organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl­ethane-1,2-diaminium bis­­(3-hy­dr­oxy­benzoate)

aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
*Correspondence e-mail: ignacy.cukrowski@up.ac.za

(Received 27 May 2011; accepted 3 October 2011; online 8 October 2011)

In the title compound, C4H14N22+·2C7H5O3, both the N,N-dimethyl­ethylenediamine N atoms are protonated and two 3-hy­droxy­benzoate anions act as counter-ions. In the crystal, anions and cations are linked by a network of N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For bond lengths in fully protonated polyamines, see: Bujak & Angel (2006[Bujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]); Bujak & Zaleski (2002[Bujak, M. & Zaleski, J. (2002). Main Group Met. Chem. 25, 571-573.]); Doran et al. (2003[Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Inorg. Chem. 42, 6989-6991.]); Thorn et al. (2005[Thorn, K. J., Narducci Sarjeant, A. & Norquist, A. J. (2005). Acta Cryst. E61, m1665-m1667.]); Zhang et al. (2007[Zhang, M., Sheng, L. T., Huang, X. E., Fu, R. B., Wang, X., Hu, S. M., Xiang, S. C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606-1612.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·2C7H5O3

  • Mr = 364.39

  • Monoclinic, C c

  • a = 14.5439 (3) Å

  • b = 17.5881 (4) Å

  • c = 7.7104 (2) Å

  • β = 114.777 (1)°

  • V = 1790.76 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.49 × 0.12 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2001[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.997

  • 14114 measured reflections

  • 4292 independent reflections

  • 3635 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.077

  • S = 0.96

  • 4292 reflections

  • 240 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2119 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H8C⋯O5i 0.89 1.94 2.7169 (18) 145
N7—H9A⋯O1ii 0.89 2.12 2.8904 (18) 145
N7—H19B⋯O1iii 0.89 1.90 2.7657 (19) 164
N10—H1⋯O4iv 0.91 1.84 2.7367 (17) 168
O3—H3⋯O4iv 0.82 1.84 2.6415 (16) 164
O6—H6⋯O2v 0.82 1.80 2.5897 (16) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N,N–Dimethylethane-1,2-diaminium bis 3-hydroxybenzoate [H2DM-en + 2(3HO-BA)] crystallizes in the centrosymmetric space group Cc. The molecular structure with the atom numbering scheme is shown in Figure 1. The all N–H bonds in H2DM-en (they are on average close to 0.9 Å) are shorter by about 0.1 Å when compared with those in other fully protonated polyamines (Thorn et al., 2005; Doran et al., 2003) but comparable with (Zhang et al., 2007; Bujak et al., 2002). At the same time, the three N—H bonds on N7 (primary N-atom) are equal in length (0.89 Å) and they are shorter by 0.02 Å than the N—H bond on tertiary N-atom (N10). In this crystal the polyammonium ion adopts an extended, all anti-conformation that minimizes electrostatic repulsions between protonated nitrogen atoms. There is a self-assembly pattern in the crystal through intermolecular noncovalent interactions (the hydrogen bonds of a type N—H···O and O—H···O). The O-atoms are known to participate as donors in intramolecular as well as intermolecular hydrogen-bonding interactions to provide various types of self-assembled networks. As an example, the O4-atom of the carboxylate group forms two intermolecular H-bonds, one with the diamine, N10—H1···O4, and another with hydroxy group of the benzoic acid, O3—H3···O4; both H-bonds are about 1.84 Å. The other O-atom of the carboxylic group is involved in only one intramolecular H-bond, namely N7—H19B···O5 involving terminal N-atom. In general, all O-atoms and H-atoms bonded to the N-atoms are involved in intramolecular interactions.

Related literature top

For bond lengths in fully protonated polyamines, see: Bujak & Angel (2006); Bujak & Zaleski (2002); Doran et al. (2003); Thorn et al. (2005); Zhang et al. (2007).

Experimental top

DM-en (0.83 ml, 8.97M) was mixed with 3-Hydroxy Benzoic acid (1 g m, 7.24 mmol) in water (1 ml). Colourless crystals obtained after 15 days of slow evaporation.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å, and with Uiso(H) = 1.2Ueq(N,O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of N,N–dimethylethane-1,2-diaminium bis 3-hydroxybenzoate with atom labels and 50% probabilty ellipsoids.
[Figure 2] Fig. 2. The H– bonded packing of N,N–dimethylethane-1,2-diaminium bis 3-hydroxybenzoate.
N,N-Dimethylethane-1,2-diaminium bis(3-hydroxybenzoate) top
Crystal data top
C4H14N22+·2C7H5O3F(000) = 776
Mr = 364.39Dx = 1.352 Mg m3
Dm = 1.352 Mg m3
Dm measured by not measured
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 4375 reflections
a = 14.5439 (3) Åθ = 2.3–27.2°
b = 17.5881 (4) ŵ = 0.10 mm1
c = 7.7104 (2) ÅT = 293 K
β = 114.777 (1)°Needle, colourless
V = 1790.76 (7) Å30.49 × 0.12 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4292 independent reflections
Radiation source: fine-focus sealed tube3635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 1919
Tmin = 0.952, Tmax = 0.997k = 2323
14114 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
4292 reflectionsΔρmax = 0.18 e Å3
240 parametersΔρmin = 0.20 e Å3
2 restraintsAbsolute structure: Flack (1983), 2119 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C4H14N22+·2C7H5O3V = 1790.76 (7) Å3
Mr = 364.39Z = 4
Monoclinic, CcMo Kα radiation
a = 14.5439 (3) ŵ = 0.10 mm1
b = 17.5881 (4) ÅT = 293 K
c = 7.7104 (2) Å0.49 × 0.12 × 0.03 mm
β = 114.777 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4292 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
3635 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.997Rint = 0.048
14114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.18 e Å3
S = 0.96Δρmin = 0.20 e Å3
4292 reflectionsAbsolute structure: Flack (1983), 2119 Friedel pairs
240 parametersAbsolute structure parameter: 0.00 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.04233 (9)0.58513 (7)0.31587 (16)0.0236 (3)
H60.08770.60240.34100.035*
O40.24002 (8)0.70635 (7)1.07125 (16)0.0235 (3)
N70.41688 (11)0.92211 (8)0.40647 (19)0.0192 (3)
H9A0.40780.95180.49140.029*
H19B0.39100.94460.29260.029*
H8C0.48280.91420.44270.029*
N100.19982 (10)0.78889 (8)0.3324 (2)0.0202 (3)
H10.20570.76530.23250.024*
C70.05796 (12)0.62591 (9)0.6407 (2)0.0174 (3)
H0050.00230.64930.64790.021*
C10.25729 (12)0.86195 (9)0.3681 (2)0.0189 (3)
H3A0.25780.88600.48170.023*
H2B0.22380.89610.26110.023*
O50.08907 (9)0.66203 (7)1.02369 (18)0.0284 (3)
C60.04672 (12)0.58805 (9)0.4740 (2)0.0177 (3)
C80.15193 (12)0.62880 (8)0.7962 (2)0.0170 (3)
C40.36527 (12)0.84847 (9)0.3943 (3)0.0225 (4)
H6A0.40140.81950.51020.027*
H5B0.36520.81930.28750.027*
C190.16091 (12)0.66816 (9)0.9766 (2)0.0186 (3)
C90.23557 (12)0.59331 (9)0.7864 (2)0.0190 (3)
H0120.29890.59610.88880.023*
C100.22300 (13)0.55372 (9)0.6214 (2)0.0215 (4)
H0130.27800.52870.61550.026*
C50.12971 (12)0.55123 (9)0.4663 (2)0.0206 (4)
H0140.12240.52490.35660.025*
C150.09028 (13)0.80408 (11)0.2764 (3)0.0297 (4)
H18C0.08230.83180.37660.044*
H16D0.05440.75670.25570.044*
H17E0.06360.83360.16100.044*
C110.24122 (15)0.73670 (10)0.4997 (3)0.0305 (4)
H13F0.24560.76300.61190.046*
H14G0.30750.71990.51800.046*
H12H0.19730.69350.47700.046*
O10.80917 (9)0.53105 (7)0.53286 (16)0.0231 (3)
O20.78810 (9)0.62504 (7)0.32384 (18)0.0267 (3)
O30.43039 (9)0.70905 (7)0.11670 (19)0.0272 (3)
H30.36970.70250.08570.041*
C230.60027 (13)0.52862 (10)0.4403 (2)0.0229 (4)
H0200.63880.48810.51110.027*
C260.75606 (12)0.57987 (9)0.4128 (2)0.0192 (3)
C250.58608 (13)0.64466 (10)0.2662 (2)0.0199 (4)
H0220.61580.68240.22220.024*
C240.64459 (12)0.58440 (9)0.3717 (2)0.0184 (3)
C220.49872 (13)0.53375 (10)0.4027 (3)0.0256 (4)
H0240.46940.49660.44930.031*
C200.48344 (12)0.64932 (9)0.2253 (2)0.0204 (4)
C210.43992 (13)0.59385 (10)0.2960 (2)0.0235 (4)
H0260.37180.59690.27190.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0184 (6)0.0337 (7)0.0185 (6)0.0004 (5)0.0076 (5)0.0060 (5)
O40.0171 (6)0.0275 (7)0.0248 (7)0.0043 (5)0.0078 (5)0.0107 (5)
N70.0191 (7)0.0217 (7)0.0169 (7)0.0024 (6)0.0077 (6)0.0010 (5)
N100.0213 (7)0.0201 (7)0.0199 (7)0.0032 (6)0.0094 (6)0.0044 (6)
C70.0177 (8)0.0160 (8)0.0207 (8)0.0001 (6)0.0103 (7)0.0004 (7)
C10.0221 (8)0.0167 (8)0.0165 (8)0.0013 (7)0.0068 (7)0.0007 (7)
O50.0234 (6)0.0402 (8)0.0262 (7)0.0092 (6)0.0149 (6)0.0120 (6)
C60.0193 (8)0.0163 (8)0.0177 (8)0.0025 (6)0.0081 (7)0.0016 (6)
C80.0204 (8)0.0130 (8)0.0193 (8)0.0026 (6)0.0099 (7)0.0002 (6)
C40.0220 (9)0.0171 (9)0.0286 (10)0.0005 (7)0.0107 (8)0.0008 (7)
C190.0180 (8)0.0188 (8)0.0168 (8)0.0033 (7)0.0051 (7)0.0010 (7)
C90.0161 (8)0.0180 (8)0.0199 (8)0.0001 (6)0.0047 (7)0.0008 (7)
C100.0202 (8)0.0196 (8)0.0262 (10)0.0041 (7)0.0112 (7)0.0001 (7)
C50.0248 (9)0.0166 (8)0.0224 (9)0.0012 (7)0.0118 (8)0.0039 (7)
C150.0216 (9)0.0359 (11)0.0332 (11)0.0053 (8)0.0132 (9)0.0075 (9)
C110.0375 (11)0.0220 (9)0.0344 (11)0.0023 (8)0.0173 (10)0.0045 (8)
O10.0219 (6)0.0241 (6)0.0191 (6)0.0058 (5)0.0046 (5)0.0003 (5)
O20.0213 (6)0.0294 (7)0.0322 (7)0.0044 (5)0.0139 (6)0.0091 (6)
O30.0149 (6)0.0242 (6)0.0393 (8)0.0024 (5)0.0081 (6)0.0063 (6)
C230.0261 (9)0.0210 (9)0.0197 (9)0.0017 (7)0.0078 (7)0.0026 (7)
C260.0190 (8)0.0213 (9)0.0151 (8)0.0007 (7)0.0050 (7)0.0051 (7)
C250.0202 (8)0.0216 (8)0.0198 (9)0.0031 (7)0.0103 (7)0.0013 (7)
C240.0197 (8)0.0196 (8)0.0143 (8)0.0009 (6)0.0057 (7)0.0034 (6)
C220.0271 (9)0.0246 (9)0.0271 (10)0.0066 (8)0.0134 (8)0.0003 (8)
C200.0194 (8)0.0203 (9)0.0187 (9)0.0000 (7)0.0053 (7)0.0034 (7)
C210.0174 (8)0.0286 (9)0.0240 (10)0.0042 (7)0.0083 (7)0.0043 (7)
Geometric parameters (Å, º) top
O6—C61.358 (2)C10—C51.383 (2)
O6—H60.8200C10—H0130.9300
O4—C191.2664 (19)C5—H0140.9300
N7—C41.480 (2)C15—H18C0.9600
N7—H9A0.8900C15—H16D0.9600
N7—H19B0.8900C15—H17E0.9600
N7—H8C0.8900C11—H13F0.9600
N10—C111.489 (2)C11—H14G0.9600
N10—C151.490 (2)C11—H12H0.9600
N10—C11.494 (2)O1—C261.262 (2)
N10—H10.9100O2—C261.260 (2)
C7—C81.391 (2)O3—C201.363 (2)
C7—C61.395 (2)O3—H30.8200
C7—H0050.9300C23—C221.384 (2)
C1—C41.516 (2)C23—C241.394 (2)
C1—H3A0.9700C23—H0200.9300
C1—H2B0.9700C26—C241.518 (2)
O5—C191.246 (2)C25—C241.389 (2)
C6—C51.393 (2)C25—C201.393 (2)
C8—C91.397 (2)C25—H0220.9300
C8—C191.510 (2)C22—C211.391 (2)
C4—H6A0.9700C22—H0240.9300
C4—H5B0.9700C20—C211.392 (2)
C9—C101.393 (2)C21—H0260.9300
C9—H0120.9300
C6—O6—H6109.5C5—C10—C9120.73 (15)
C4—N7—H9A109.5C5—C10—H013119.6
C4—N7—H19B109.5C9—C10—H013119.6
H9A—N7—H19B109.5C10—C5—C6120.13 (15)
C4—N7—H8C109.5C10—C5—H014119.9
H9A—N7—H8C109.5C6—C5—H014119.9
H19B—N7—H8C109.5N10—C15—H18C109.5
C11—N10—C15110.88 (14)N10—C15—H16D109.5
C11—N10—C1112.24 (13)H18C—C15—H16D109.5
C15—N10—C1110.30 (13)N10—C15—H17E109.5
C11—N10—H1107.7H18C—C15—H17E109.5
C15—N10—H1107.7H16D—C15—H17E109.5
C1—N10—H1107.7N10—C11—H13F109.5
C8—C7—C6120.34 (15)N10—C11—H14G109.5
C8—C7—H005119.8H13F—C11—H14G109.5
C6—C7—H005119.8N10—C11—H12H109.5
N10—C1—C4111.00 (13)H13F—C11—H12H109.5
N10—C1—H3A109.4H14G—C11—H12H109.5
C4—C1—H3A109.4C20—O3—H3109.5
N10—C1—H2B109.4C22—C23—C24119.82 (17)
C4—C1—H2B109.4C22—C23—H020120.1
H3A—C1—H2B108.0C24—C23—H020120.1
O6—C6—C5117.48 (15)O2—C26—O1125.20 (15)
O6—C6—C7123.03 (14)O2—C26—C24117.38 (15)
C5—C6—C7119.49 (15)O1—C26—C24117.43 (15)
C7—C8—C9120.00 (15)C24—C25—C20120.85 (16)
C7—C8—C19119.04 (14)C24—C25—H022119.6
C9—C8—C19120.92 (15)C20—C25—H022119.6
N7—C4—C1109.95 (13)C25—C24—C23119.48 (15)
N7—C4—H6A109.7C25—C24—C26120.04 (15)
C1—C4—H6A109.7C23—C24—C26120.47 (15)
N7—C4—H5B109.7C23—C22—C21120.72 (16)
C1—C4—H5B109.7C23—C22—H024119.6
H6A—C4—H5B108.2C21—C22—H024119.6
O5—C19—O4123.25 (15)O3—C20—C21123.19 (15)
O5—C19—C8118.00 (14)O3—C20—C25117.46 (15)
O4—C19—C8118.74 (14)C21—C20—C25119.35 (16)
C10—C9—C8119.26 (16)C22—C21—C20119.76 (16)
C10—C9—H012120.4C22—C21—H026120.1
C8—C9—H012120.4C20—C21—H026120.1
C11—N10—C1—C464.80 (17)C7—C6—C5—C101.4 (2)
C15—N10—C1—C4171.02 (14)C20—C25—C24—C231.1 (2)
C8—C7—C6—O6178.08 (14)C20—C25—C24—C26179.29 (15)
C8—C7—C6—C51.8 (2)C22—C23—C24—C250.0 (3)
C6—C7—C8—C90.4 (2)C22—C23—C24—C26179.60 (15)
C6—C7—C8—C19178.15 (13)O2—C26—C24—C2510.9 (2)
N10—C1—C4—N7173.31 (13)O1—C26—C24—C25169.32 (15)
C7—C8—C19—O536.5 (2)O2—C26—C24—C23169.52 (15)
C9—C8—C19—O5141.30 (16)O1—C26—C24—C2310.3 (2)
C7—C8—C19—O4142.72 (15)C24—C23—C22—C210.4 (3)
C9—C8—C19—O439.5 (2)C24—C25—C20—O3178.29 (15)
C7—C8—C9—C101.5 (2)C24—C25—C20—C211.8 (2)
C19—C8—C9—C10176.23 (14)C23—C22—C21—C200.3 (3)
C8—C9—C10—C51.9 (2)O3—C20—C21—C22178.71 (16)
C9—C10—C5—C60.4 (3)C25—C20—C21—C221.3 (3)
O6—C6—C5—C10178.49 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H8C···O5i0.891.942.7169 (18)145
N7—H9A···O1ii0.892.122.8904 (18)145
N7—H19B···O1iii0.891.902.7657 (19)164
N10—H1···O4iv0.911.842.7367 (17)168
O3—H3···O4iv0.821.842.6415 (16)164
O6—H6···O2v0.821.802.5897 (16)161
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+3/2, z1/2; (iv) x, y, z1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H14N22+·2C7H5O3
Mr364.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)14.5439 (3), 17.5881 (4), 7.7104 (2)
β (°) 114.777 (1)
V3)1790.76 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.12 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.952, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
14114, 4292, 3635
Rint0.048
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.077, 0.96
No. of reflections4292
No. of parameters240
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 2119 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H8C···O5i0.891.942.7169 (18)145
N7—H9A···O1ii0.892.122.8904 (18)145
N7—H19B···O1iii0.891.902.7657 (19)164
N10—H1···O4iv0.911.842.7367 (17)168
O3—H3···O4iv0.821.842.6415 (16)164.0
O6—H6···O2v0.821.802.5897 (16)161.0
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+3/2, z1/2; (iv) x, y, z1; (v) x1, y, z.
 

Acknowledgements

The authors thank the University of Pretoria for financial support and research facilities. The XRD facilities of the University of Witwatersrand, South Africa are gratefully acknowledged.

References

First citationBruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBujak, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBujak, M. & Zaleski, J. (2002). Main Group Met. Chem. 25, 571–573.  CAS Google Scholar
First citationDoran, M. B., Norquist, A. J. & O'Hare, D. (2003). Inorg. Chem. 42, 6989–6991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorn, K. J., Narducci Sarjeant, A. & Norquist, A. J. (2005). Acta Cryst. E61, m1665–m1667.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, M., Sheng, L. T., Huang, X. E., Fu, R. B., Wang, X., Hu, S. M., Xiang, S. C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds