organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3003-o3004

10α-Hy­dr­oxy-4,9-di­methyl-13-(pipyridin-1-ylmethyl)-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]tetra­decan-14-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, bUniversite Blaise Pascal, Laboratoire des Materiaux, Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 27 September 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, C20H31NO5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from fused five-and ten-membered rings with the pipyridin-1-yl-methyl group as a substituent. The ten-membered ring adopts an approximate chair–chair conformation, while the six- and five-membered rings display chair and envelope conformations, respectively. The dihedral angle between the mean planes of the ten-membered ring and the lactone ring is 20.8 (3)°. An intra­molecular O—H⋯N hydrogen-bond occurs. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]); Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For conformations of ten-membered rings, see: Castaneda-Acosta et al. (1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]); Watson & Zabel (1982[Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834-838.]).

[Scheme 1]

Experimental

Crystal data
  • C20H31NO5

  • Mr = 365.46

  • Orthorhombic, P 21 21 21

  • a = 8.0899 (5) Å

  • b = 10.7562 (6) Å

  • c = 22.5093 (13) Å

  • V = 1958.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.85 × 0.48 × 0.36 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • 8978 measured reflections

  • 2291 independent reflections

  • 1707 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.07

  • 2291 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H21⋯N1 0.82 2.11 2.927 (2) 174
C1—H1⋯O5i 0.98 2.47 3.322 (3) 146
C10—H10⋯O4ii 0.98 2.42 3.325 (3) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of medicinals plants and concerning the Anvillea radiata. The main constituent of the chloroform extract of aerial parts of this plant is 9α - hydroxypartenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies(Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), with the aim to prepare products with a high added value that can be used in the pharmacological industry. In the same context, we have synthesized from 9α-hydroxyparthenolide the 6β,7α-epoxy-9apha hydoxy partenolide (Moumou et al., 2010).This epoxy-hydroxypartenolide treated with one equivalent of pipyridin gives 10α- hydroxy-4,9- dimethyl-13-pipyridin-1-ylmethyl-3,8,15-tioxa-tetracyclo [10. 3. 0.02,4.07,9]tetradecan-14-one with a yield of 90%. The structure of this new product was determined by its single-crystal X-ray structure. The molecule contains two fused rings which exhibit different conformations with a pyridin ring as a substituent to the lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.301 (2)Å and ϕ = 79.0 (4)°. The ten-membered ring displays an approximate chair-chair conformation, while the pyridin ring has a perfect chair conformation with QT = 0.567 (3) Å, θ = 180.0 (3)° and ϕ2 = 168 (12)°.This is the typical conformation observed for other sesquiterpenes lactones (Watson & Zabel, 1982; Castaneda-Acosta et al., 1997). In the crystal structure, the molecules are linked by C—H···O intermolecular hydrogen bonds into chains along the b axis (Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009); Moumou et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975). For conformations of ten-membered rings, see: Castaneda-Acosta et al. (1997); Watson & Zabel (1982).

Experimental top

The mixture of 6β,7α-epoxy-9apha hydoxy partenolide (0.5 g, 2 mmol) and one equivalent of pipyridin in EtOH (20 ml) was stirred for one night at room temperature. The next day the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 657 mg (1.8 mmol) of 10α- hydroxy-4,9- dimethyl-13-pipyridin-1-ylmethyl-3,8,15-tioxa-tetracyclo [10. 3. 0.02,4.07,9]tetradecan-14-one, a white solid which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 1692 Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
10α-Hydroxy-4,9-dimethyl-13-(pipyridin-1-ylmethyl)-3,8,15- trioxatetracyclo[10.3.0.02,4.07,9]tetradecan-14-one top
Crystal data top
C20H31NO5F(000) = 792
Mr = 365.46Dx = 1.236 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8987 reflections
a = 8.0899 (5) Åθ = 2.6–26.4°
b = 10.7562 (6) ŵ = 0.09 mm1
c = 22.5093 (13) ÅT = 296 K
V = 1958.7 (2) Å3Prism, colourless
Z = 40.85 × 0.48 × 0.36 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
1707 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.4°, θmin = 3.3°
ϕ and ω scansh = 106
8978 measured reflectionsk = 1313
2291 independent reflectionsl = 2128
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.1661P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2291 reflectionsΔρmax = 0.16 e Å3
239 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (3)
Crystal data top
C20H31NO5V = 1958.7 (2) Å3
Mr = 365.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0899 (5) ŵ = 0.09 mm1
b = 10.7562 (6) ÅT = 296 K
c = 22.5093 (13) Å0.85 × 0.48 × 0.36 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
1707 reflections with I > 2σ(I)
8978 measured reflectionsRint = 0.036
2291 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2291 reflectionsΔρmin = 0.16 e Å3
239 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2580 (3)0.4198 (2)0.04973 (10)0.0372 (6)
H10.20420.35070.07050.045*
C20.2861 (3)0.5264 (2)0.09033 (10)0.0368 (6)
H20.33390.59940.07070.044*
C30.1874 (3)0.5566 (2)0.14313 (10)0.0413 (6)
C40.1764 (4)0.6933 (2)0.15778 (11)0.0512 (7)
H4A0.27860.73330.14590.061*
H4B0.16550.70260.20050.061*
C50.0314 (4)0.7599 (2)0.12752 (11)0.0521 (7)
H5A0.06890.74260.14970.062*
H5B0.05050.84880.12910.062*
C60.0053 (3)0.7223 (2)0.06357 (10)0.0395 (6)
H60.10720.71040.04080.047*
C70.1382 (3)0.6516 (2)0.04136 (10)0.0389 (6)
C80.1253 (3)0.5682 (2)0.01315 (10)0.0383 (6)
H80.23800.54440.02450.046*
C90.0296 (3)0.4476 (2)0.00041 (10)0.0360 (5)
H9A0.05570.42160.04060.043*
H9B0.06820.38300.02630.043*
C100.1594 (3)0.45804 (19)0.00554 (9)0.0336 (5)
H100.18540.54530.01380.040*
C110.2408 (3)0.3801 (2)0.05391 (10)0.0402 (6)
H110.18780.29810.05480.048*
C120.4147 (3)0.3652 (2)0.03188 (12)0.0475 (7)
C130.2395 (4)0.4343 (2)0.11655 (11)0.0496 (7)
H13A0.29020.51600.11550.060*
H13B0.30680.38210.14200.060*
C140.0526 (4)0.4736 (3)0.16635 (11)0.0553 (7)
H14A0.06920.39060.15180.083*
H14B0.05270.50390.15310.083*
H14C0.05540.47320.20900.083*
C150.2820 (3)0.6167 (3)0.08001 (12)0.0577 (8)
H15A0.27610.66190.11670.087*
H15B0.27870.52910.08810.087*
H15C0.38330.63680.06000.087*
C160.0852 (4)0.5186 (2)0.19775 (11)0.0609 (8)
H16A0.16130.47860.22500.073*
H16B0.12810.60070.18880.073*
C170.0073 (4)0.3219 (2)0.15623 (12)0.0555 (7)
H17A0.00100.27390.11980.067*
H17B0.08190.27910.18300.067*
C180.0815 (5)0.5311 (3)0.22704 (13)0.0763 (11)
H18A0.06960.57730.26380.092*
H18B0.15480.57760.20120.092*
C190.1611 (4)0.3277 (3)0.18398 (13)0.0736 (10)
H19A0.23870.36370.15600.088*
H19B0.19830.24430.19340.088*
C200.1572 (5)0.4055 (3)0.24020 (13)0.0764 (10)
H20A0.09270.36330.27040.092*
H20B0.26870.41640.25520.092*
N10.0753 (3)0.44545 (17)0.14266 (8)0.0434 (5)
O10.0559 (2)0.63372 (15)0.06146 (7)0.0471 (5)
H210.02260.58410.08640.071*
O20.4209 (2)0.38309 (15)0.02731 (8)0.0470 (5)
O30.3509 (2)0.50418 (16)0.14908 (7)0.0496 (5)
O40.1255 (2)0.78432 (15)0.03166 (7)0.0490 (5)
O50.5382 (3)0.34028 (19)0.05929 (9)0.0674 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0344 (13)0.0347 (11)0.0426 (13)0.0018 (11)0.0010 (11)0.0057 (10)
C20.0345 (14)0.0383 (12)0.0375 (12)0.0001 (11)0.0080 (10)0.0038 (10)
C30.0428 (15)0.0471 (13)0.0340 (12)0.0030 (13)0.0071 (11)0.0045 (11)
C40.0597 (18)0.0551 (15)0.0389 (14)0.0029 (15)0.0084 (13)0.0070 (12)
C50.0610 (18)0.0456 (14)0.0496 (15)0.0062 (14)0.0019 (14)0.0091 (12)
C60.0409 (14)0.0355 (11)0.0420 (13)0.0074 (12)0.0008 (11)0.0004 (10)
C70.0333 (13)0.0410 (12)0.0425 (13)0.0068 (12)0.0001 (11)0.0077 (11)
C80.0322 (13)0.0428 (12)0.0399 (12)0.0027 (12)0.0059 (10)0.0066 (11)
C90.0378 (13)0.0321 (11)0.0382 (12)0.0045 (11)0.0044 (11)0.0013 (10)
C100.0364 (13)0.0266 (10)0.0378 (12)0.0022 (11)0.0010 (10)0.0032 (10)
C110.0468 (16)0.0319 (11)0.0421 (13)0.0018 (12)0.0052 (12)0.0025 (10)
C120.0490 (17)0.0343 (12)0.0592 (17)0.0048 (13)0.0064 (15)0.0018 (12)
C130.0587 (18)0.0461 (13)0.0440 (14)0.0098 (15)0.0126 (13)0.0034 (12)
C140.0554 (18)0.0632 (16)0.0472 (15)0.0023 (16)0.0081 (13)0.0105 (13)
C150.0395 (16)0.0745 (18)0.0592 (17)0.0019 (16)0.0072 (13)0.0018 (15)
C160.101 (3)0.0442 (14)0.0379 (14)0.0050 (17)0.0115 (16)0.0063 (12)
C170.074 (2)0.0468 (14)0.0460 (14)0.0131 (15)0.0078 (15)0.0031 (13)
C180.116 (3)0.070 (2)0.0428 (15)0.024 (2)0.0013 (19)0.0148 (15)
C190.081 (2)0.084 (2)0.0565 (18)0.019 (2)0.0138 (18)0.0114 (16)
C200.086 (2)0.091 (2)0.0522 (18)0.001 (2)0.0110 (17)0.0086 (16)
N10.0642 (15)0.0354 (10)0.0305 (10)0.0038 (11)0.0050 (10)0.0030 (9)
O10.0609 (12)0.0430 (9)0.0374 (9)0.0072 (10)0.0007 (9)0.0079 (7)
O20.0399 (10)0.0453 (9)0.0558 (11)0.0112 (9)0.0041 (9)0.0024 (8)
O30.0468 (11)0.0607 (11)0.0414 (9)0.0071 (10)0.0148 (8)0.0030 (8)
O40.0540 (11)0.0392 (8)0.0538 (10)0.0127 (9)0.0059 (9)0.0042 (8)
O50.0545 (13)0.0677 (12)0.0801 (14)0.0161 (11)0.0205 (12)0.0067 (11)
Geometric parameters (Å, º) top
C1—O21.465 (3)C11—C131.526 (3)
C1—C21.484 (3)C11—H110.9800
C1—C101.534 (3)C12—O51.204 (3)
C1—H10.9800C12—O21.347 (3)
C2—O31.442 (3)C13—N11.457 (3)
C2—C31.468 (3)C13—H13A0.9700
C2—H20.9800C13—H13B0.9700
C3—O31.445 (3)C14—H14A0.9600
C3—C141.503 (4)C14—H14B0.9600
C3—C41.509 (3)C14—H14C0.9600
C4—C51.534 (4)C15—H15A0.9600
C4—H4A0.9700C15—H15B0.9600
C4—H4B0.9700C15—H15C0.9600
C5—C61.510 (3)C16—N11.471 (3)
C5—H5A0.9700C16—C181.507 (5)
C5—H5B0.9700C16—H16A0.9700
C6—O41.442 (3)C16—H16B0.9700
C6—C71.475 (3)C17—N11.470 (3)
C6—H60.9800C17—C191.500 (4)
C7—O41.448 (3)C17—H17A0.9700
C7—C151.500 (3)C17—H17B0.9700
C7—C81.524 (3)C18—C201.512 (5)
C8—O11.413 (3)C18—H18A0.9700
C8—C91.541 (3)C18—H18B0.9700
C8—H80.9800C19—C201.518 (4)
C9—C101.540 (3)C19—H19A0.9700
C9—H9A0.9700C19—H19B0.9700
C9—H9B0.9700C20—H20A0.9700
C10—C111.524 (3)C20—H20B0.9700
C10—H100.9800O1—H210.8200
C11—C121.501 (4)
O2—C1—C2106.41 (19)C10—C11—C13116.5 (2)
O2—C1—C10105.09 (17)C12—C11—H11108.7
C2—C1—C10111.82 (18)C10—C11—H11108.7
O2—C1—H1111.1C13—C11—H11108.7
C2—C1—H1111.1O5—C12—O2120.5 (3)
C10—C1—H1111.1O5—C12—C11129.2 (3)
O3—C2—C359.51 (14)O2—C12—C11110.3 (2)
O3—C2—C1119.48 (19)N1—C13—C11114.2 (2)
C3—C2—C1125.9 (2)N1—C13—H13A108.7
O3—C2—H2113.7C11—C13—H13A108.7
C3—C2—H2113.7N1—C13—H13B108.7
C1—C2—H2113.7C11—C13—H13B108.7
O3—C3—C259.36 (15)H13A—C13—H13B107.6
O3—C3—C14113.6 (2)C3—C14—H14A109.5
C2—C3—C14123.0 (2)C3—C14—H14B109.5
O3—C3—C4114.5 (2)H14A—C14—H14B109.5
C2—C3—C4115.1 (2)C3—C14—H14C109.5
C14—C3—C4117.4 (2)H14A—C14—H14C109.5
C3—C4—C5113.8 (2)H14B—C14—H14C109.5
C3—C4—H4A108.8C7—C15—H15A109.5
C5—C4—H4A108.8C7—C15—H15B109.5
C3—C4—H4B108.8H15A—C15—H15B109.5
C5—C4—H4B108.8C7—C15—H15C109.5
H4A—C4—H4B107.7H15A—C15—H15C109.5
C6—C5—C4113.9 (2)H15B—C15—H15C109.5
C6—C5—H5A108.8N1—C16—C18111.6 (2)
C4—C5—H5A108.8N1—C16—H16A109.3
C6—C5—H5B108.8C18—C16—H16A109.3
C4—C5—H5B108.8N1—C16—H16B109.3
H5A—C5—H5B107.7C18—C16—H16B109.3
O4—C6—C759.51 (14)H16A—C16—H16B108.0
O4—C6—C5117.0 (2)N1—C17—C19112.9 (2)
C7—C6—C5124.8 (2)N1—C17—H17A109.0
O4—C6—H6114.6C19—C17—H17A109.0
C7—C6—H6114.6N1—C17—H17B109.0
C5—C6—H6114.6C19—C17—H17B109.0
O4—C7—C659.12 (14)H17A—C17—H17B107.8
O4—C7—C15112.9 (2)C16—C18—C20111.6 (3)
C6—C7—C15122.9 (2)C16—C18—H18A109.3
O4—C7—C8117.02 (18)C20—C18—H18A109.3
C6—C7—C8121.5 (2)C16—C18—H18B109.3
C15—C7—C8111.9 (2)C20—C18—H18B109.3
O1—C8—C7110.69 (18)H18A—C18—H18B108.0
O1—C8—C9111.89 (19)C17—C19—C20110.6 (3)
C7—C8—C9111.75 (18)C17—C19—H19A109.5
O1—C8—H8107.4C20—C19—H19A109.5
C7—C8—H8107.4C17—C19—H19B109.5
C9—C8—H8107.4C20—C19—H19B109.5
C10—C9—C8114.86 (18)H19A—C19—H19B108.1
C10—C9—H9A108.6C18—C20—C19109.7 (2)
C8—C9—H9A108.6C18—C20—H20A109.7
C10—C9—H9B108.6C19—C20—H20A109.7
C8—C9—H9B108.6C18—C20—H20B109.7
H9A—C9—H9B107.5C19—C20—H20B109.7
C11—C10—C1101.97 (17)H20A—C20—H20B108.2
C11—C10—C9116.8 (2)C13—N1—C17110.5 (2)
C1—C10—C9115.23 (19)C13—N1—C16109.5 (2)
C11—C10—H10107.4C17—N1—C16109.18 (19)
C1—C10—H10107.4C8—O1—H21109.5
C9—C10—H10107.4C12—O2—C1110.24 (19)
C12—C11—C10103.16 (19)C2—O3—C361.13 (14)
C12—C11—C13110.6 (2)C6—O4—C761.38 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H21···N10.822.112.927 (2)174
C1—H1···O5i0.982.473.322 (3)146
C10—H10···O4ii0.982.423.325 (3)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC20H31NO5
Mr365.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.0899 (5), 10.7562 (6), 22.5093 (13)
V3)1958.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.85 × 0.48 × 0.36
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8978, 2291, 1707
Rint0.036
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.07
No. of reflections2291
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick,2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H21···N10.822.112.927 (2)174
C1—H1···O5i0.982.473.322 (3)146
C10—H10···O4ii0.982.423.325 (3)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.  Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3003-o3004
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds