organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Tri­methyl­sil­yl)prop-2-ynyl p-toluene­sulfonate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 3 October 2011; accepted 20 October 2011; online 29 October 2011)

In the title compound, C13H18O3SSi, the SO3 group displays a partial rotational (ca 50°) disorder about the C—S bond, with relative proportions 0.7744 (13):0.2256 (13). This disorder also forces the propynyl CH2 group to be disordered.

Related literature

For information on the title compound, see: Westmijze & Vermeer (1979[Westmijze, H. & Vermeer, P. (1979). Synthesis, 5, 390-392.]); Tanabe et al. (1995[Tanabe, Y., Yamamoto, H., Yoshida, Y., Miyawaki, T. & Utsumi, N. (1995). Bull. Chem. Soc. Jpn, 68, 297.]); Morales (1995[Morales, A. (1995). PhD dissertation, Louisiana State University, Baton Rouge, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18O3SSi

  • Mr = 282.42

  • Monoclinic, P 21 /c

  • a = 10.6857 (4) Å

  • b = 12.9413 (5) Å

  • c = 11.8793 (4) Å

  • β = 113.471 (2)°

  • V = 1506.83 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 90 K

  • 0.33 × 0.18 × 0.17 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.910, Tmax = 0.952

  • 9135 measured reflections

  • 4721 independent reflections

  • 3257 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.108

  • S = 1.03

  • 4721 reflections

  • 177 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was prepared as an intermediate in the synthesis of 3-methyl substituted benz[f]indole derivatives (Morales, 1995). It has been described as a colorless liquid at room temperature (Tanabe et al., 1995; Westmijze & Vermeer, 1979). Our initial synthesis, by treating 3-trimethylsilylpropargyl alcohol with freshly powdered KOH and freshly recrystallized p-toluenesulfonyl chloride in ether at -50°C, also yielded the desired sulfonate as a liquid. However, after several recrystallizations from hexanes, suitable single crystals were obtained as colorless needles with melting point 43–44°C.

3-Trimethylsilyl-2-propynyl p-toluenesulfonate contains a p-toluenesulfonate group with the S(O)2OCH2 group partially (22.56 (13)%) disordered by rotation of ca 50° about the C–S bond. The disorder was modelled with constrained partial occupancy of two O3 and two H2 sites. The disordered O–C bond distances were restrained to be approximately equal (to within σ = 0.002 Å) to compensate for disorder of the C atom itself. The two partial S–O bonds average 1.574 (2) Å, and the four partial SO bonds average 1.435 (1) Å.

Related literature top

For information on the title compound, see: Westmijze & Vermeer (1979); Tanabe et al. (1995); Morales (1995).

Experimental top

The title compound was prepared according to the procedure of Westmijze & Vermeer (1979): Commercially available 3-trimethylsilylpropargyl alcohol (5.13 g, 40.0 mmol) and freshly purified tosyl chloride (9.53 g, 50.0 mmol) were mixed in anhydrous diethyl ether under an Ar atmosphere. The mixture was cooled to -50 °C, and freshly powdered KOH (15.0 g, 268 mmol) was added at once under vigorous stirring. The temperature of the resulting thick mixture was slowly raised to 0 °C, and the mixture was stirred at this temperature for 30 min. This mixture was poured onto water (200 ml), extracted with ethyl ether (3 τimes 50 ml), washed with water (100 ml), and concentrated under reduced pressure to give a light brown oil. Repeated crystallization from hexanes afforded colorless needles (7.93 g, 70.3% yield).

Refinement top

The site occupation factor was constrained to be x for O1, O2, O3, H8A, H8B, and 1 - x for O1A, O2A, O3A, H8A', H8B'. Atomic displacement parameters were constrained to be equal for the following disordered atom pairs: O1 and O1A, O2 and O2A, O3 and O3A, and interatomic distances C8—O1 and C8—O1A were restrained to be equal to within σ = 0.002.

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic-H), 0.98 (methyl-H), and 0.99 (alkyl-H) Å, and displacement parameters Uiso=1.2Ueq (aromatic and alkyl C) and 1.5Ueq (methyl-C), and thereafter refined as riding.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) showing 50% probability displacement ellipsoids. The two disordered components of the sulfonate group are shown, while only the major component of the attached disordered methylene group is drawn.
3-(Trimethylsilyl)prop-2-ynyl p-toluenesulfonate top
Crystal data top
C13H18O3SSiF(000) = 600
Mr = 282.42Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4768 reflections
a = 10.6857 (4) Åθ = 2.6–31.0°
b = 12.9413 (5) ŵ = 0.29 mm1
c = 11.8793 (4) ÅT = 90 K
β = 113.471 (2)°Needle, colorless
V = 1506.83 (10) Å30.33 × 0.18 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4721 independent reflections
Radiation source: fine-focus sealed tube3257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 9 pixels mm-1θmax = 30.9°, θmin = 2.6°
ω and ϕ scansh = 1515
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1818
Tmin = 0.910, Tmax = 0.952l = 1716
9135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.7293P]
where P = (Fo2 + 2Fc2)/3
4721 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.76 e Å3
1 restraintΔρmin = 0.54 e Å3
3 constraints
Crystal data top
C13H18O3SSiV = 1506.83 (10) Å3
Mr = 282.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6857 (4) ŵ = 0.29 mm1
b = 12.9413 (5) ÅT = 90 K
c = 11.8793 (4) Å0.33 × 0.18 × 0.17 mm
β = 113.471 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4721 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3257 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.952Rint = 0.041
9135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.76 e Å3
4721 reflectionsΔρmin = 0.54 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.00481 (4)0.33704 (3)0.46346 (4)0.01708 (10)
Si10.49810 (5)0.23584 (4)0.04270 (4)0.02127 (12)
O10.87983 (15)0.41268 (11)0.42804 (13)0.0207 (3)0.7744 (13)
O21.08780 (16)0.36473 (12)0.39833 (15)0.0237 (3)0.7744 (13)
O31.06468 (17)0.33877 (12)0.59590 (14)0.0250 (3)0.7744 (13)
O1A0.9453 (3)0.4058 (4)0.3433 (4)0.0207 (3)0.2256 (13)
O2A1.1404 (6)0.3363 (4)0.4827 (5)0.0237 (3)0.2256 (13)
O3A0.9569 (6)0.3761 (4)0.5540 (5)0.0250 (3)0.2256 (13)
C10.93291 (17)0.21448 (12)0.41521 (15)0.0178 (3)
C20.86434 (19)0.16667 (14)0.47865 (16)0.0240 (4)
H20.85640.19970.54690.029*
C30.8077 (2)0.06981 (14)0.44071 (17)0.0282 (4)
H30.76060.03640.48360.034*
C40.81874 (18)0.02064 (13)0.34052 (16)0.0257 (4)
C50.88776 (18)0.07073 (13)0.27880 (16)0.0246 (4)
H50.89550.0380.21020.03*
C60.94568 (17)0.16762 (13)0.31531 (15)0.0212 (3)
H60.9930.20110.27280.025*
C70.7575 (2)0.08509 (15)0.3004 (2)0.0377 (5)
H7A0.75530.10050.21880.057*
H7C0.66450.08640.29720.057*
H7B0.81310.1370.35910.057*
C80.81275 (19)0.45147 (14)0.30416 (16)0.0272 (4)
H8A0.88290.46630.27150.033*0.7744 (13)
H8B0.76710.51750.30660.033*0.7744 (13)
H8A'0.81120.5180.26260.033*0.2256 (13)
H8B'0.79060.46520.37620.033*0.2256 (13)
C90.71152 (19)0.38092 (14)0.21960 (16)0.0237 (4)
C100.62740 (19)0.32454 (14)0.14905 (16)0.0247 (4)
C110.58308 (19)0.15508 (16)0.03569 (18)0.0314 (4)
H11A0.60750.19830.09160.047*
H11B0.52070.10030.08240.047*
H11C0.66580.12410.02570.047*
C120.4334 (2)0.15281 (15)0.13563 (19)0.0333 (4)
H12A0.510.11640.19830.05*
H12B0.36860.10230.08210.05*
H12C0.38760.19590.17550.05*
C130.36123 (19)0.31849 (14)0.06735 (17)0.0270 (4)
H13A0.31370.3550.02370.041*
H13B0.29620.27510.13170.041*
H13C0.40180.36880.10450.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01972 (19)0.01537 (18)0.01643 (19)0.00309 (16)0.00751 (15)0.00186 (15)
Si10.0256 (2)0.0199 (2)0.0190 (2)0.0004 (2)0.00962 (19)0.00338 (19)
O10.0220 (7)0.0174 (7)0.0228 (8)0.0009 (6)0.0091 (6)0.0038 (6)
O20.0242 (8)0.0217 (8)0.0295 (8)0.0020 (6)0.0152 (7)0.0019 (6)
O30.0322 (8)0.0222 (8)0.0168 (7)0.0078 (7)0.0058 (6)0.0022 (6)
O1A0.0220 (7)0.0174 (7)0.0228 (8)0.0009 (6)0.0091 (6)0.0038 (6)
O2A0.0242 (8)0.0217 (8)0.0295 (8)0.0020 (6)0.0152 (7)0.0019 (6)
O3A0.0322 (8)0.0222 (8)0.0168 (7)0.0078 (7)0.0058 (6)0.0022 (6)
C10.0199 (8)0.0136 (7)0.0176 (8)0.0008 (6)0.0050 (6)0.0020 (6)
C20.0311 (9)0.0206 (8)0.0227 (8)0.0059 (7)0.0134 (7)0.0051 (7)
C30.0346 (10)0.0207 (9)0.0307 (10)0.0075 (8)0.0144 (8)0.0006 (7)
C40.0253 (9)0.0159 (8)0.0268 (9)0.0007 (7)0.0006 (7)0.0028 (7)
C50.0294 (9)0.0199 (8)0.0200 (8)0.0056 (7)0.0049 (7)0.0058 (7)
C60.0246 (8)0.0203 (8)0.0184 (8)0.0035 (7)0.0083 (7)0.0008 (7)
C70.0426 (12)0.0185 (9)0.0417 (12)0.0053 (8)0.0059 (10)0.0078 (8)
C80.0314 (9)0.0178 (8)0.0256 (9)0.0002 (7)0.0043 (8)0.0018 (7)
C90.0291 (9)0.0212 (8)0.0224 (9)0.0032 (7)0.0120 (7)0.0018 (7)
C100.0317 (10)0.0241 (9)0.0199 (8)0.0008 (7)0.0120 (7)0.0004 (7)
C110.0257 (9)0.0394 (11)0.0267 (9)0.0020 (8)0.0079 (8)0.0119 (8)
C120.0434 (12)0.0255 (10)0.0342 (11)0.0013 (9)0.0191 (9)0.0022 (8)
C130.0299 (9)0.0251 (9)0.0250 (9)0.0012 (7)0.0100 (8)0.0014 (7)
Geometric parameters (Å, º) top
S1—O2A1.374 (5)C5—C61.389 (2)
S1—O21.4352 (15)C5—H50.95
S1—O31.4434 (15)C6—H60.95
S1—O3A1.454 (6)C7—H7A0.98
S1—O11.5720 (15)C7—H7C0.98
S1—O1A1.584 (5)C7—H7B0.98
S1—C11.7561 (16)C8—C91.465 (2)
Si1—C101.8526 (19)C8—H8A0.99
Si1—C111.8594 (19)C8—H8B0.99
Si1—C121.8600 (19)C8—H8A'0.99
Si1—C131.8625 (19)C8—H8B'0.99
O1—C81.446 (2)C9—C101.201 (3)
O1A—C81.430 (3)C11—H11A0.98
C1—C61.387 (2)C11—H11B0.98
C1—C21.388 (2)C11—H11C0.98
C2—C31.387 (2)C12—H12A0.98
C2—H20.95C12—H12B0.98
C3—C41.396 (3)C12—H12C0.98
C3—H30.95C13—H13A0.98
C4—C51.390 (3)C13—H13B0.98
C4—C71.510 (2)C13—H13C0.98
O2—S1—O3118.88 (10)C4—C7—H7A109.5
O2A—S1—O3A122.5 (3)C4—C7—H7C109.5
O2—S1—O1109.98 (9)H7A—C7—H7C109.5
O3—S1—O1104.04 (9)C4—C7—H7B109.5
O2A—S1—O1A99.9 (3)H7A—C7—H7B109.5
O3A—S1—O1A109.7 (3)H7C—C7—H7B109.5
O2A—S1—C1110.1 (2)O1A—C8—C9109.3 (2)
O2—S1—C1109.48 (9)O1—C8—C9114.37 (15)
O3—S1—C1108.43 (8)O1—C8—H8A108.7
O3A—S1—C1108.6 (2)C9—C8—H8A108.7
O1—S1—C1105.10 (8)O1—C8—H8B108.7
O1A—S1—C1104.31 (19)C9—C8—H8B108.7
C10—Si1—C11108.03 (9)H8A—C8—H8B107.6
C10—Si1—C12107.80 (9)O1A—C8—H8A'109.8
C11—Si1—C12110.10 (10)C9—C8—H8A'109.8
C10—Si1—C13106.66 (8)O1A—C8—H8B'109.8
C11—Si1—C13112.01 (9)C9—C8—H8B'109.8
C12—Si1—C13112.01 (9)H8A'—C8—H8B'108.3
C8—O1—S1120.83 (12)C10—C9—C8178.9 (2)
C8—O1A—S1121.0 (3)C9—C10—Si1178.90 (17)
C6—C1—C2121.51 (15)Si1—C11—H11A109.5
C6—C1—S1119.66 (13)Si1—C11—H11B109.5
C2—C1—S1118.83 (12)H11A—C11—H11B109.5
C3—C2—C1118.87 (16)Si1—C11—H11C109.5
C3—C2—H2120.6H11A—C11—H11C109.5
C1—C2—H2120.6H11B—C11—H11C109.5
C2—C3—C4121.00 (17)Si1—C12—H12A109.5
C2—C3—H3119.5Si1—C12—H12B109.5
C4—C3—H3119.5H12A—C12—H12B109.5
C5—C4—C3118.69 (16)Si1—C12—H12C109.5
C5—C4—C7120.67 (17)H12A—C12—H12C109.5
C3—C4—C7120.64 (18)H12B—C12—H12C109.5
C6—C5—C4121.35 (16)Si1—C13—H13A109.5
C6—C5—H5119.3Si1—C13—H13B109.5
C4—C5—H5119.3H13A—C13—H13B109.5
C1—C6—C5118.58 (16)Si1—C13—H13C109.5
C1—C6—H6120.7H13A—C13—H13C109.5
C5—C6—H6120.7H13B—C13—H13C109.5
O2—S1—O1—C836.57 (16)O3—S1—C1—C240.01 (17)
O3—S1—O1—C8164.93 (14)O3A—S1—C1—C210.1 (3)
C1—S1—O1—C881.18 (15)O1—S1—C1—C270.77 (15)
O2A—S1—O1A—C8163.6 (4)O1A—S1—C1—C2127.00 (18)
O3A—S1—O1A—C833.6 (5)C6—C1—C2—C30.0 (3)
C1—S1—O1A—C882.5 (4)S1—C1—C2—C3179.91 (14)
O2A—S1—C1—C653.4 (3)C1—C2—C3—C40.1 (3)
O2—S1—C1—C68.82 (17)C2—C3—C4—C50.1 (3)
O3—S1—C1—C6139.95 (14)C2—C3—C4—C7179.61 (18)
O3A—S1—C1—C6170.0 (3)C3—C4—C5—C60.3 (3)
O1—S1—C1—C6109.28 (14)C7—C4—C5—C6179.42 (17)
O1A—S1—C1—C653.05 (19)C2—C1—C6—C50.1 (3)
O2A—S1—C1—C2126.6 (3)S1—C1—C6—C5179.91 (13)
O2—S1—C1—C2171.14 (14)C4—C5—C6—C10.3 (3)

Experimental details

Crystal data
Chemical formulaC13H18O3SSi
Mr282.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)10.6857 (4), 12.9413 (5), 11.8793 (4)
β (°) 113.471 (2)
V3)1506.83 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.33 × 0.18 × 0.17
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.910, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
9135, 4721, 3257
Rint0.041
(sin θ/λ)max1)0.722
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.108, 1.03
No. of reflections4721
No. of parameters177
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.54

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

Current address: Morales Consulting, LLC, 11474 Perkins Street, Carmel, IN 46032 USA.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMorales, A. (1995). PhD dissertation, Louisiana State University, Baton Rouge, USA.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, Y., Yamamoto, H., Yoshida, Y., Miyawaki, T. & Utsumi, N. (1995). Bull. Chem. Soc. Jpn, 68, 297.  CrossRef Web of Science Google Scholar
First citationWestmijze, H. & Vermeer, P. (1979). Synthesis, 5, 390–392.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds