metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-di­ethyl­phosphido-κ2P:P)bis­­[bis­(2,4,6-tri­methyl­phen­yl)indium(III)]

aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, Canada E4L 1G8, and bDepartment of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
*Correspondence e-mail: gbriand@mta.ca

(Received 23 September 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, [In2(C9H11)4(C4H10P)2], contains a centrosymmetric In2P2 core with short inter­molecular In—P bonds. This core has acute P—In—P and obtuse In—P—In bond angles compared with other [R2InPR2]2 analogues, due to the presence of the bulky aromatic substituents on the In atom and the non-sterically demanding ethyl substituents on the P atom.

Related literature

For related dimeric phosphanylindanes, see: Alcock et al. (1989[Alcock, N. W., Degnam, I. A., Wallbridge, M. G. H., Powell, H. R., McPartlin, M. & Sheldrick, G. M. (1989). J. Organomet. Chem. 361, C33-C36.]); Wells et al. (1992[Wells, R. L., McPhail, A. T. & Self, M. F. (1992). Organometallics, 11, 221-225.]); Aitchison et al. (1989[Aitchison, K. A., Julius Backer-Dirks, J. D., Bradley, D. C., Faktor, M. M., Frigo, D. M., Hursthouse, M. B., Hussain, B. & Short, R. L. (1989). J. Organomet. Chem. 366, 11-23.]); Beachley et al. (1987[Beachley, O. T. Jr, Kopasz, J. P., Zhang, H., Hunter, W. E. & Atwood, J. L. (1987). J. Organomet. Chem. 325, 69-81.], 1993[Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (1993). Organometallics, 12, 3992-3997.], 1995[Beachley, O. T. Jr, Maloney, J. D., Banks, M. A. & Rogers, R. D. (1995). Organometallics, 14, 3448-3454.], 2001[Beachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (2001). Organometallics, 20, 4896-4902.]); Culp et al. (1997[Culp, R. D., Cowley, A. H., Decken, A., Jones, R. A., Bond, M. R., Mokry, L. M. & Carrano, C. J. (1997). Inorg. Chem. 36, 5165-5172.]); Malik et al. (1996[Malik, M. A., Haggata, S. W., Motevalli, M. & O'Brien, P. (1996). J. Organomet. Chem. 524, 95-101.]); Thomas et al. (2002[Thomas, F., Schulz, S. & Nieger, M. (2002). Z. Anorg. Allg. Chem. 628, 235-242.]); Wells et al. (1993[Wells, R. L., McPhail, A. T., Jones, L. J. & Self, M. F. (1993). J. Organomet. Chem. 449, 85-94.]); von Hanisch (2001[Hanisch, C. von (2001). Z. Anorg. Allg. Chem. 627, 68-72.]). For related trimeric phosphanylindanes, see: Burns et al. (1994[Burns, J. A., Dillingham, M. D. B., Hill, J. B., Gripper, K. D., Pennington, W. T. & Robinson, G. H. (1994). Organometallics, 13, 1514-1517.]); Werner & Neumüller (1996[Werner, B. & Neumüller, B. (1996). Organometallics, 15, 4258-4263.]); Banks et al. (1991[Banks, M. A., Beachley, O. T. Jr, Buttrey, L. A., Churchill, M. R. & Fettinger, J. C. (1991). Organometallics, 10, 1901-1906.]).

[Scheme 1]

Experimental

Crystal data
  • [In2(C9H11)4(C4H10P)2]

  • Mr = 884.53

  • Monoclinic, C 2/c

  • a = 22.323 (4) Å

  • b = 15.494 (4) Å

  • c = 14.331 (3) Å

  • β = 120.618 (4)°

  • V = 4265.6 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 198 K

  • 0.23 × 0.20 × 0.01 mm

Data collection
  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.777, Tmax = 0.988

  • 14538 measured reflections

  • 4771 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.09

  • 4771 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Phosphanylindanes [R2InPR'2]n form dimeric or trimeric structures in the solid state via intermolecular In—P coordinate bonding interactions (Beachley et al., 2001; Werner & Neumuller 1996). Dimeric structures feature distorted tetrahedral geometries at indium and phosphorus, and planar four-membered In2P2 ring cores. In—P bond distances within the ring are similar and differ by less than 0.05 Å in all reported structures (Wells et al., 1993). The structure of I (Fig. 1) shows a dimer in the solid state, with a characteristic In2P2 core and distorted tetrahedral geometries at the four coordinate indium and phosphorus centres. The In—P bond distances are similar [In—P = 2.6300 (12) Å, In—Pi = 2.6364 (9) Å] and are in the range for previously reported dimeric phosphanylindanes [2.612 (1)–2.712 (1) Å] (Wells et al., 1993; Beachley et al., 1993). However, the ring P—In—Pi bond angle [81.56 (3)°] is at the lower limit of the range of reported values for [R2InPR'2]2 structures [81.80 (7)–87.53 (3)°] (Beachley et al., 1987; von Hanisch, 2001), and the In—P—Ini bond angle [98.44 (3)°] is at the upper limit of reported values [92.47 (3)–98.20 (7)°] (von Hanisch, 2001; Beachley et al., 1987). The significant distortion of the In2P2 ring is likely a result of the bulky mesityl groups on indium, which affect a compression of the P—In—Pi bond angles. Conversely, the non-bulky ethyl groups on phosphorus allows for expansion of the In—P—Ini bond angles.

Related literature top

For related dimeric phosphanylindanes, see: Alcock et al. (1989); Wells et al. (1992); Aitchison et al. (1989); Beachley et al. (1987, 1993, 1995, 2001); Culp et al. (1997); Malik et al. (1996); Thomas et al. (2002); Wells et al. (1993); von Hanisch (2001). For related trimeric phosphanylindanes, see: Burns et al. (1994); Werner & Neumuller (1996); Banks et al. (1991).

Experimental top

Preparation of [(2,4,6-Me3C6H2)2InPEt2]2 (I). Trismesityl indium (0.520 g, 1.10 mmol) was added to a solution of diethyl phosphine (0.100 g, 1.10 mmol) in toluene (7.5 ml). The reaction mixture was stirred at 45°C for 72 h, after which time a white precipitate had formed. The precipitate was removed by filtration, dried in vacuo, and washed with toluene (2 × 5 ml) and hexane (3 ml) (yield 0.110 g, 22%). Mp: 188°C. Crystals of I were obtained by dissolving the product in dichloromethane and allowing the solution to sit at 23°C for 12 h.

Refinement top

H atoms were included in calculated positions and refined using a riding model.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART (Bruker, 1999); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. X-ray crystal structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: (i) -x + 1/2, -y + 1/2, -z + 1. Selected bond distances (Å) and angles (°): In—P 2.6300 (12), In—Pi 2.6364 (9), In—C1 2.190 (3), In—C10 2.215 (3), P—C19 1.866 (3), P—C21 1.856 (3), P—In—Pi 81.56 (3), In—P—Ini 98.44 (3), C1—In—C10 117.6 (1), C19—P—C21 104.4 (2).
Bis(µ-diethylphosphido-κ2P:P)bis[bis(2,4,6- trimethylphenyl)indium(III)] top
Crystal data top
[In2(C9H11)4(C4H10P)2]F(000) = 1824
Mr = 884.53Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6933 reflections
a = 22.323 (4) Åθ = 2.7–28.1°
b = 15.494 (4) ŵ = 1.18 mm1
c = 14.331 (3) ÅT = 198 K
β = 120.618 (4)°Plate, colourless
V = 4265.6 (17) Å30.23 × 0.20 × 0.01 mm
Z = 4
Data collection top
Bruker SMART1000/P4
diffractometer
4771 independent reflections
Radiation source: fine-focus sealed tube, K7603470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 2827
Tmin = 0.777, Tmax = 0.988k = 1919
14538 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.4614P]
where P = (Fo2 + 2Fc2)/3
4771 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[In2(C9H11)4(C4H10P)2]V = 4265.6 (17) Å3
Mr = 884.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.323 (4) ŵ = 1.18 mm1
b = 15.494 (4) ÅT = 198 K
c = 14.331 (3) Å0.23 × 0.20 × 0.01 mm
β = 120.618 (4)°
Data collection top
Bruker SMART1000/P4
diffractometer
4771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3470 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.988Rint = 0.038
14538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.65 e Å3
4771 reflectionsΔρmin = 0.34 e Å3
225 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections

NMR data (p.p.m., CDCl3): 1H NMR, 0.88 (m, 6H, PCH2CH3), 1.83 (q, 3J(1H-1H) = 7 Hz, 4H, PCH2CH3), 2.24 (s, 6H, 2,4,6-Me3C6H2), 2.33 (s, 12H, 2,4,6-Me3C6H2), 6.78 (s, 4H, 2,4,6-Me3C6H2); 13C{1H}11.7 (PCH2CH3), 13.8 (PCH2CH3), 21.3 (s, 2,4,6-Me3C6H2), 27.7 (s, 2,4,6-Me3C6H2), 126.8 (s, 2,4,6-Me3C6H2), 136.6 (s, 2,4,6-Me3C6H2), 144.1 (s, 2,4,6-Me3C6H2); 31P NMR, δ -44.63 (s). FT—IR: 538m, 607vw, 673w, 708w, 752w, 800w, 845m, 976w, 1030w, 1042w, 1090w, 1149vw, 1244w, 1259w, 1288w, 1402w, 1547w, 1595vw, 1712vw.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.231901 (11)0.163644 (15)0.585903 (16)0.03479 (8)
P10.21902 (4)0.33051 (6)0.54684 (6)0.03532 (19)
C10.14507 (16)0.0724 (2)0.5087 (2)0.0355 (7)
C20.07490 (17)0.0952 (2)0.4400 (2)0.0430 (8)
C30.02405 (18)0.0319 (3)0.3942 (3)0.0504 (9)
H30.02300.04880.34760.061*
C40.03963 (19)0.0550 (3)0.4142 (3)0.0512 (10)
C50.10908 (19)0.0781 (2)0.4811 (3)0.0466 (9)
H50.12100.13750.49540.056*
C60.16177 (17)0.0161 (2)0.5276 (2)0.0381 (8)
C70.0530 (2)0.1886 (3)0.4137 (3)0.0607 (11)
H7A0.00200.19220.37350.091*
H7B0.07100.21240.36950.091*
H7C0.07160.22160.48120.091*
C80.0172 (2)0.1223 (3)0.3645 (4)0.0719 (13)
H8A0.05390.10790.38030.108*
H8B0.00230.17900.39510.108*
H8C0.03690.12360.28580.108*
C90.23652 (17)0.0451 (2)0.5954 (3)0.0464 (8)
H9A0.23780.10680.61140.070*
H9B0.25950.01240.66340.070*
H9C0.26070.03500.55530.070*
C100.30035 (17)0.1564 (2)0.7643 (2)0.0394 (8)
C110.37154 (17)0.1357 (2)0.8185 (2)0.0427 (8)
C120.41094 (19)0.1333 (2)0.9321 (3)0.0512 (9)
H120.45900.11930.96700.061*
C130.3812 (2)0.1508 (2)0.9945 (3)0.0541 (10)
C140.3113 (2)0.1726 (2)0.9417 (3)0.0520 (10)
H140.29030.18580.98340.062*
C150.27101 (18)0.1755 (2)0.8287 (3)0.0437 (8)
C160.40779 (19)0.1146 (3)0.7567 (3)0.0576 (10)
H16A0.38550.06440.71020.086*
H16B0.45690.10160.80800.086*
H16C0.40460.16420.71190.086*
C170.4242 (2)0.1459 (3)1.1178 (3)0.0770 (14)
H17A0.47290.13411.14070.115*
H17B0.40620.09941.14330.115*
H17C0.42100.20091.14880.115*
C180.19456 (18)0.1971 (3)0.7786 (3)0.0541 (10)
H18A0.18830.25980.76980.081*
H18B0.17790.17640.82600.081*
H18C0.16800.16920.70760.081*
C190.29184 (17)0.3701 (2)0.6794 (2)0.0414 (8)
H19A0.28290.35120.73710.050*
H19B0.33520.34160.69300.050*
C200.30422 (19)0.4667 (2)0.6901 (3)0.0496 (9)
H20A0.32110.48520.64210.074*
H20B0.33900.48080.76530.074*
H20C0.26050.49650.66980.074*
C210.14350 (17)0.3982 (2)0.5211 (3)0.0441 (8)
H21A0.15440.45900.51440.053*
H21B0.10310.38090.45050.053*
C220.12205 (18)0.3937 (3)0.6068 (3)0.0527 (9)
H22A0.10390.33600.60630.079*
H22B0.08590.43690.59050.079*
H22C0.16260.40530.67850.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.02880 (13)0.04999 (15)0.01987 (11)0.01078 (11)0.00826 (9)0.00045 (10)
P10.0310 (4)0.0489 (5)0.0237 (4)0.0081 (4)0.0122 (3)0.0014 (4)
C10.0328 (17)0.053 (2)0.0194 (14)0.0126 (15)0.0121 (13)0.0020 (14)
C20.0355 (19)0.059 (2)0.0300 (17)0.0130 (17)0.0137 (15)0.0048 (16)
C30.0330 (19)0.070 (3)0.043 (2)0.0120 (18)0.0159 (16)0.0112 (18)
C40.042 (2)0.071 (3)0.046 (2)0.026 (2)0.0267 (18)0.0234 (19)
C50.057 (2)0.050 (2)0.045 (2)0.0126 (18)0.0349 (19)0.0124 (16)
C60.0377 (18)0.054 (2)0.0261 (15)0.0101 (16)0.0188 (14)0.0049 (14)
C70.038 (2)0.068 (3)0.052 (2)0.0092 (19)0.0052 (18)0.0079 (19)
C80.061 (3)0.085 (3)0.077 (3)0.038 (2)0.040 (2)0.035 (3)
C90.045 (2)0.053 (2)0.0365 (19)0.0034 (18)0.0176 (17)0.0005 (16)
C100.0374 (18)0.050 (2)0.0220 (15)0.0155 (16)0.0089 (13)0.0015 (14)
C110.0372 (19)0.057 (2)0.0255 (16)0.0129 (16)0.0098 (14)0.0013 (14)
C120.038 (2)0.068 (2)0.0303 (18)0.0126 (18)0.0045 (15)0.0032 (16)
C130.056 (2)0.069 (3)0.0236 (17)0.021 (2)0.0109 (16)0.0005 (16)
C140.053 (2)0.072 (3)0.0273 (17)0.018 (2)0.0175 (16)0.0053 (17)
C150.0394 (19)0.058 (2)0.0277 (16)0.0146 (17)0.0128 (14)0.0006 (15)
C160.040 (2)0.091 (3)0.0348 (19)0.004 (2)0.0141 (17)0.002 (2)
C170.072 (3)0.112 (4)0.0230 (18)0.021 (3)0.0070 (18)0.002 (2)
C180.044 (2)0.080 (3)0.039 (2)0.007 (2)0.0216 (18)0.0019 (18)
C190.0381 (19)0.058 (2)0.0238 (16)0.0072 (16)0.0126 (14)0.0021 (14)
C200.055 (2)0.060 (2)0.0350 (19)0.0194 (19)0.0234 (17)0.0112 (16)
C210.0364 (19)0.057 (2)0.0365 (18)0.0003 (17)0.0165 (15)0.0003 (16)
C220.041 (2)0.078 (3)0.0373 (19)0.004 (2)0.0193 (17)0.0078 (18)
Geometric parameters (Å, º) top
In1—C12.190 (3)C11—C161.509 (5)
In1—C102.215 (3)C12—C131.385 (5)
In1—P12.6300 (12)C12—H120.9500
In1—P1i2.6364 (9)C13—C141.386 (5)
P1—C211.856 (3)C13—C171.524 (5)
P1—C191.866 (3)C14—C151.397 (4)
P1—In1i2.6364 (9)C14—H140.9500
C1—C21.406 (4)C15—C181.514 (5)
C1—C61.409 (5)C16—H16A0.9800
C2—C31.386 (5)C16—H16B0.9800
C2—C71.512 (5)C16—H16C0.9800
C3—C41.384 (5)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.392 (5)C17—H17C0.9800
C4—C81.511 (5)C18—H18A0.9800
C5—C61.398 (4)C18—H18B0.9800
C5—H50.9500C18—H18C0.9800
C6—C91.510 (4)C19—C201.515 (5)
C7—H7A0.9800C19—H19A0.9900
C7—H7B0.9800C19—H19B0.9900
C7—H7C0.9800C20—H20A0.9800
C8—H8A0.9800C20—H20B0.9800
C8—H8B0.9800C20—H20C0.9800
C8—H8C0.9800C21—C221.530 (4)
C9—H9A0.9800C21—H21A0.9900
C9—H9B0.9800C21—H21B0.9900
C9—H9C0.9800C22—H22A0.9800
C10—C111.405 (5)C22—H22B0.9800
C10—C151.408 (5)C22—H22C0.9800
C11—C121.402 (4)
C1—In1—C10117.60 (11)C13—C12—C11121.4 (3)
C1—In1—P1123.68 (9)C13—C12—H12119.3
C10—In1—P1103.40 (9)C11—C12—H12119.3
C1—In1—P1i104.11 (7)C12—C13—C14118.2 (3)
C10—In1—P1i122.61 (9)C12—C13—C17120.9 (4)
P1—In1—P1i81.56 (3)C14—C13—C17120.9 (4)
C21—P1—C19104.40 (16)C13—C14—C15121.4 (3)
C21—P1—In1125.97 (11)C13—C14—H14119.3
C19—P1—In199.36 (11)C15—C14—H14119.3
C21—P1—In1i120.44 (11)C14—C15—C10120.9 (3)
C19—P1—In1i104.85 (10)C14—C15—C18117.5 (3)
In1—P1—In1i98.44 (3)C10—C15—C18121.6 (3)
C2—C1—C6118.1 (3)C11—C16—H16A109.5
C2—C1—In1125.1 (2)C11—C16—H16B109.5
C6—C1—In1116.8 (2)H16A—C16—H16B109.5
C3—C2—C1120.3 (3)C11—C16—H16C109.5
C3—C2—C7118.4 (3)H16A—C16—H16C109.5
C1—C2—C7121.3 (3)H16B—C16—H16C109.5
C4—C3—C2122.1 (3)C13—C17—H17A109.5
C4—C3—H3119.0C13—C17—H17B109.5
C2—C3—H3119.0H17A—C17—H17B109.5
C3—C4—C5117.9 (3)C13—C17—H17C109.5
C3—C4—C8120.8 (4)H17A—C17—H17C109.5
C5—C4—C8121.3 (4)H17B—C17—H17C109.5
C4—C5—C6121.5 (3)C15—C18—H18A109.5
C4—C5—H5119.3C15—C18—H18B109.5
C6—C5—H5119.3H18A—C18—H18B109.5
C5—C6—C1120.1 (3)C15—C18—H18C109.5
C5—C6—C9119.1 (3)H18A—C18—H18C109.5
C1—C6—C9120.8 (3)H18B—C18—H18C109.5
C2—C7—H7A109.5C20—C19—P1116.6 (2)
C2—C7—H7B109.5C20—C19—H19A108.1
H7A—C7—H7B109.5P1—C19—H19A108.1
C2—C7—H7C109.5C20—C19—H19B108.1
H7A—C7—H7C109.5P1—C19—H19B108.1
H7B—C7—H7C109.5H19A—C19—H19B107.3
C4—C8—H8A109.5C19—C20—H20A109.5
C4—C8—H8B109.5C19—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
C4—C8—H8C109.5C19—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C6—C9—H9A109.5C22—C21—P1116.1 (2)
C6—C9—H9B109.5C22—C21—H21A108.3
H9A—C9—H9B109.5P1—C21—H21A108.3
C6—C9—H9C109.5C22—C21—H21B108.3
H9A—C9—H9C109.5P1—C21—H21B108.3
H9B—C9—H9C109.5H21A—C21—H21B107.4
C11—C10—C15117.3 (3)C21—C22—H22A109.5
C11—C10—In1124.8 (2)C21—C22—H22B109.5
C15—C10—In1117.9 (2)H22A—C22—H22B109.5
C12—C11—C10120.8 (3)C21—C22—H22C109.5
C12—C11—C16118.0 (3)H22A—C22—H22C109.5
C10—C11—C16121.2 (3)H22B—C22—H22C109.5
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[In2(C9H11)4(C4H10P)2]
Mr884.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)198
a, b, c (Å)22.323 (4), 15.494 (4), 14.331 (3)
β (°) 120.618 (4)
V3)4265.6 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.23 × 0.20 × 0.01
Data collection
DiffractometerBruker SMART1000/P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.777, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14538, 4771, 3470
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.09
No. of reflections4771
No. of parameters225
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), DIAMOND (Brandenburg, 2011), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

References

First citationAitchison, K. A., Julius Backer-Dirks, J. D., Bradley, D. C., Faktor, M. M., Frigo, D. M., Hursthouse, M. B., Hussain, B. & Short, R. L. (1989). J. Organomet. Chem. 366, 11–23.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlcock, N. W., Degnam, I. A., Wallbridge, M. G. H., Powell, H. R., McPartlin, M. & Sheldrick, G. M. (1989). J. Organomet. Chem. 361, C33–C36.  CSD CrossRef CAS Web of Science Google Scholar
First citationBanks, M. A., Beachley, O. T. Jr, Buttrey, L. A., Churchill, M. R. & Fettinger, J. C. (1991). Organometallics, 10, 1901–1906.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (1993). Organometallics, 12, 3992–3997.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeachley, O. T. Jr, Chao, S.-H. L., Churchill, M. R. & Lake, C. H. (2001). Organometallics, 20, 4896–4902.  CAS Google Scholar
First citationBeachley, O. T. Jr, Kopasz, J. P., Zhang, H., Hunter, W. E. & Atwood, J. L. (1987). J. Organomet. Chem. 325, 69–81.  CSD CrossRef CAS Web of Science Google Scholar
First citationBeachley, O. T. Jr, Maloney, J. D., Banks, M. A. & Rogers, R. D. (1995). Organometallics, 14, 3448–3454.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurns, J. A., Dillingham, M. D. B., Hill, J. B., Gripper, K. D., Pennington, W. T. & Robinson, G. H. (1994). Organometallics, 13, 1514–1517.  CSD CrossRef CAS Web of Science Google Scholar
First citationCulp, R. D., Cowley, A. H., Decken, A., Jones, R. A., Bond, M. R., Mokry, L. M. & Carrano, C. J. (1997). Inorg. Chem. 36, 5165-5172.  CSD CrossRef CAS Web of Science Google Scholar
First citationHanisch, C. von (2001). Z. Anorg. Allg. Chem. 627, 68–72.  Google Scholar
First citationMalik, M. A., Haggata, S. W., Motevalli, M. & O'Brien, P. (1996). J. Organomet. Chem. 524, 95–101.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, F., Schulz, S. & Nieger, M. (2002). Z. Anorg. Allg. Chem. 628, 235–242.  Web of Science CSD CrossRef CAS Google Scholar
First citationWells, R. L., McPhail, A. T., Jones, L. J. & Self, M. F. (1993). J. Organomet. Chem. 449, 85–94.  CAS Google Scholar
First citationWells, R. L., McPhail, A. T. & Self, M. F. (1992). Organometallics, 11, 221–225.  CSD CrossRef CAS Web of Science Google Scholar
First citationWerner, B. & Neumüller, B. (1996). Organometallics, 15, 4258–4263.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds