organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2840-o2841

Phenyl 4,6-di-O-acetyl-2,3-dide­­oxy-1-thio-α-D-erythro-hex-2-eno­pyran­oside

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za

(Received 16 September 2011; accepted 29 September 2011; online 5 October 2011)

The pyranosyl ring in the title compound, C16H18O5S, adopts an envelope conformation, with the acetyl groups in equatorial positions. In the crystal, weak C—H⋯O inter­actions link the molecules into chains.

Related literature

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969[Ferrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570-575.]). For the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995[López, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851-3858.]); Yadav et al. (2001[Yadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057-4059.]). For applications of pseudoglycals, see: Domon et al. (2005[Domon, D., Fujiwara, K., Ohtaniuchi, Y., Takezawa, A., Takeda, S., Kawasaki, H., Murai, A., Kawai, H. & Suzuki, T. (2005). Tetrahedron Lett. 46, 8279-8283.]); Danishefsky & Bilodeau (1996[Danishefsky, S. J. & Bilodeau, M. T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1380-1419.]); Griffith & Danishefsky (1991[Griffith, D. A. & Danishefsky, S. J. (1991). J. Am. Chem. Soc. 113, 5863-5864.]); Halcomb et al. (1995[Halcomb, R. H., Boyer, S. H., Wittman, M. D., Olson, S. H., Denhart, D. J., Liu, K. K. C. & Danishefsky, S. J. (1995). J. Am. Chem. Soc. 117, 5720-5749.]); Bracherro et al. (1998[Bracherro, M. P., Cabrera, E. F., Gomez, G. M. & Peredes, L. M. R. (1998). Carbohydr. Res. 308, 181-190.]); Dorgan & Jackson (1996[Dorgan, B. J. & Jackson, R. F. W. (1996). Synlett, pp. 859-861.]); Chambers et al. (2005[Chambers, D. J., Evans, G. R. & Fairbanks, A. (2005). Tetrahedron Asymmetry, 16, 45-55.]); Minuth & Boysen (2009[Minuth, T. & Boysen, M. M. K. (2009). Org. Lett. 11, 4212-4215.]). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011[Kinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. doi:10.1016/j.carres.2011.08.023.]). For the preparation of the acid catalyst NaHSO4-SiO2, see: Breton (1997[Breton, G. W. J. (1997). J. Org. Chem. 62, 8952-8954]). For ring puckering analysis see, Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Csambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18O5S

  • Mr = 322.36

  • Monoclinic, P 21

  • a = 5.2330 (4) Å

  • b = 13.470 (1) Å

  • c = 11.1760 (9) Å

  • β = 97.291 (2)°

  • V = 781.41 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.42 × 0.37 × 0.27 mm

Data collection
  • Bruker APEXII DUO 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.941

  • 10609 measured reflections

  • 3839 independent reflections

  • 3771 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.06

  • 3839 reflections

  • 201 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1824 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O5i 0.98 2.44 3.3506 (15) 154
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Glycals, 1,2-unsaturated pyranoses, undergo acid catalyzed allylic rearrangement in the presence of alcohols to provide 2,3-unsaturated glycosides (pseudoglycals) (see Ferrier & Prasad, 1969). This reaction is referred as the Ferrier rearrangement reaction. Since the reaction proceeds via an oxycarbonium intermediate, thiols, halides and other nucleophiles can be employed besides alcohols to produce corresponding glycosides (see López et al., 1995; Yadav et al., 2001). The pseudoglycal products from the Ferrier rearrangement reaction have been used as chiral building blocks in the synthesis of antibiotics (see Domon et al., 2005), oligosaccharides (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995), nucleosides (see Bracherro et al., 1998), glycopeptides (see Dorgan & Jackson, 1996; Chambers et al., 2005) and also as chiral ligands in asymmetric synthesis (see Minuth & Boysen, 2009). Among other thioglycosides, phenyl 2,3-unsaturated thioglycosides have been extensively employed in organic synthesis such as in the elegant total synthesis of allosamidin (chitinase inhibitor), esperamicin and Calicheamicin (see Danishefsky & Bilodeau, 1996; Griffith & Danishefsky, 1991; Halcomb et al., 1995). Due to the importance of this type of thioglycosides, herein we report the structural analysis of phenyl 2,3-unsaturated thioglycoside I.

The title compound (see Fig. 1, scheme 1) crystallizes in the P21 (Z=2) space group resulting in molecules lying on general positions in the unit cell. All bond lengths are within their normal ranges (Allen, 2002) with the acetyl groups all in equatorial positions. The pyran ring is in an envelope conformation with ring puckering parameters of q2 = 0.4212 (12) Å, q3 = 0.2974 (12) Å, Q = 0.5156 (11) Å and ϕ2 = 321.05 (17)° (see Cremer & Pople, 1975). Weak C—H···O/S interactions (see Table 1) stabilize the crystal structure.

Related literature top

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969). For the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For applications of pseudoglycals, see: Domon et al. (2005); Danishefsky & Bilodeau (1996); Griffith & Danishefsky (1991); Halcomb et al. (1995); Bracherro et al. (1998); Dorgan & Jackson (1996); Chambers et al. (2005); Minuth & Boysen (2009). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011). For the preparation of the acid catalyst NaHSO4-SiO2, see: Breton (1997). For ring puckering analysis see, Cremer & Pople (1975). For a description of the Csambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of a tri-O-acetyl-D-glucal (100 mg, 0.36 mmol) in CH3CN (1 ml) NaHSO4-SiO2 (2.5 mg, 3.0 mmol NaHSO4/g) was added (see Breton, 1997). The resulting mixture was stirred at 80 °C for 5 min. After adding silica gel to the reaction mixture at room temperature, the solvent was evaporated in vacuo without heating until a free-flowing solid was obtained. The resulting solid was column chromatographed using 1:9 ethyl acetate:hexane eluent to afford α:β (4:1) mixture of 2,3-unsaturated glycosides in 96% yield as a white solid (see Kinfe et al., 2011). Recrystalization from a mixture of DCM and hexane afforded the title thioglycoside I in 60% yield as white crystals. Analytical data: 1H NMR (CDCl3, 300 MHz): δ 7.51 (d, J = 7.2 Hz, 2H), 7.29–7.17 (m, 3H), 6.03 (d, J = 10.2 Hz, 1H), 5.83 (d, J = 10.8 Hz, 1H), 5.73 (s, 1H), 5.35 (d, J = 9.6 Hz, 1H), 4.60–4.13 (m, 3H), 2.07 (s, 3H), 2.03 (s, 3H); 13C NMR (CDCl3, 75 MHz): δ 170.7, 170.2, 134.7, 131.7, 128.9, 128.5, 127.6, 83.6, 67.2, 65.0, 63.0, 20.9, 20.7.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The D enantiomer refined to a final Flack parameter of 0.04 (4). The highest residual electron density of 0.31 e.Å-3 is 0.88 Å from S1 representing no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I). Displacement ellipsoids are drawn at a 50% probability level.
Phenyl 4,6-di-O-acetyl-2,3-dideoxy-1-thio-α-D-erythro-hex-2-enopyranoside top
Crystal data top
C16H18O5SF(000) = 340
Mr = 322.36Dx = 1.37 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7987 reflections
a = 5.2330 (4) Åθ = 3.0–28.3°
b = 13.470 (1) ŵ = 0.23 mm1
c = 11.1760 (9) ÅT = 100 K
β = 97.291 (2)°Prism, colourless
V = 781.41 (10) Å30.42 × 0.37 × 0.27 mm
Z = 2
Data collection top
Bruker APEXII DUO 4K KappaCCD
diffractometer
3839 independent reflections
Graphite monochromator3771 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.020
ϕ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 66
Tmin = 0.910, Tmax = 0.941k = 1717
10609 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.0965P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3839 reflectionsΔρmax = 0.31 e Å3
201 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1824 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C16H18O5SV = 781.41 (10) Å3
Mr = 322.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.2330 (4) ŵ = 0.23 mm1
b = 13.470 (1) ÅT = 100 K
c = 11.1760 (9) Å0.42 × 0.37 × 0.27 mm
β = 97.291 (2)°
Data collection top
Bruker APEXII DUO 4K KappaCCD
diffractometer
3839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3771 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.941Rint = 0.020
10609 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.31 e Å3
S = 1.06Δρmin = 0.20 e Å3
3839 reflectionsAbsolute structure: Flack (1983), 1824 Friedel pairs
201 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Experimental. The intensity data was collected on a Bruker APEX Duo 4 K KappaCCD diffractometer using an exposure time of 10 s/frame. A total of 1490 frames were collected with a frame width of 0.5° covering up to θ = 28.36° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97008 (5)0.73210 (2)0.55390 (2)0.01758 (7)
O11.10976 (16)0.64668 (6)0.77149 (7)0.01499 (16)
O20.67619 (16)0.67526 (6)0.89081 (8)0.01858 (18)
O30.43919 (18)0.61581 (8)1.02918 (8)0.0242 (2)
O40.82603 (16)0.40209 (6)0.72849 (8)0.01964 (18)
O51.07925 (17)0.28011 (7)0.81406 (9)0.02305 (19)
C11.1974 (2)0.65826 (9)0.65814 (10)0.0151 (2)
H11.36360.69570.67130.018*
C21.2504 (2)0.56087 (10)0.60152 (11)0.0181 (2)
H21.33080.56010.52990.022*
C31.1873 (2)0.47589 (9)0.64935 (12)0.0193 (2)
H31.23880.41540.61580.023*
C41.0364 (2)0.47220 (9)0.75525 (12)0.0167 (2)
H41.14990.45240.83020.02*
C50.9137 (2)0.57276 (9)0.77150 (10)0.0153 (2)
H50.77440.58520.70330.018*
C61.0169 (2)0.84785 (9)0.63084 (11)0.0169 (2)
C71.2088 (3)0.91243 (10)0.60335 (13)0.0234 (3)
H71.3130.89540.54270.028*
C81.2472 (3)1.00164 (11)0.66480 (14)0.0282 (3)
H81.37851.04570.64630.034*
C91.0957 (3)1.02695 (10)0.75292 (14)0.0264 (3)
H91.1231.08820.79480.032*
C100.9041 (3)0.96298 (11)0.77997 (13)0.0274 (3)
H100.79950.98050.84020.033*
C110.8644 (2)0.87300 (10)0.71901 (13)0.0228 (3)
H110.73330.8290.73780.027*
C120.8777 (2)0.30606 (9)0.76035 (11)0.0163 (2)
C130.6527 (2)0.24055 (10)0.71904 (11)0.0195 (2)
H13A0.64560.22840.63220.029*
H13B0.49330.27310.73540.029*
H13C0.67190.17720.76240.029*
C140.8047 (2)0.58030 (9)0.88967 (11)0.0196 (2)
H14A0.6810.52570.8970.024*
H14B0.94460.57580.9580.024*
C150.4963 (2)0.68315 (10)0.96714 (11)0.0192 (2)
C160.3881 (3)0.78618 (10)0.96492 (12)0.0234 (3)
H16A0.21470.78430.98920.035*
H16B0.37950.81330.88310.035*
H16C0.49930.82831.0210.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02171 (13)0.01391 (12)0.01645 (12)0.00008 (11)0.00018 (9)0.00028 (11)
O10.0158 (4)0.0132 (4)0.0160 (4)0.0031 (3)0.0023 (3)0.0005 (3)
O20.0180 (4)0.0171 (4)0.0219 (4)0.0008 (3)0.0073 (3)0.0004 (3)
O30.0226 (4)0.0306 (5)0.0202 (4)0.0000 (4)0.0058 (3)0.0053 (4)
O40.0152 (4)0.0108 (4)0.0315 (5)0.0018 (3)0.0023 (3)0.0026 (3)
O50.0170 (4)0.0158 (4)0.0359 (5)0.0016 (3)0.0017 (4)0.0043 (4)
C10.0144 (5)0.0133 (5)0.0176 (5)0.0004 (4)0.0019 (4)0.0003 (4)
C20.0163 (5)0.0162 (5)0.0224 (6)0.0024 (4)0.0045 (4)0.0037 (5)
C30.0150 (5)0.0155 (6)0.0272 (6)0.0016 (4)0.0017 (5)0.0048 (5)
C40.0138 (5)0.0110 (5)0.0246 (6)0.0011 (4)0.0002 (4)0.0007 (4)
C50.0133 (5)0.0129 (5)0.0193 (5)0.0018 (4)0.0009 (4)0.0004 (4)
C60.0195 (5)0.0122 (5)0.0179 (5)0.0013 (4)0.0019 (4)0.0008 (4)
C70.0238 (6)0.0216 (7)0.0251 (6)0.0026 (5)0.0036 (5)0.0000 (5)
C80.0287 (7)0.0194 (6)0.0356 (8)0.0069 (5)0.0003 (6)0.0004 (5)
C90.0284 (7)0.0155 (6)0.0324 (7)0.0036 (5)0.0072 (5)0.0040 (5)
C100.0278 (7)0.0223 (6)0.0320 (7)0.0045 (5)0.0039 (5)0.0075 (5)
C110.0222 (6)0.0174 (6)0.0291 (7)0.0003 (5)0.0041 (5)0.0014 (5)
C120.0170 (5)0.0125 (5)0.0207 (5)0.0004 (4)0.0078 (4)0.0001 (4)
C130.0176 (5)0.0154 (5)0.0260 (5)0.0024 (5)0.0047 (4)0.0003 (5)
C140.0187 (5)0.0159 (6)0.0252 (6)0.0006 (4)0.0064 (4)0.0041 (5)
C150.0145 (5)0.0276 (6)0.0151 (5)0.0006 (5)0.0007 (4)0.0026 (5)
C160.0234 (6)0.0262 (7)0.0210 (6)0.0021 (5)0.0044 (5)0.0042 (5)
Geometric parameters (Å, º) top
S1—C61.7824 (12)C6—C71.3921 (18)
S1—C11.8465 (12)C7—C81.386 (2)
O1—C11.4096 (13)C7—H70.95
O1—C51.4298 (13)C8—C91.383 (2)
O2—C151.3522 (14)C8—H80.95
O2—C141.4460 (14)C9—C101.384 (2)
O3—C151.2024 (16)C9—H90.95
O4—C121.3596 (14)C10—C111.3929 (19)
O4—C41.4527 (14)C10—H100.95
O5—C121.1974 (15)C11—H110.95
C1—C21.4975 (17)C12—C131.4967 (17)
C1—H11C13—H13A0.98
C2—C31.3228 (19)C13—H13B0.98
C2—H20.95C13—H13C0.98
C3—C41.5046 (18)C14—H14A0.99
C3—H30.95C14—H14B0.99
C4—C51.5199 (16)C15—C161.4980 (18)
C4—H41C16—H16A0.98
C5—C141.5069 (16)C16—H16B0.98
C5—H51C16—H16C0.98
C6—C111.3864 (18)
C6—S1—C197.40 (5)C9—C8—H8119.8
C1—O1—C5113.11 (8)C7—C8—H8119.8
C15—O2—C14115.90 (9)C8—C9—C10119.91 (13)
C12—O4—C4116.37 (9)C8—C9—H9120
O1—C1—C2112.43 (9)C10—C9—H9120
O1—C1—S1111.69 (8)C9—C10—C11120.14 (13)
C2—C1—S1110.14 (8)C9—C10—H10119.9
O1—C1—H1107.4C11—C10—H10119.9
C2—C1—H1107.4C6—C11—C10119.78 (12)
S1—C1—H1107.4C6—C11—H11120.1
C3—C2—C1121.21 (11)C10—C11—H11120.1
C3—C2—H2119.4O5—C12—O4122.84 (11)
C1—C2—H2119.4O5—C12—C13126.21 (11)
C2—C3—C4121.95 (11)O4—C12—C13110.94 (10)
C2—C3—H3119C12—C13—H13A109.5
C4—C3—H3119C12—C13—H13B109.5
O4—C4—C3108.61 (10)H13A—C13—H13B109.5
O4—C4—C5106.45 (9)C12—C13—H13C109.5
C3—C4—C5109.66 (10)H13A—C13—H13C109.5
O4—C4—H4110.7H13B—C13—H13C109.5
C3—C4—H4110.7O2—C14—C5107.18 (9)
C5—C4—H4110.7O2—C14—H14A110.3
O1—C5—C14107.73 (9)C5—C14—H14A110.3
O1—C5—C4107.84 (9)O2—C14—H14B110.3
C14—C5—C4112.17 (10)C5—C14—H14B110.3
O1—C5—H5109.7H14A—C14—H14B108.5
C14—C5—H5109.7O3—C15—O2123.27 (12)
C4—C5—H5109.7O3—C15—C16125.96 (11)
C11—C6—C7120.04 (12)O2—C15—C16110.75 (11)
C11—C6—S1120.02 (9)C15—C16—H16A109.5
C7—C6—S1119.93 (10)C15—C16—H16B109.5
C8—C7—C6119.72 (13)H16A—C16—H16B109.5
C8—C7—H7120.1C15—C16—H16C109.5
C6—C7—H7120.1H16A—C16—H16C109.5
C9—C8—C7120.41 (13)H16B—C16—H16C109.5
C5—O1—C1—C246.21 (12)C1—S1—C6—C1190.11 (10)
C5—O1—C1—S178.20 (10)C1—S1—C6—C789.10 (11)
C6—S1—C1—O168.09 (9)C11—C6—C7—C80.25 (19)
C6—S1—C1—C2166.23 (8)S1—C6—C7—C8178.96 (11)
O1—C1—C2—C37.92 (16)C6—C7—C8—C90.2 (2)
S1—C1—C2—C3117.34 (12)C7—C8—C9—C100.1 (2)
C1—C2—C3—C46.16 (19)C8—C9—C10—C110.3 (2)
C12—O4—C4—C389.25 (12)C7—C6—C11—C100.06 (19)
C12—O4—C4—C5152.74 (10)S1—C6—C11—C10179.15 (10)
C2—C3—C4—O4131.42 (12)C9—C10—C11—C60.2 (2)
C2—C3—C4—C515.47 (16)C4—O4—C12—O54.37 (17)
C1—O1—C5—C14170.14 (9)C4—O4—C12—C13175.44 (10)
C1—O1—C5—C468.59 (11)C15—O2—C14—C5158.61 (10)
O4—C4—C5—O1167.47 (9)O1—C5—C14—O265.92 (11)
C3—C4—C5—O150.15 (12)C4—C5—C14—O2175.56 (9)
O4—C4—C5—C1474.07 (12)C14—O2—C15—O31.62 (17)
C3—C4—C5—C14168.62 (10)C14—O2—C15—C16176.90 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S112.863.2848 (12)106
C13—H13B···O5i0.982.443.3506 (15)154
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H18O5S
Mr322.36
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.2330 (4), 13.470 (1), 11.1760 (9)
β (°) 97.291 (2)
V3)781.41 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.42 × 0.37 × 0.27
Data collection
DiffractometerBruker APEXII DUO 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.910, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
10609, 3839, 3771
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections3839
No. of parameters201
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.20
Absolute structureFlack (1983), 1824 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S112.863.2848 (12)106
C13—H13B···O5i0.982.443.3506 (15)154
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBracherro, M. P., Cabrera, E. F., Gomez, G. M. & Peredes, L. M. R. (1998). Carbohydr. Res. 308, 181–190.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreton, G. W. J. (1997). J. Org. Chem. 62, 8952–8954  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambers, D. J., Evans, G. R. & Fairbanks, A. (2005). Tetrahedron Asymmetry, 16, 45–55.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDanishefsky, S. J. & Bilodeau, M. T. (1996). Angew. Chem. Int. Ed. Engl. 35, 1380–1419.  CrossRef CAS Web of Science Google Scholar
First citationDomon, D., Fujiwara, K., Ohtaniuchi, Y., Takezawa, A., Takeda, S., Kawasaki, H., Murai, A., Kawai, H. & Suzuki, T. (2005). Tetrahedron Lett. 46, 8279–8283.  Web of Science CSD CrossRef CAS Google Scholar
First citationDorgan, B. J. & Jackson, R. F. W. (1996). Synlett, pp. 859–861.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570–575.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGriffith, D. A. & Danishefsky, S. J. (1991). J. Am. Chem. Soc. 113, 5863–5864.  CrossRef CAS Web of Science Google Scholar
First citationHalcomb, R. H., Boyer, S. H., Wittman, M. D., Olson, S. H., Denhart, D. J., Liu, K. K. C. & Danishefsky, S. J. (1995). J. Am. Chem. Soc. 117, 5720–5749.  CrossRef CAS Web of Science Google Scholar
First citationKinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. doi:10.1016/j.carres.2011.08.023.  Google Scholar
First citationLópez, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851–3858.  Google Scholar
First citationMinuth, T. & Boysen, M. M. K. (2009). Org. Lett. 11, 4212–4215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057–4059.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2840-o2841
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds