organic compounds
4-[2-(Cyclohexa-1,4-dien-1-yl)ethoxy]benzene-1,2-dicarbonitrile
aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bGümüşhane University, TR-29000 Gümüşhane, Turkey, and cDepartment of Chemistry, Karadeniz Technical University, TR-61080 Trabzon, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr
In the title compound, C16H14N2O, the dihedral angle between the aromatic rings is 70.23 (6)°. The linking chain has a zigzag conformation. In the crystal, molecules are linked by weak intermolecular C—H⋯N hydrogen bonds, forming a zigzag chain along the c axis.
Related literature
For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For the crystal structures of related cyclohexa-1,4-dienyl rings, see: Dialer et al. (2004); Jandacek & Simonsen (1969); Therrien & Süss-Fink (2006); Lou & Hu (2009). For further synthetic details, see: Menzek et al. (2008). For C≡N bond lengths, see: Nesi et al. (1998); Ocak Ískeleli et al. (2005); Subbiah Pandi et al. (2002); Yu et al. (2010). For the Hirshfeld Rigid-Bond test, see: Hirshfeld (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811042164/fk2042sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042164/fk2042Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811042164/fk2042Isup3.cml
The mixture of 2-(cyclohexa-1,4-dienyl)ethanol and 2-cyclohexenylethanol (0.4 g, 3.2 mmol) (Menzek et al., 2008) was dissolved in dry DMF (20 ml) under N2 atmosphere and 4-nitrophthalonitrile (0.57 g, 3.2 mmol) was added to the solution. After stirring 10 min. finely ground anhydrous K2CO3 (2.2 g, 16 mmol) was added portion wise within 2 h with efficient stirring. The reaction mixture was stirred under N2 at 50 °C for 5 days. The solution was poured into ice-water (100 g) and was stirred 24 h. The mixture of solid product was filtered, washed with water and dried in vacuo over P2O5. The obtained product was purified from the νmax(cm-1): 3027 (Ar—H), 2929–2883 (Aliphatic. C—H), 2230 (C≡N), 1598, 1561, 1492, 1321, 1254, 1172, 1097, 1016, 959, 836, 749, 666. 1H NMR (CDCI3), (δ: p.p.m.): 8.61 (d, 1H, Ar—H), 7.26–7.21 (m, 2H, Ar—H), 5.69 (s, 2H, CH), 5.54 (s, 1H, CH), 4.14 (t, 2H, O—CH2), 2.68–2.64 (m, 4H, CH2), 2.48 (t, 2H, CH2). 13C NMR (CDCl3), (δ: p.p.m.): 162.29, 135.48, 130.66, 129.16, 128.92, 127.16, 124.41, 124.02, 121.80, 119.98, 119.60, 115.99, 67.95, 36.64, 29.42, 26.97. MS (ES+), (m/z): 250 [M]+.
on silica gel with hexane-ethyl acetate (9:1) as eluents. The compound was crystallized from ethanol. Yield: 0.49 g (61%). Anal. Calcd (%) C,76.78; H,5.64; N,11.19. Found:C,76.38; H,5.43; N,11.16. IR (KBr tablets),All H atoms were positioned with idealized geometry using a riding model, [C—H = 0.93–0.97Å and Uiso = 1.2Ueq(C)]. DELU instruction is applied to C11—C15 and C12—C16 atoms for Hirshfeld Rigid-Bond Test (Hirshfeld, 1976).
Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and sub-phthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over the last few years, a great deal of interest has focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromic devices, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996).
In the title compound, C16H14N2O1, (I), both rings cyclohexa-1,4-dienyl and phthalonitrile are almost planar with r.m.s. deviations of 0.0074 Å and 0.0183 Å, respectively. They are linked by a CH2—CH2—O group with zigzag conformation and form a dihedral angle of 70.23 (6)° (Fig.1).
The C=C double bonds of the cyclohexa-1,4-dienyl ring measure 1.344 (3) Å and 1.319 (4) Å and are similar to those in other works (Dialer et al., 2004; Jandacek & Simonsen, 1969; Therrien & Süss-Fink, 2006; Lou & Hu, 2009). The C15≡N1 and C16≡N2 triple bonds, which are placed at meta and para position, are 1.141 (2) Å, and in good agreement with literature values (Subbiah Pandi et al., 2002; Yu et al., 2010; Nesi et al., 1998; Ocak Ískeleli et al., 2005).
In the crystal, molecules are linked by weak intermolecular C—H ···N hydrogen bonds, forming a zigzag chain along c axis (Table 1 and Fig.2).
For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For the crystal structures of related cyclohexa-1,4-dienyl rings, see: Dialer et al. (2004); Jandacek & Simonsen (1969); Therrien & Süss-Fink (2006); Lou & Hu (2009). For further synthetic details, see: Menzek et al. (2008). For C≡N bond lengths, see: Nesi et al. (1998); Ocak Ískeleli et al. (2005); Subbiah Pandi et al. (2002); Yu et al. (2010). For the Hirshfeld Rigid-Bond test, see: Hirshfeld (1976).
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H14N2O | F(000) = 1056 |
Mr = 250.29 | Dx = 1.191 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 19074 reflections |
a = 8.6291 (3) Å | θ = 1.5–26.2° |
b = 27.5913 (14) Å | µ = 0.08 mm−1 |
c = 11.7246 (5) Å | T = 296 K |
V = 2791.5 (2) Å3 | Block, colorless |
Z = 8 | 0.45 × 0.37 × 0.32 mm |
Stoe IPDS 2 diffractometer | 2790 independent reflections |
Radiation source: fine-focus sealed tube | 1901 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
rotation method scans | θmax = 26.2°, θmin = 1.5° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −10→10 |
Tmin = 0.968, Tmax = 0.983 | k = −34→34 |
19074 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1026P] where P = (Fo2 + 2Fc2)/3 |
19074 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.11 e Å−3 |
2 restraints | Δρmin = −0.13 e Å−3 |
C16H14N2O | V = 2791.5 (2) Å3 |
Mr = 250.29 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.6291 (3) Å | µ = 0.08 mm−1 |
b = 27.5913 (14) Å | T = 296 K |
c = 11.7246 (5) Å | 0.45 × 0.37 × 0.32 mm |
Stoe IPDS 2 diffractometer | 2790 independent reflections |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | 1901 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.983 | Rint = 0.047 |
19074 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 2 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.11 e Å−3 |
19074 reflections | Δρmin = −0.13 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0085 (2) | 0.17483 (7) | 0.35845 (15) | 0.0732 (5) | |
C2 | −0.1054 (3) | 0.17362 (9) | 0.45699 (19) | 0.1004 (7) | |
H2A | −0.0401 | 0.1683 | 0.5232 | 0.120* | |
H2B | −0.1738 | 0.1459 | 0.4504 | 0.120* | |
C3 | −0.2008 (3) | 0.21659 (12) | 0.4786 (2) | 0.1193 (9) | |
H3 | −0.2667 | 0.2169 | 0.5413 | 0.143* | |
C4 | −0.1957 (3) | 0.25488 (11) | 0.4112 (3) | 0.1166 (9) | |
H4 | −0.2589 | 0.2812 | 0.4279 | 0.140* | |
C5 | −0.0983 (4) | 0.25734 (10) | 0.3152 (3) | 0.1248 (9) | |
H5A | −0.0287 | 0.2846 | 0.3250 | 0.150* | |
H5B | −0.1620 | 0.2640 | 0.2489 | 0.150* | |
C6 | −0.0055 (3) | 0.21439 (9) | 0.2917 (2) | 0.1004 (7) | |
H6 | 0.0585 | 0.2144 | 0.2278 | 0.120* | |
C7 | 0.0900 (3) | 0.13131 (8) | 0.33115 (18) | 0.0918 (6) | |
H7A | 0.0266 | 0.1023 | 0.3346 | 0.110* | |
H7B | 0.1298 | 0.1343 | 0.2541 | 0.110* | |
C8 | 0.2225 (2) | 0.12638 (8) | 0.41224 (16) | 0.0822 (5) | |
H8A | 0.2832 | 0.1560 | 0.4132 | 0.099* | |
H8B | 0.1843 | 0.1204 | 0.4888 | 0.099* | |
C9 | 0.4477 (2) | 0.07643 (6) | 0.43332 (14) | 0.0665 (4) | |
C10 | 0.4881 (2) | 0.09851 (6) | 0.53531 (14) | 0.0686 (4) | |
H10 | 0.4238 | 0.1218 | 0.5675 | 0.082* | |
C11 | 0.6245 (2) | 0.08556 (6) | 0.58867 (14) | 0.0663 (4) | |
C12 | 0.7225 (2) | 0.05090 (6) | 0.54140 (14) | 0.0690 (4) | |
C13 | 0.6805 (2) | 0.02936 (6) | 0.43832 (14) | 0.0724 (5) | |
H13 | 0.7451 | 0.0063 | 0.4053 | 0.087* | |
C14 | 0.5449 (2) | 0.04191 (6) | 0.38548 (14) | 0.0702 (5) | |
H14 | 0.5177 | 0.0272 | 0.3170 | 0.084* | |
C15 | 0.6671 (2) | 0.10975 (7) | 0.69314 (16) | 0.0772 (5) | |
C16 | 0.8642 (2) | 0.03802 (7) | 0.59768 (17) | 0.0810 (5) | |
N1 | 0.7011 (2) | 0.12993 (7) | 0.77426 (15) | 0.1066 (6) | |
N2 | 0.9776 (2) | 0.02813 (8) | 0.64194 (17) | 0.1077 (6) | |
O1 | 0.31679 (15) | 0.08620 (5) | 0.37450 (10) | 0.0824 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0677 (11) | 0.0829 (11) | 0.0690 (10) | −0.0002 (9) | −0.0071 (8) | −0.0004 (9) |
C2 | 0.0990 (15) | 0.1089 (16) | 0.0931 (14) | 0.0081 (13) | 0.0154 (12) | 0.0115 (12) |
C3 | 0.111 (2) | 0.155 (3) | 0.0922 (15) | 0.0361 (18) | 0.0114 (14) | −0.0140 (17) |
C4 | 0.123 (2) | 0.1029 (19) | 0.124 (2) | 0.0322 (16) | −0.0330 (18) | −0.0331 (17) |
C5 | 0.125 (2) | 0.0928 (17) | 0.156 (3) | 0.0011 (15) | −0.031 (2) | 0.0192 (17) |
C6 | 0.0925 (15) | 0.1142 (18) | 0.0944 (14) | −0.0011 (13) | 0.0070 (12) | 0.0216 (13) |
C7 | 0.0899 (14) | 0.1034 (15) | 0.0820 (12) | 0.0126 (12) | −0.0152 (11) | −0.0191 (11) |
C8 | 0.0801 (12) | 0.0911 (13) | 0.0752 (10) | 0.0164 (10) | −0.0095 (9) | −0.0200 (10) |
C9 | 0.0712 (11) | 0.0671 (10) | 0.0614 (9) | 0.0016 (8) | 0.0002 (8) | −0.0007 (7) |
C10 | 0.0719 (11) | 0.0701 (10) | 0.0638 (9) | 0.0034 (8) | 0.0014 (8) | −0.0063 (8) |
C11 | 0.0699 (10) | 0.0668 (10) | 0.0622 (8) | −0.0031 (8) | 0.0018 (8) | 0.0029 (7) |
C12 | 0.0719 (10) | 0.0657 (10) | 0.0693 (9) | −0.0004 (8) | 0.0043 (8) | 0.0126 (8) |
C13 | 0.0825 (12) | 0.0655 (10) | 0.0692 (10) | 0.0078 (9) | 0.0106 (9) | 0.0038 (8) |
C14 | 0.0858 (12) | 0.0653 (10) | 0.0597 (9) | 0.0038 (9) | 0.0046 (8) | −0.0030 (7) |
C15 | 0.0802 (12) | 0.0800 (12) | 0.0714 (10) | −0.0017 (10) | −0.0091 (9) | −0.0026 (8) |
C16 | 0.0802 (11) | 0.0812 (12) | 0.0816 (11) | 0.0078 (10) | −0.0013 (9) | 0.0094 (9) |
N1 | 0.1198 (15) | 0.1121 (14) | 0.0877 (11) | −0.0017 (11) | −0.0250 (10) | −0.0168 (10) |
N2 | 0.0960 (14) | 0.1210 (15) | 0.1059 (14) | 0.0233 (11) | −0.0129 (11) | 0.0093 (11) |
O1 | 0.0831 (9) | 0.0900 (8) | 0.0740 (7) | 0.0161 (7) | −0.0133 (6) | −0.0210 (6) |
C1—C6 | 1.344 (3) | C8—O1 | 1.445 (2) |
C1—C2 | 1.426 (3) | C8—H8A | 0.9700 |
C1—C7 | 1.506 (3) | C8—H8B | 0.9700 |
C2—C3 | 1.465 (3) | C9—O1 | 1.351 (2) |
C2—H2A | 0.9700 | C9—C10 | 1.386 (2) |
C2—H2B | 0.9700 | C9—C14 | 1.387 (2) |
C3—C4 | 1.319 (4) | C10—C11 | 1.380 (2) |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C4—C5 | 1.406 (4) | C11—C12 | 1.392 (2) |
C4—H4 | 0.9300 | C11—C15 | 1.443 (3) |
C5—C6 | 1.457 (4) | C12—C13 | 1.395 (2) |
C5—H5A | 0.9700 | C12—C16 | 1.434 (3) |
C5—H5B | 0.9700 | C13—C14 | 1.369 (3) |
C6—H6 | 0.9300 | C13—H13 | 0.9300 |
C7—C8 | 1.493 (3) | C14—H14 | 0.9300 |
C7—H7A | 0.9700 | C15—N1 | 1.141 (2) |
C7—H7B | 0.9700 | C16—N2 | 1.141 (2) |
C6—C1—C2 | 120.2 (2) | H7A—C7—H7B | 107.9 |
C6—C1—C7 | 120.86 (19) | O1—C8—C7 | 107.84 (14) |
C2—C1—C7 | 118.99 (18) | O1—C8—H8A | 110.1 |
C1—C2—C3 | 116.8 (2) | C7—C8—H8A | 110.1 |
C1—C2—H2A | 108.1 | O1—C8—H8B | 110.1 |
C3—C2—H2A | 108.1 | C7—C8—H8B | 110.1 |
C1—C2—H2B | 108.1 | H8A—C8—H8B | 108.5 |
C3—C2—H2B | 108.1 | O1—C9—C10 | 124.26 (15) |
H2A—C2—H2B | 107.3 | O1—C9—C14 | 115.85 (15) |
C4—C3—C2 | 121.7 (2) | C10—C9—C14 | 119.89 (16) |
C4—C3—H3 | 119.1 | C11—C10—C9 | 119.46 (16) |
C2—C3—H3 | 119.1 | C11—C10—H10 | 120.3 |
C3—C4—C5 | 122.5 (2) | C9—C10—H10 | 120.3 |
C3—C4—H4 | 118.7 | C10—C11—C12 | 121.04 (16) |
C5—C4—H4 | 118.7 | C10—C11—C15 | 118.87 (16) |
C4—C5—C6 | 116.2 (2) | C12—C11—C15 | 120.06 (16) |
C4—C5—H5A | 108.2 | C11—C12—C13 | 118.68 (16) |
C6—C5—H5A | 108.2 | C11—C12—C16 | 120.35 (16) |
C4—C5—H5B | 108.2 | C13—C12—C16 | 120.98 (17) |
C6—C5—H5B | 108.2 | C14—C13—C12 | 120.43 (17) |
H5A—C5—H5B | 107.4 | C14—C13—H13 | 119.8 |
C1—C6—C5 | 122.6 (2) | C12—C13—H13 | 119.8 |
C1—C6—H6 | 118.7 | C13—C14—C9 | 120.50 (16) |
C5—C6—H6 | 118.7 | C13—C14—H14 | 119.8 |
C8—C7—C1 | 111.70 (15) | C9—C14—H14 | 119.8 |
C8—C7—H7A | 109.3 | N1—C15—C11 | 178.3 (2) |
C1—C7—H7A | 109.3 | N2—C16—C12 | 179.3 (2) |
C8—C7—H7B | 109.3 | C9—O1—C8 | 117.90 (13) |
C1—C7—H7B | 109.3 | ||
C6—C1—C2—C3 | 1.2 (3) | C9—C10—C11—C15 | 178.35 (16) |
C7—C1—C2—C3 | −179.0 (2) | C10—C11—C12—C13 | 0.1 (2) |
C1—C2—C3—C4 | −1.0 (4) | C15—C11—C12—C13 | −177.84 (16) |
C2—C3—C4—C5 | −0.5 (4) | C10—C11—C12—C16 | 179.71 (16) |
C3—C4—C5—C6 | 1.7 (4) | C15—C11—C12—C16 | 1.8 (2) |
C2—C1—C6—C5 | 0.1 (3) | C11—C12—C13—C14 | −0.5 (3) |
C7—C1—C6—C5 | −179.7 (2) | C16—C12—C13—C14 | 179.92 (16) |
C4—C5—C6—C1 | −1.5 (4) | C12—C13—C14—C9 | 0.4 (3) |
C6—C1—C7—C8 | 107.6 (2) | O1—C9—C14—C13 | −179.97 (15) |
C2—C1—C7—C8 | −72.2 (3) | C10—C9—C14—C13 | 0.1 (3) |
C1—C7—C8—O1 | −175.64 (17) | C10—C9—O1—C8 | 8.2 (3) |
O1—C9—C10—C11 | 179.61 (16) | C14—C9—O1—C8 | −171.72 (16) |
C14—C9—C10—C11 | −0.5 (3) | C7—C8—O1—C9 | 177.27 (17) |
C9—C10—C11—C12 | 0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···N2i | 0.93 | 2.56 | 3.453 (3) | 162 |
Symmetry code: (i) −x+3/2, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H14N2O |
Mr | 250.29 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 8.6291 (3), 27.5913 (14), 11.7246 (5) |
V (Å3) | 2791.5 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.45 × 0.37 × 0.32 |
Data collection | |
Diffractometer | Stoe IPDS 2 |
Absorption correction | Integration (X-RED32; Stoe & Cie, 2002) |
Tmin, Tmax | 0.968, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19074, 2790, 1901 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.621 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.139, 1.07 |
No. of reflections | 19074 |
No. of parameters | 172 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.11, −0.13 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···N2i | 0.93 | 2.56 | 3.453 (3) | 161.7 |
Symmetry code: (i) −x+3/2, −y, z−1/2. |
Acknowledgements
The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).
References
Dialer, H., Nöth, H., Seifert, T. & Beck, W. (2004). Z. Kristallogr. New Cryst. Struct. 219, 309–310. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244. CrossRef IUCr Journals Web of Science Google Scholar
Jandacek, R. J. & Simonsen, S. H. (1969). J. Am. Chem. Soc. 91, 6663–6665. CSD CrossRef CAS Web of Science Google Scholar
Leznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc. Google Scholar
Lou, W.-J. & Hu, X.-R. (2009). Acta Cryst. E65, o1916. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press. Google Scholar
Menzek, A., Karakaya, M. G. & Kaya, A. A. (2008). Helv. Chim. Acta, 91, 2299–2307. CrossRef CAS Google Scholar
Moser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press. Google Scholar
Nesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851–10856. Web of Science CSD CrossRef CAS Google Scholar
Ocak Ískeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294–o2295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164–o167. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Therrien, B. & Süss-Fink, G. (2006). Acta Cryst. E62, o1877–o1878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yu, L., Zhou, X., Yin, Y., Li, R. & Peng, T. (2010). Acta Cryst. E66, o2527. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and sub-phthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over the last few years, a great deal of interest has focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromic devices, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996).
In the title compound, C16H14N2O1, (I), both rings cyclohexa-1,4-dienyl and phthalonitrile are almost planar with r.m.s. deviations of 0.0074 Å and 0.0183 Å, respectively. They are linked by a CH2—CH2—O group with zigzag conformation and form a dihedral angle of 70.23 (6)° (Fig.1).
The C=C double bonds of the cyclohexa-1,4-dienyl ring measure 1.344 (3) Å and 1.319 (4) Å and are similar to those in other works (Dialer et al., 2004; Jandacek & Simonsen, 1969; Therrien & Süss-Fink, 2006; Lou & Hu, 2009). The C15≡N1 and C16≡N2 triple bonds, which are placed at meta and para position, are 1.141 (2) Å, and in good agreement with literature values (Subbiah Pandi et al., 2002; Yu et al., 2010; Nesi et al., 1998; Ocak Ískeleli et al., 2005).
In the crystal, molecules are linked by weak intermolecular C—H ···N hydrogen bonds, forming a zigzag chain along c axis (Table 1 and Fig.2).