensional structure by K—O bonds and weak O—H⋯O hydrogen-bond interactions.
Related literature
For the nonlinear optical properties of alkali metal borates, see: Mori et al. (1995). For syntheses and crystal structures in the K2O–B2O3–H2O system, see: Marezio (1969); Salentine (1987); Wang et al. (2006); Zhang et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811043807/fi2113sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811043807/fi2113Isup2.hkl
All reagents used in the synthesis were analytic grade and were used without further purification. A mixture of GaO(OH) (0.06 g), H3BO3(0.47 g), KNO3 (0.15 g) and distilled water (0.1 ml) was sealed in a Teflon-lined bomb and heated at 483 K for 3 d and then cooled to room temperature. The resulting colorless crystals were washed with hot deionized water and dried in a vacuum dryer to a constant mass at room temperature.
H atoms bonded to O10 and O12 atoms were positioned geometrically, and were refined riding with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).K[B5O7(OH)2] | F(000) = 472 |
Mr = 239.17 | Dx = 2.144 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6851 reflections |
a = 7.6690 (3) Å | θ = 3.0–30.5° |
b = 9.0445 (3) Å | µ = 0.74 mm−1 |
c = 12.2304 (4) Å | T = 100 K |
β = 119.132 (2)° | Rod, colourless |
V = 741.01 (5) Å3 | 0.14 × 0.09 × 0.07 mm |
Z = 4 |
Bruker APEXII diffractometer | 1452 independent reflections |
Radiation source: fine-focus sealed tube | 1343 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 83.33 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ϕ and ω scans | h = −9→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | k = −11→11 |
Tmin = 0.878, Tmax = 0.910 | l = −15→15 |
13002 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.026P)2 + 1.7263P] where P = (Fo2 + 2Fc2)/3 |
1452 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.87 e Å−3 |
K[B5O7(OH)2] | V = 741.01 (5) Å3 |
Mr = 239.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.6690 (3) Å | µ = 0.74 mm−1 |
b = 9.0445 (3) Å | T = 100 K |
c = 12.2304 (4) Å | 0.14 × 0.09 × 0.07 mm |
β = 119.132 (2)° |
Bruker APEXII diffractometer | 1452 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 1343 reflections with I > 2σ(I) |
Tmin = 0.878, Tmax = 0.910 | Rint = 0.027 |
13002 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.77 e Å−3 |
1452 reflections | Δρmin = −0.87 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O4 | −0.2494 (2) | −0.13046 (15) | −0.14778 (13) | 0.0093 (3) | |
O5 | −0.0757 (2) | −0.32468 (15) | −0.19460 (13) | 0.0095 (3) | |
O6 | 0.0327 (2) | −0.25360 (15) | 0.01760 (12) | 0.0096 (3) | |
O7 | −0.4011 (2) | −0.14669 (15) | −0.50951 (12) | 0.0097 (3) | |
O8 | 0.1858 (2) | −0.45303 (15) | −0.01975 (13) | 0.0091 (3) | |
O9 | −0.4141 (2) | −0.26660 (15) | −0.33902 (12) | 0.0095 (3) | |
O10 | −0.6325 (2) | −0.33377 (16) | −0.55281 (13) | 0.0111 (3) | |
H10A | −0.7360 | −0.3223 | −0.5465 | 0.017* | |
O11 | −0.1489 (2) | −0.08947 (15) | −0.30142 (13) | 0.0101 (3) | |
O12 | −0.1416 (2) | −0.06260 (16) | 0.05911 (13) | 0.0108 (3) | |
H12A | −0.0286 | −0.0380 | 0.1172 | 0.016* | |
B1 | 0.0458 (3) | −0.3419 (2) | −0.0712 (2) | 0.0088 (4) | |
B2 | −0.1192 (3) | −0.1489 (2) | −0.0252 (2) | 0.0094 (4) | |
B3 | −0.4815 (3) | −0.2516 (2) | −0.4635 (2) | 0.0095 (4) | |
B4 | −0.2217 (3) | −0.2019 (2) | −0.2457 (2) | 0.0093 (4) | |
B5 | 0.2421 (3) | −0.5629 (2) | −0.0753 (2) | 0.0091 (4) | |
K1 | 0.34799 (7) | −0.07665 (5) | −0.26481 (4) | 0.01448 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0097 (7) | 0.0089 (7) | 0.0088 (7) | 0.0014 (5) | 0.0040 (6) | 0.0006 (5) |
O5 | 0.0104 (7) | 0.0097 (7) | 0.0085 (7) | 0.0015 (5) | 0.0047 (6) | 0.0002 (5) |
O6 | 0.0104 (7) | 0.0098 (7) | 0.0080 (7) | 0.0016 (5) | 0.0041 (6) | −0.0002 (5) |
O7 | 0.0109 (7) | 0.0097 (7) | 0.0080 (6) | −0.0017 (6) | 0.0040 (6) | −0.0001 (5) |
O8 | 0.0102 (7) | 0.0092 (7) | 0.0077 (6) | 0.0014 (5) | 0.0043 (6) | 0.0001 (5) |
O9 | 0.0093 (7) | 0.0100 (7) | 0.0089 (7) | −0.0010 (5) | 0.0041 (6) | 0.0008 (5) |
O10 | 0.0096 (7) | 0.0126 (7) | 0.0112 (7) | −0.0027 (6) | 0.0051 (6) | −0.0009 (6) |
O11 | 0.0092 (7) | 0.0112 (7) | 0.0085 (7) | −0.0021 (5) | 0.0032 (6) | 0.0009 (5) |
O12 | 0.0098 (7) | 0.0115 (7) | 0.0095 (7) | 0.0018 (5) | 0.0035 (6) | −0.0015 (5) |
B1 | 0.0095 (10) | 0.0070 (10) | 0.0105 (10) | −0.0015 (8) | 0.0052 (9) | −0.0004 (8) |
B2 | 0.0101 (10) | 0.0073 (10) | 0.0124 (11) | −0.0014 (8) | 0.0067 (9) | 0.0003 (8) |
B3 | 0.0097 (10) | 0.0074 (10) | 0.0118 (11) | 0.0016 (8) | 0.0054 (9) | −0.0003 (8) |
B4 | 0.0098 (10) | 0.0083 (10) | 0.0092 (10) | 0.0000 (8) | 0.0043 (9) | 0.0005 (8) |
B5 | 0.0100 (10) | 0.0082 (10) | 0.0111 (10) | −0.0005 (8) | 0.0067 (9) | 0.0000 (8) |
K1 | 0.0143 (2) | 0.0188 (3) | 0.0091 (2) | 0.00475 (18) | 0.00474 (18) | 0.00124 (17) |
O4—B2 | 1.347 (3) | O9—B3 | 1.356 (3) |
O4—B4 | 1.464 (3) | O9—B4 | 1.477 (3) |
O5—B1 | 1.342 (3) | O10—B3 | 1.362 (3) |
O5—B4 | 1.482 (3) | O10—H10A | 0.8400 |
O6—B1 | 1.391 (3) | O11—B5i | 1.339 (3) |
O6—B2 | 1.391 (3) | O11—B4 | 1.477 (3) |
O7—B5i | 1.381 (3) | O12—B2 | 1.369 (3) |
O7—B3 | 1.391 (3) | O12—H12A | 0.8400 |
O8—B1 | 1.379 (3) | B5—O11ii | 1.339 (3) |
O8—B5 | 1.386 (3) | B5—O7ii | 1.381 (3) |
B2—O4—B4 | 122.10 (16) | O12—B2—O6 | 119.56 (18) |
B1—O5—B4 | 121.96 (16) | O9—B3—O10 | 123.79 (19) |
B1—O6—B2 | 117.54 (16) | O9—B3—O7 | 121.38 (18) |
B5i—O7—B3 | 118.31 (16) | O10—B3—O7 | 114.82 (17) |
B1—O8—B5 | 131.13 (17) | O4—B4—O11 | 108.14 (16) |
B3—O9—B4 | 121.29 (16) | O4—B4—O9 | 108.59 (16) |
B3—O10—H10A | 109.4 | O11—B4—O9 | 112.07 (16) |
B5i—O11—B4 | 121.94 (16) | O4—B4—O5 | 111.51 (16) |
B2—O12—H12A | 109.4 | O11—B4—O5 | 109.41 (16) |
O5—B1—O8 | 123.92 (19) | O9—B4—O5 | 107.14 (16) |
O5—B1—O6 | 122.50 (18) | O11ii—B5—O7ii | 122.64 (18) |
O8—B1—O6 | 113.46 (17) | O11ii—B5—O8 | 123.92 (19) |
O4—B2—O12 | 118.11 (18) | O7ii—B5—O8 | 113.41 (18) |
O4—B2—O6 | 122.32 (18) | ||
B4—O5—B1—O8 | −178.99 (18) | B2—O4—B4—O11 | −103.7 (2) |
B4—O5—B1—O6 | 5.3 (3) | B2—O4—B4—O9 | 134.42 (18) |
B5—O8—B1—O5 | 3.4 (3) | B2—O4—B4—O5 | 16.6 (3) |
B5—O8—B1—O6 | 179.45 (18) | B5i—O11—B4—O4 | −125.34 (19) |
B2—O6—B1—O5 | 3.0 (3) | B5i—O11—B4—O9 | −5.7 (3) |
B2—O6—B1—O8 | −173.13 (17) | B5i—O11—B4—O5 | 113.01 (19) |
B4—O4—B2—O12 | 171.24 (17) | B3—O9—B4—O4 | 135.83 (18) |
B4—O4—B2—O6 | −10.0 (3) | B3—O9—B4—O11 | 16.4 (3) |
B1—O6—B2—O4 | −0.7 (3) | B3—O9—B4—O5 | −103.6 (2) |
B1—O6—B2—O12 | 178.03 (17) | B1—O5—B4—O4 | −14.3 (3) |
B4—O9—B3—O10 | 165.13 (18) | B1—O5—B4—O11 | 105.3 (2) |
B4—O9—B3—O7 | −16.1 (3) | B1—O5—B4—O9 | −132.97 (18) |
B5i—O7—B3—O9 | 3.6 (3) | B1—O8—B5—O11ii | −6.9 (3) |
B5i—O7—B3—O10 | −177.49 (17) | B1—O8—B5—O7ii | 175.04 (18) |
Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, y−1/2, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10A···O6iii | 0.84 | 2.36 | 3.179 (2) | 164 |
O12—H12A···O11iv | 0.84 | 2.30 | 3.0346 (19) | 147 |
O12—H12A···O4iv | 0.84 | 2.50 | 3.170 (2) | 138 |
Symmetry codes: (iii) x−1, −y−1/2, z−1/2; (iv) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | K[B5O7(OH)2] |
Mr | 239.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.6690 (3), 9.0445 (3), 12.2304 (4) |
β (°) | 119.132 (2) |
V (Å3) | 741.01 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.14 × 0.09 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.878, 0.910 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13002, 1452, 1343 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.072, 1.00 |
No. of reflections | 1452 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.77, −0.87 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10A···O6i | 0.84 | 2.36 | 3.179 (2) | 164 |
O12—H12A···O11ii | 0.84 | 2.30 | 3.0346 (19) | 147 |
O12—H12A···O4ii | 0.84 | 2.50 | 3.170 (2) | 138 |
Symmetry codes: (i) x−1, −y−1/2, z−1/2; (ii) −x, −y, −z. |
Acknowledgements
The author thanks the National Natural Science Foundation of China (grant No. 20871078) for supporting this study.
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Marezio, M. (1969). Acta Cryst. B25, 1787–1795. CrossRef CAS IUCr Journals Web of Science Google Scholar
Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. (1995). Jpn J. Appl. Phys. 34, 296–298. CrossRef Web of Science Google Scholar
Salentine, C. G. (1987). Inorg. Chem. 26, 128–132. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, G. M., Sun, Y. Q., Zheng, S. T. & Yang, G. Y. (2006). Z. Anorg. Allg. Chem. 632, 1586–1590. Web of Science CrossRef CAS Google Scholar
Zhang, H. X., Zhang, J., Zheng, S. T. & Yang, G. Y. (2005). Cryst. Growth Des. 5, 157–161. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Boron can form a large variety of compounds due to the variability of the coordination environment about B. In the past several decades, much interest has focused on studies of alkali metals borates because some of these compounds show interesting physical properties, such as nonlinear optical behavior for CsLiB6O10 (Mori et al., 1995). So far, several phases had been obtained in the K2O–B2O3–H2O system (Marezio, 1969; Salentine, 1987; Zhang et al., 2005; Wang et al., 2006). In this paper, we describe the synthesis and the crystal structure of a new potassium borate, K[B5O7(OH)2].
It features one K+ cation and a 1∞[B5O7(OH)2]- polyborate anion (Fig.1), which is closely related to the reported compound of K[B5O7(OH)2].H2O (Zhang et al., 2005).
The 1∞[B5O7(OH)2]- ion consists of two six-membered rings linked by a common B atom. Each six-membered ring consists of one BO3 triangle, one BO2(OH) triangle and a common BO4 tetrahedron. The [B5O7(OH)2]- units are linked via two exocyclic O atoms (O8 and O8A) to neighboring units, forming a 1-D helical chainlike structure (Fig. 2). Adjacent chains are further connected into a 3-D structure by K—O bonds and O—H···O hydrogen bonds interactions, as shown in Fig.3.