organic compounds
Phenyl 4,6-di-O-acetyl-2,3-dideoxy-1-thio-α-D-erythro-hex-2-enopyranoside
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za
The pyranosyl ring in the title compound, C16H18O5S, adopts an with the acetyl groups in equatorial positions. In the crystal, weak C—H⋯O interactions link the molecules into chains.
Related literature
For details of the Ferrier arrangement, see: Ferrier & Prasad (1969). For the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For applications of pseudoglycals, see: Domon et al. (2005); Danishefsky & Bilodeau (1996); Griffith & Danishefsky (1991); Halcomb et al. (1995); Bracherro et al. (1998); Dorgan & Jackson (1996); Chambers et al. (2005); Minuth & Boysen (2009). For background to the synthetic methodology of see: Kinfe et al. (2011). For the preparation of the acid catalyst NaHSO4-SiO2, see: Breton (1997). For ring puckering analysis see, Cremer & Pople (1975). For a description of the Csambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811040165/fj2451sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040165/fj2451Isup2.hkl
To a solution of a tri-O-acetyl-D-glucal (100 mg, 0.36 mmol) in CH3CN (1 ml) NaHSO4-SiO2 (2.5 mg, 3.0 mmol NaHSO4/g) was added (see Breton, 1997). The resulting mixture was stirred at 80 °C for 5 min. After adding silica gel to the reaction mixture at room temperature, the solvent was evaporated in vacuo without heating until a free-flowing solid was obtained. The resulting solid was column chromatographed using 1:9 ethyl acetate:hexane α:β (4:1) mixture of 2,3-unsaturated in 96% yield as a white solid (see Kinfe et al., 2011). Recrystalization from a mixture of DCM and hexane afforded the title thioglycoside I in 60% yield as white crystals. Analytical data: 1H NMR (CDCl3, 300 MHz): δ 7.51 (d, J = 7.2 Hz, 2H), 7.29–7.17 (m, 3H), 6.03 (d, J = 10.2 Hz, 1H), 5.83 (d, J = 10.8 Hz, 1H), 5.73 (s, 1H), 5.35 (d, J = 9.6 Hz, 1H), 4.60–4.13 (m, 3H), 2.07 (s, 3H), 2.03 (s, 3H); 13C NMR (CDCl3, 75 MHz): δ 170.7, 170.2, 134.7, 131.7, 128.9, 128.5, 127.6, 83.6, 67.2, 65.0, 63.0, 20.9, 20.7.
to affordAll hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The D
refined to a final of 0.04 (4). The highest residual electron density of 0.31 e.Å-3 is 0.88 Å from S1 representing no physical meaning.Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H18O5S | F(000) = 340 |
Mr = 322.36 | Dx = 1.37 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 7987 reflections |
a = 5.2330 (4) Å | θ = 3.0–28.3° |
b = 13.470 (1) Å | µ = 0.23 mm−1 |
c = 11.1760 (9) Å | T = 100 K |
β = 97.291 (2)° | Prism, colourless |
V = 781.41 (10) Å3 | 0.42 × 0.37 × 0.27 mm |
Z = 2 |
Bruker APEXII DUO 4K KappaCCD diffractometer | 3839 independent reflections |
Graphite monochromator | 3771 reflections with I > 2σ(I) |
Detector resolution: 8.4 pixels mm-1 | Rint = 0.020 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.910, Tmax = 0.941 | k = −17→17 |
10609 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0965P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3839 reflections | Δρmax = 0.31 e Å−3 |
201 parameters | Δρmin = −0.20 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1824 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (4) |
C16H18O5S | V = 781.41 (10) Å3 |
Mr = 322.36 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.2330 (4) Å | µ = 0.23 mm−1 |
b = 13.470 (1) Å | T = 100 K |
c = 11.1760 (9) Å | 0.42 × 0.37 × 0.27 mm |
β = 97.291 (2)° |
Bruker APEXII DUO 4K KappaCCD diffractometer | 3839 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3771 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 0.941 | Rint = 0.020 |
10609 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.066 | Δρmax = 0.31 e Å−3 |
S = 1.06 | Δρmin = −0.20 e Å−3 |
3839 reflections | Absolute structure: Flack (1983), 1824 Friedel pairs |
201 parameters | Absolute structure parameter: 0.04 (4) |
1 restraint |
Experimental. The intensity data was collected on a Bruker APEX Duo 4 K KappaCCD diffractometer using an exposure time of 10 s/frame. A total of 1490 frames were collected with a frame width of 0.5° covering up to θ = 28.36° with 99.8% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.97008 (5) | 0.73210 (2) | 0.55390 (2) | 0.01758 (7) | |
O1 | 1.10976 (16) | 0.64668 (6) | 0.77149 (7) | 0.01499 (16) | |
O2 | 0.67619 (16) | 0.67526 (6) | 0.89081 (8) | 0.01858 (18) | |
O3 | 0.43919 (18) | 0.61581 (8) | 1.02918 (8) | 0.0242 (2) | |
O4 | 0.82603 (16) | 0.40209 (6) | 0.72849 (8) | 0.01964 (18) | |
O5 | 1.07925 (17) | 0.28011 (7) | 0.81406 (9) | 0.02305 (19) | |
C1 | 1.1974 (2) | 0.65826 (9) | 0.65814 (10) | 0.0151 (2) | |
H1 | 1.3636 | 0.6957 | 0.6713 | 0.018* | |
C2 | 1.2504 (2) | 0.56087 (10) | 0.60152 (11) | 0.0181 (2) | |
H2 | 1.3308 | 0.5601 | 0.5299 | 0.022* | |
C3 | 1.1873 (2) | 0.47589 (9) | 0.64935 (12) | 0.0193 (2) | |
H3 | 1.2388 | 0.4154 | 0.6158 | 0.023* | |
C4 | 1.0364 (2) | 0.47220 (9) | 0.75525 (12) | 0.0167 (2) | |
H4 | 1.1499 | 0.4524 | 0.8302 | 0.02* | |
C5 | 0.9137 (2) | 0.57276 (9) | 0.77150 (10) | 0.0153 (2) | |
H5 | 0.7744 | 0.5852 | 0.7033 | 0.018* | |
C6 | 1.0169 (2) | 0.84785 (9) | 0.63084 (11) | 0.0169 (2) | |
C7 | 1.2088 (3) | 0.91243 (10) | 0.60335 (13) | 0.0234 (3) | |
H7 | 1.313 | 0.8954 | 0.5427 | 0.028* | |
C8 | 1.2472 (3) | 1.00164 (11) | 0.66480 (14) | 0.0282 (3) | |
H8 | 1.3785 | 1.0457 | 0.6463 | 0.034* | |
C9 | 1.0957 (3) | 1.02695 (10) | 0.75292 (14) | 0.0264 (3) | |
H9 | 1.123 | 1.0882 | 0.7948 | 0.032* | |
C10 | 0.9041 (3) | 0.96298 (11) | 0.77997 (13) | 0.0274 (3) | |
H10 | 0.7995 | 0.9805 | 0.8402 | 0.033* | |
C11 | 0.8644 (2) | 0.87300 (10) | 0.71901 (13) | 0.0228 (3) | |
H11 | 0.7333 | 0.829 | 0.7378 | 0.027* | |
C12 | 0.8777 (2) | 0.30606 (9) | 0.76035 (11) | 0.0163 (2) | |
C13 | 0.6527 (2) | 0.24055 (10) | 0.71904 (11) | 0.0195 (2) | |
H13A | 0.6456 | 0.2284 | 0.6322 | 0.029* | |
H13B | 0.4933 | 0.2731 | 0.7354 | 0.029* | |
H13C | 0.6719 | 0.1772 | 0.7624 | 0.029* | |
C14 | 0.8047 (2) | 0.58030 (9) | 0.88967 (11) | 0.0196 (2) | |
H14A | 0.681 | 0.5257 | 0.897 | 0.024* | |
H14B | 0.9446 | 0.5758 | 0.958 | 0.024* | |
C15 | 0.4963 (2) | 0.68315 (10) | 0.96714 (11) | 0.0192 (2) | |
C16 | 0.3881 (3) | 0.78618 (10) | 0.96492 (12) | 0.0234 (3) | |
H16A | 0.2147 | 0.7843 | 0.9892 | 0.035* | |
H16B | 0.3795 | 0.8133 | 0.8831 | 0.035* | |
H16C | 0.4993 | 0.8283 | 1.021 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02171 (13) | 0.01391 (12) | 0.01645 (12) | 0.00008 (11) | −0.00018 (9) | −0.00028 (11) |
O1 | 0.0158 (4) | 0.0132 (4) | 0.0160 (4) | −0.0031 (3) | 0.0023 (3) | −0.0005 (3) |
O2 | 0.0180 (4) | 0.0171 (4) | 0.0219 (4) | 0.0008 (3) | 0.0073 (3) | 0.0004 (3) |
O3 | 0.0226 (4) | 0.0306 (5) | 0.0202 (4) | 0.0000 (4) | 0.0058 (3) | 0.0053 (4) |
O4 | 0.0152 (4) | 0.0108 (4) | 0.0315 (5) | −0.0018 (3) | −0.0023 (3) | 0.0026 (3) |
O5 | 0.0170 (4) | 0.0158 (4) | 0.0359 (5) | 0.0016 (3) | 0.0017 (4) | 0.0043 (4) |
C1 | 0.0144 (5) | 0.0133 (5) | 0.0176 (5) | 0.0004 (4) | 0.0019 (4) | −0.0003 (4) |
C2 | 0.0163 (5) | 0.0162 (5) | 0.0224 (6) | 0.0024 (4) | 0.0045 (4) | −0.0037 (5) |
C3 | 0.0150 (5) | 0.0155 (6) | 0.0272 (6) | 0.0016 (4) | 0.0017 (5) | −0.0048 (5) |
C4 | 0.0138 (5) | 0.0110 (5) | 0.0246 (6) | −0.0011 (4) | −0.0002 (4) | 0.0007 (4) |
C5 | 0.0133 (5) | 0.0129 (5) | 0.0193 (5) | −0.0018 (4) | 0.0009 (4) | 0.0004 (4) |
C6 | 0.0195 (5) | 0.0122 (5) | 0.0179 (5) | 0.0013 (4) | −0.0019 (4) | 0.0008 (4) |
C7 | 0.0238 (6) | 0.0216 (7) | 0.0251 (6) | −0.0026 (5) | 0.0036 (5) | 0.0000 (5) |
C8 | 0.0287 (7) | 0.0194 (6) | 0.0356 (8) | −0.0069 (5) | 0.0003 (6) | −0.0004 (5) |
C9 | 0.0284 (7) | 0.0155 (6) | 0.0324 (7) | 0.0036 (5) | −0.0072 (5) | −0.0040 (5) |
C10 | 0.0278 (7) | 0.0223 (6) | 0.0320 (7) | 0.0045 (5) | 0.0039 (5) | −0.0075 (5) |
C11 | 0.0222 (6) | 0.0174 (6) | 0.0291 (7) | 0.0003 (5) | 0.0041 (5) | −0.0014 (5) |
C12 | 0.0170 (5) | 0.0125 (5) | 0.0207 (5) | 0.0004 (4) | 0.0078 (4) | −0.0001 (4) |
C13 | 0.0176 (5) | 0.0154 (5) | 0.0260 (5) | −0.0024 (5) | 0.0047 (4) | −0.0003 (5) |
C14 | 0.0187 (5) | 0.0159 (6) | 0.0252 (6) | 0.0006 (4) | 0.0064 (4) | 0.0041 (5) |
C15 | 0.0145 (5) | 0.0276 (6) | 0.0151 (5) | −0.0006 (5) | 0.0007 (4) | −0.0026 (5) |
C16 | 0.0234 (6) | 0.0262 (7) | 0.0210 (6) | 0.0021 (5) | 0.0044 (5) | −0.0042 (5) |
S1—C6 | 1.7824 (12) | C6—C7 | 1.3921 (18) |
S1—C1 | 1.8465 (12) | C7—C8 | 1.386 (2) |
O1—C1 | 1.4096 (13) | C7—H7 | 0.95 |
O1—C5 | 1.4298 (13) | C8—C9 | 1.383 (2) |
O2—C15 | 1.3522 (14) | C8—H8 | 0.95 |
O2—C14 | 1.4460 (14) | C9—C10 | 1.384 (2) |
O3—C15 | 1.2024 (16) | C9—H9 | 0.95 |
O4—C12 | 1.3596 (14) | C10—C11 | 1.3929 (19) |
O4—C4 | 1.4527 (14) | C10—H10 | 0.95 |
O5—C12 | 1.1974 (15) | C11—H11 | 0.95 |
C1—C2 | 1.4975 (17) | C12—C13 | 1.4967 (17) |
C1—H1 | 1 | C13—H13A | 0.98 |
C2—C3 | 1.3228 (19) | C13—H13B | 0.98 |
C2—H2 | 0.95 | C13—H13C | 0.98 |
C3—C4 | 1.5046 (18) | C14—H14A | 0.99 |
C3—H3 | 0.95 | C14—H14B | 0.99 |
C4—C5 | 1.5199 (16) | C15—C16 | 1.4980 (18) |
C4—H4 | 1 | C16—H16A | 0.98 |
C5—C14 | 1.5069 (16) | C16—H16B | 0.98 |
C5—H5 | 1 | C16—H16C | 0.98 |
C6—C11 | 1.3864 (18) | ||
C6—S1—C1 | 97.40 (5) | C9—C8—H8 | 119.8 |
C1—O1—C5 | 113.11 (8) | C7—C8—H8 | 119.8 |
C15—O2—C14 | 115.90 (9) | C8—C9—C10 | 119.91 (13) |
C12—O4—C4 | 116.37 (9) | C8—C9—H9 | 120 |
O1—C1—C2 | 112.43 (9) | C10—C9—H9 | 120 |
O1—C1—S1 | 111.69 (8) | C9—C10—C11 | 120.14 (13) |
C2—C1—S1 | 110.14 (8) | C9—C10—H10 | 119.9 |
O1—C1—H1 | 107.4 | C11—C10—H10 | 119.9 |
C2—C1—H1 | 107.4 | C6—C11—C10 | 119.78 (12) |
S1—C1—H1 | 107.4 | C6—C11—H11 | 120.1 |
C3—C2—C1 | 121.21 (11) | C10—C11—H11 | 120.1 |
C3—C2—H2 | 119.4 | O5—C12—O4 | 122.84 (11) |
C1—C2—H2 | 119.4 | O5—C12—C13 | 126.21 (11) |
C2—C3—C4 | 121.95 (11) | O4—C12—C13 | 110.94 (10) |
C2—C3—H3 | 119 | C12—C13—H13A | 109.5 |
C4—C3—H3 | 119 | C12—C13—H13B | 109.5 |
O4—C4—C3 | 108.61 (10) | H13A—C13—H13B | 109.5 |
O4—C4—C5 | 106.45 (9) | C12—C13—H13C | 109.5 |
C3—C4—C5 | 109.66 (10) | H13A—C13—H13C | 109.5 |
O4—C4—H4 | 110.7 | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 110.7 | O2—C14—C5 | 107.18 (9) |
C5—C4—H4 | 110.7 | O2—C14—H14A | 110.3 |
O1—C5—C14 | 107.73 (9) | C5—C14—H14A | 110.3 |
O1—C5—C4 | 107.84 (9) | O2—C14—H14B | 110.3 |
C14—C5—C4 | 112.17 (10) | C5—C14—H14B | 110.3 |
O1—C5—H5 | 109.7 | H14A—C14—H14B | 108.5 |
C14—C5—H5 | 109.7 | O3—C15—O2 | 123.27 (12) |
C4—C5—H5 | 109.7 | O3—C15—C16 | 125.96 (11) |
C11—C6—C7 | 120.04 (12) | O2—C15—C16 | 110.75 (11) |
C11—C6—S1 | 120.02 (9) | C15—C16—H16A | 109.5 |
C7—C6—S1 | 119.93 (10) | C15—C16—H16B | 109.5 |
C8—C7—C6 | 119.72 (13) | H16A—C16—H16B | 109.5 |
C8—C7—H7 | 120.1 | C15—C16—H16C | 109.5 |
C6—C7—H7 | 120.1 | H16A—C16—H16C | 109.5 |
C9—C8—C7 | 120.41 (13) | H16B—C16—H16C | 109.5 |
C5—O1—C1—C2 | −46.21 (12) | C1—S1—C6—C11 | −90.11 (10) |
C5—O1—C1—S1 | 78.20 (10) | C1—S1—C6—C7 | 89.10 (11) |
C6—S1—C1—O1 | 68.09 (9) | C11—C6—C7—C8 | 0.25 (19) |
C6—S1—C1—C2 | −166.23 (8) | S1—C6—C7—C8 | −178.96 (11) |
O1—C1—C2—C3 | 7.92 (16) | C6—C7—C8—C9 | −0.2 (2) |
S1—C1—C2—C3 | −117.34 (12) | C7—C8—C9—C10 | −0.1 (2) |
C1—C2—C3—C4 | 6.16 (19) | C8—C9—C10—C11 | 0.3 (2) |
C12—O4—C4—C3 | 89.25 (12) | C7—C6—C11—C10 | −0.06 (19) |
C12—O4—C4—C5 | −152.74 (10) | S1—C6—C11—C10 | 179.15 (10) |
C2—C3—C4—O4 | 131.42 (12) | C9—C10—C11—C6 | −0.2 (2) |
C2—C3—C4—C5 | 15.47 (16) | C4—O4—C12—O5 | 4.37 (17) |
C1—O1—C5—C14 | −170.14 (9) | C4—O4—C12—C13 | −175.44 (10) |
C1—O1—C5—C4 | 68.59 (11) | C15—O2—C14—C5 | 158.61 (10) |
O4—C4—C5—O1 | −167.47 (9) | O1—C5—C14—O2 | 65.92 (11) |
C3—C4—C5—O1 | −50.15 (12) | C4—C5—C14—O2 | −175.56 (9) |
O4—C4—C5—C14 | 74.07 (12) | C14—O2—C15—O3 | −1.62 (17) |
C3—C4—C5—C14 | −168.62 (10) | C14—O2—C15—C16 | 176.90 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S1 | 1 | 2.86 | 3.2848 (12) | 106 |
C13—H13B···O5i | 0.98 | 2.44 | 3.3506 (15) | 154 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C16H18O5S |
Mr | 322.36 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 5.2330 (4), 13.470 (1), 11.1760 (9) |
β (°) | 97.291 (2) |
V (Å3) | 781.41 (10) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.42 × 0.37 × 0.27 |
Data collection | |
Diffractometer | Bruker APEXII DUO 4K KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.910, 0.941 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10609, 3839, 3771 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.066, 1.06 |
No. of reflections | 3839 |
No. of parameters | 201 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.20 |
Absolute structure | Flack (1983), 1824 Friedel pairs |
Absolute structure parameter | 0.04 (4) |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S1 | 1 | 2.86 | 3.2848 (12) | 106 |
C13—H13B···O5i | 0.98 | 2.44 | 3.3506 (15) | 154 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bracherro, M. P., Cabrera, E. F., Gomez, G. M. & Peredes, L. M. R. (1998). Carbohydr. Res. 308, 181–190. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breton, G. W. J. (1997). J. Org. Chem. 62, 8952–8954 CrossRef CAS Web of Science Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chambers, D. J., Evans, G. R. & Fairbanks, A. (2005). Tetrahedron Asymmetry, 16, 45–55. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Danishefsky, S. J. & Bilodeau, M. T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1380–1419. CrossRef CAS Web of Science Google Scholar
Domon, D., Fujiwara, K., Ohtaniuchi, Y., Takezawa, A., Takeda, S., Kawasaki, H., Murai, A., Kawai, H. & Suzuki, T. (2005). Tetrahedron Lett. 46, 8279–8283. Web of Science CSD CrossRef CAS Google Scholar
Dorgan, B. J. & Jackson, R. F. W. (1996). Synlett, pp. 859–861. CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ferrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570–575. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Griffith, D. A. & Danishefsky, S. J. (1991). J. Am. Chem. Soc. 113, 5863–5864. CrossRef CAS Web of Science Google Scholar
Halcomb, R. H., Boyer, S. H., Wittman, M. D., Olson, S. H., Denhart, D. J., Liu, K. K. C. & Danishefsky, S. J. (1995). J. Am. Chem. Soc. 117, 5720–5749. CrossRef CAS Web of Science Google Scholar
Kinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. doi:10.1016/j.carres.2011.08.023. Google Scholar
López, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851–3858. Google Scholar
Minuth, T. & Boysen, M. M. K. (2009). Org. Lett. 11, 4212–4215. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057–4059. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Glycals, 1,2-unsaturated pyranoses, undergo acid catalyzed allylic rearrangement in the presence of alcohols to provide 2,3-unsaturated glycosides (pseudoglycals) (see Ferrier & Prasad, 1969). This reaction is referred as the Ferrier rearrangement reaction. Since the reaction proceeds via an oxycarbonium intermediate, thiols, halides and other nucleophiles can be employed besides alcohols to produce corresponding glycosides (see López et al., 1995; Yadav et al., 2001). The pseudoglycal products from the Ferrier rearrangement reaction have been used as chiral building blocks in the synthesis of antibiotics (see Domon et al., 2005), oligosaccharides (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995), nucleosides (see Bracherro et al., 1998), glycopeptides (see Dorgan & Jackson, 1996; Chambers et al., 2005) and also as chiral ligands in asymmetric synthesis (see Minuth & Boysen, 2009). Among other thioglycosides, phenyl 2,3-unsaturated thioglycosides have been extensively employed in organic synthesis such as in the elegant total synthesis of allosamidin (chitinase inhibitor), esperamicin and Calicheamicin (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995). Due to the importance of this type of thioglycosides, herein we report the structural analysis of phenyl 2,3-unsaturated thioglycoside I.
The title compound (see Fig. 1, scheme 1) crystallizes in the P21 (Z=2) space group resulting in molecules lying on general positions in the unit cell. All bond lengths are within their normal ranges (Allen, 2002) with the acetyl groups all in equatorial positions. The pyran ring is in an envelope conformation with ring puckering parameters of q2 = 0.4212 (12) Å, q3 = 0.2974 (12) Å, Q = 0.5156 (11) Å and ϕ2 = 321.05 (17)° (see Cremer & Pople, 1975). Weak C—H···O/S interactions (see Table 1) stabilize the crystal structure.