organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(Cyclo­hexa-1,4-dien-1-yl)eth­­oxy]benzene-1,2-dicarbo­nitrile

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bGümüşhane University, TR-29000 Gümüşhane, Turkey, and cDepartment of Chemistry, Karadeniz Technical University, TR-61080 Trabzon, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 5 October 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, C16H14N2O, the dihedral angle between the aromatic rings is 70.23 (6)°. The linking chain has a zigzag conformation. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯N hydrogen bonds, forming a zigzag chain along the c axis.

Related literature

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998[McKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.]); Leznoff & Lever (1989–1996[Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.]); Moser & Thomas (1983[Moser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.]). For the crystal structures of related cyclo­hexa-1,4-dienyl rings, see: Dialer et al. (2004[Dialer, H., Nöth, H., Seifert, T. & Beck, W. (2004). Z. Kristallogr. New Cryst. Struct. 219, 309-310.]); Jandacek & Simonsen (1969[Jandacek, R. J. & Simonsen, S. H. (1969). J. Am. Chem. Soc. 91, 6663-6665.]); Therrien & Süss-Fink (2006[Therrien, B. & Süss-Fink, G. (2006). Acta Cryst. E62, o1877-o1878.]); Lou & Hu (2009[Lou, W.-J. & Hu, X.-R. (2009). Acta Cryst. E65, o1916.]). For further synthetic details, see: Menzek et al. (2008[Menzek, A., Karakaya, M. G. & Kaya, A. A. (2008). Helv. Chim. Acta, 91, 2299-2307.]). For C≡N bond lengths, see: Nesi et al. (1998[Nesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851-10856.]); Ocak Ískeleli et al. (2005[Ocak Ískeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294-o2295.]); Subbiah Pandi et al. (2002[Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.]); Yu et al. (2010[Yu, L., Zhou, X., Yin, Y., Li, R. & Peng, T. (2010). Acta Cryst. E66, o2527.]). For the Hirshfeld Rigid-Bond test, see: Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O

  • Mr = 250.29

  • Orthorhombic, P b c a

  • a = 8.6291 (3) Å

  • b = 27.5913 (14) Å

  • c = 11.7246 (5) Å

  • V = 2791.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.45 × 0.37 × 0.32 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.968, Tmax = 0.983

  • 19074 measured reflections

  • 2790 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.139

  • S = 1.07

  • 19074 reflections

  • 172 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2i 0.93 2.56 3.453 (3) 162
Symmetry code: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and sub-phthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over the last few years, a great deal of interest has focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromic devices, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996).

In the title compound, C16H14N2O1, (I), both rings cyclohexa-1,4-dienyl and phthalonitrile are almost planar with r.m.s. deviations of 0.0074 Å and 0.0183 Å, respectively. They are linked by a CH2—CH2—O group with zigzag conformation and form a dihedral angle of 70.23 (6)° (Fig.1).

The C=C double bonds of the cyclohexa-1,4-dienyl ring measure 1.344 (3) Å and 1.319 (4) Å and are similar to those in other works (Dialer et al., 2004; Jandacek & Simonsen, 1969; Therrien & Süss-Fink, 2006; Lou & Hu, 2009). The C15N1 and C16N2 triple bonds, which are placed at meta and para position, are 1.141 (2) Å, and in good agreement with literature values (Subbiah Pandi et al., 2002; Yu et al., 2010; Nesi et al., 1998; Ocak Ískeleli et al., 2005).

In the crystal, molecules are linked by weak intermolecular C—H ···N hydrogen bonds, forming a zigzag chain along c axis (Table 1 and Fig.2).

Related literature top

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For the crystal structures of related cyclohexa-1,4-dienyl rings, see: Dialer et al. (2004); Jandacek & Simonsen (1969); Therrien & Süss-Fink (2006); Lou & Hu (2009). For further synthetic details, see: Menzek et al. (2008). For CN bond lengths, see: Nesi et al. (1998); Ocak Ískeleli et al. (2005); Subbiah Pandi et al. (2002); Yu et al. (2010). For the Hirshfeld Rigid-Bond test, see: Hirshfeld (1976).

Experimental top

The mixture of 2-(cyclohexa-1,4-dienyl)ethanol and 2-cyclohexenylethanol (0.4 g, 3.2 mmol) (Menzek et al., 2008) was dissolved in dry DMF (20 ml) under N2 atmosphere and 4-nitrophthalonitrile (0.57 g, 3.2 mmol) was added to the solution. After stirring 10 min. finely ground anhydrous K2CO3 (2.2 g, 16 mmol) was added portion wise within 2 h with efficient stirring. The reaction mixture was stirred under N2 at 50 °C for 5 days. The solution was poured into ice-water (100 g) and was stirred 24 h. The mixture of solid product was filtered, washed with water and dried in vacuo over P2O5. The obtained product was purified from the column chromatography on silica gel with hexane-ethyl acetate (9:1) as eluents. The compound was crystallized from ethanol. Yield: 0.49 g (61%). Anal. Calcd (%) C,76.78; H,5.64; N,11.19. Found:C,76.38; H,5.43; N,11.16. IR (KBr tablets), νmax(cm-1): 3027 (Ar—H), 2929–2883 (Aliphatic. C—H), 2230 (CN), 1598, 1561, 1492, 1321, 1254, 1172, 1097, 1016, 959, 836, 749, 666. 1H NMR (CDCI3), (δ: p.p.m.): 8.61 (d, 1H, Ar—H), 7.26–7.21 (m, 2H, Ar—H), 5.69 (s, 2H, CH), 5.54 (s, 1H, CH), 4.14 (t, 2H, O—CH2), 2.68–2.64 (m, 4H, CH2), 2.48 (t, 2H, CH2). 13C NMR (CDCl3), (δ: p.p.m.): 162.29, 135.48, 130.66, 129.16, 128.92, 127.16, 124.41, 124.02, 121.80, 119.98, 119.60, 115.99, 67.95, 36.64, 29.42, 26.97. MS (ES+), (m/z): 250 [M]+.

Refinement top

All H atoms were positioned with idealized geometry using a riding model, [C—H = 0.93–0.97Å and Uiso = 1.2Ueq(C)]. DELU instruction is applied to C11—C15 and C12—C16 atoms for Hirshfeld Rigid-Bond Test (Hirshfeld, 1976).

Structure description top

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and sub-phthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). Phthalocyanines were first developed as dyes and pigments (Moser & Thomas, 1983). Over the last few years, a great deal of interest has focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromic devices, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff & Lever, 1989–1996).

In the title compound, C16H14N2O1, (I), both rings cyclohexa-1,4-dienyl and phthalonitrile are almost planar with r.m.s. deviations of 0.0074 Å and 0.0183 Å, respectively. They are linked by a CH2—CH2—O group with zigzag conformation and form a dihedral angle of 70.23 (6)° (Fig.1).

The C=C double bonds of the cyclohexa-1,4-dienyl ring measure 1.344 (3) Å and 1.319 (4) Å and are similar to those in other works (Dialer et al., 2004; Jandacek & Simonsen, 1969; Therrien & Süss-Fink, 2006; Lou & Hu, 2009). The C15N1 and C16N2 triple bonds, which are placed at meta and para position, are 1.141 (2) Å, and in good agreement with literature values (Subbiah Pandi et al., 2002; Yu et al., 2010; Nesi et al., 1998; Ocak Ískeleli et al., 2005).

In the crystal, molecules are linked by weak intermolecular C—H ···N hydrogen bonds, forming a zigzag chain along c axis (Table 1 and Fig.2).

For background to the use of phthalonitriles and phthalocyanines, see: McKeown (1998); Leznoff & Lever (1989–1996); Moser & Thomas (1983). For the crystal structures of related cyclohexa-1,4-dienyl rings, see: Dialer et al. (2004); Jandacek & Simonsen (1969); Therrien & Süss-Fink (2006); Lou & Hu (2009). For further synthetic details, see: Menzek et al. (2008). For CN bond lengths, see: Nesi et al. (1998); Ocak Ískeleli et al. (2005); Subbiah Pandi et al. (2002); Yu et al. (2010). For the Hirshfeld Rigid-Bond test, see: Hirshfeld (1976).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing the C—H···N hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.[Symmetry code; (i): 3/2 - x, -y, -1/2 + z].
4-[2-(Cyclohexa-1,4-dien-1-yl)ethoxy]benzene-1,2-dicarbonitrile top
Crystal data top
C16H14N2OF(000) = 1056
Mr = 250.29Dx = 1.191 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 19074 reflections
a = 8.6291 (3) Åθ = 1.5–26.2°
b = 27.5913 (14) ŵ = 0.08 mm1
c = 11.7246 (5) ÅT = 296 K
V = 2791.5 (2) Å3Block, colorless
Z = 80.45 × 0.37 × 0.32 mm
Data collection top
Stoe IPDS 2
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
rotation method scansθmax = 26.2°, θmin = 1.5°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1010
Tmin = 0.968, Tmax = 0.983k = 3434
19074 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1026P]
where P = (Fo2 + 2Fc2)/3
19074 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.11 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H14N2OV = 2791.5 (2) Å3
Mr = 250.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.6291 (3) ŵ = 0.08 mm1
b = 27.5913 (14) ÅT = 296 K
c = 11.7246 (5) Å0.45 × 0.37 × 0.32 mm
Data collection top
Stoe IPDS 2
diffractometer
2790 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1901 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.983Rint = 0.047
19074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.07Δρmax = 0.11 e Å3
19074 reflectionsΔρmin = 0.13 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0085 (2)0.17483 (7)0.35845 (15)0.0732 (5)
C20.1054 (3)0.17362 (9)0.45699 (19)0.1004 (7)
H2A0.04010.16830.52320.120*
H2B0.17380.14590.45040.120*
C30.2008 (3)0.21659 (12)0.4786 (2)0.1193 (9)
H30.26670.21690.54130.143*
C40.1957 (3)0.25488 (11)0.4112 (3)0.1166 (9)
H40.25890.28120.42790.140*
C50.0983 (4)0.25734 (10)0.3152 (3)0.1248 (9)
H5A0.02870.28460.32500.150*
H5B0.16200.26400.24890.150*
C60.0055 (3)0.21439 (9)0.2917 (2)0.1004 (7)
H60.05850.21440.22780.120*
C70.0900 (3)0.13131 (8)0.33115 (18)0.0918 (6)
H7A0.02660.10230.33460.110*
H7B0.12980.13430.25410.110*
C80.2225 (2)0.12638 (8)0.41224 (16)0.0822 (5)
H8A0.28320.15600.41320.099*
H8B0.18430.12040.48880.099*
C90.4477 (2)0.07643 (6)0.43332 (14)0.0665 (4)
C100.4881 (2)0.09851 (6)0.53531 (14)0.0686 (4)
H100.42380.12180.56750.082*
C110.6245 (2)0.08556 (6)0.58867 (14)0.0663 (4)
C120.7225 (2)0.05090 (6)0.54140 (14)0.0690 (4)
C130.6805 (2)0.02936 (6)0.43832 (14)0.0724 (5)
H130.74510.00630.40530.087*
C140.5449 (2)0.04191 (6)0.38548 (14)0.0702 (5)
H140.51770.02720.31700.084*
C150.6671 (2)0.10975 (7)0.69314 (16)0.0772 (5)
C160.8642 (2)0.03802 (7)0.59768 (17)0.0810 (5)
N10.7011 (2)0.12993 (7)0.77426 (15)0.1066 (6)
N20.9776 (2)0.02813 (8)0.64194 (17)0.1077 (6)
O10.31679 (15)0.08620 (5)0.37450 (10)0.0824 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0677 (11)0.0829 (11)0.0690 (10)0.0002 (9)0.0071 (8)0.0004 (9)
C20.0990 (15)0.1089 (16)0.0931 (14)0.0081 (13)0.0154 (12)0.0115 (12)
C30.111 (2)0.155 (3)0.0922 (15)0.0361 (18)0.0114 (14)0.0140 (17)
C40.123 (2)0.1029 (19)0.124 (2)0.0322 (16)0.0330 (18)0.0331 (17)
C50.125 (2)0.0928 (17)0.156 (3)0.0011 (15)0.031 (2)0.0192 (17)
C60.0925 (15)0.1142 (18)0.0944 (14)0.0011 (13)0.0070 (12)0.0216 (13)
C70.0899 (14)0.1034 (15)0.0820 (12)0.0126 (12)0.0152 (11)0.0191 (11)
C80.0801 (12)0.0911 (13)0.0752 (10)0.0164 (10)0.0095 (9)0.0200 (10)
C90.0712 (11)0.0671 (10)0.0614 (9)0.0016 (8)0.0002 (8)0.0007 (7)
C100.0719 (11)0.0701 (10)0.0638 (9)0.0034 (8)0.0014 (8)0.0063 (8)
C110.0699 (10)0.0668 (10)0.0622 (8)0.0031 (8)0.0018 (8)0.0029 (7)
C120.0719 (10)0.0657 (10)0.0693 (9)0.0004 (8)0.0043 (8)0.0126 (8)
C130.0825 (12)0.0655 (10)0.0692 (10)0.0078 (9)0.0106 (9)0.0038 (8)
C140.0858 (12)0.0653 (10)0.0597 (9)0.0038 (9)0.0046 (8)0.0030 (7)
C150.0802 (12)0.0800 (12)0.0714 (10)0.0017 (10)0.0091 (9)0.0026 (8)
C160.0802 (11)0.0812 (12)0.0816 (11)0.0078 (10)0.0013 (9)0.0094 (9)
N10.1198 (15)0.1121 (14)0.0877 (11)0.0017 (11)0.0250 (10)0.0168 (10)
N20.0960 (14)0.1210 (15)0.1059 (14)0.0233 (11)0.0129 (11)0.0093 (11)
O10.0831 (9)0.0900 (8)0.0740 (7)0.0161 (7)0.0133 (6)0.0210 (6)
Geometric parameters (Å, º) top
C1—C61.344 (3)C8—O11.445 (2)
C1—C21.426 (3)C8—H8A0.9700
C1—C71.506 (3)C8—H8B0.9700
C2—C31.465 (3)C9—O11.351 (2)
C2—H2A0.9700C9—C101.386 (2)
C2—H2B0.9700C9—C141.387 (2)
C3—C41.319 (4)C10—C111.380 (2)
C3—H30.9300C10—H100.9300
C4—C51.406 (4)C11—C121.392 (2)
C4—H40.9300C11—C151.443 (3)
C5—C61.457 (4)C12—C131.395 (2)
C5—H5A0.9700C12—C161.434 (3)
C5—H5B0.9700C13—C141.369 (3)
C6—H60.9300C13—H130.9300
C7—C81.493 (3)C14—H140.9300
C7—H7A0.9700C15—N11.141 (2)
C7—H7B0.9700C16—N21.141 (2)
C6—C1—C2120.2 (2)H7A—C7—H7B107.9
C6—C1—C7120.86 (19)O1—C8—C7107.84 (14)
C2—C1—C7118.99 (18)O1—C8—H8A110.1
C1—C2—C3116.8 (2)C7—C8—H8A110.1
C1—C2—H2A108.1O1—C8—H8B110.1
C3—C2—H2A108.1C7—C8—H8B110.1
C1—C2—H2B108.1H8A—C8—H8B108.5
C3—C2—H2B108.1O1—C9—C10124.26 (15)
H2A—C2—H2B107.3O1—C9—C14115.85 (15)
C4—C3—C2121.7 (2)C10—C9—C14119.89 (16)
C4—C3—H3119.1C11—C10—C9119.46 (16)
C2—C3—H3119.1C11—C10—H10120.3
C3—C4—C5122.5 (2)C9—C10—H10120.3
C3—C4—H4118.7C10—C11—C12121.04 (16)
C5—C4—H4118.7C10—C11—C15118.87 (16)
C4—C5—C6116.2 (2)C12—C11—C15120.06 (16)
C4—C5—H5A108.2C11—C12—C13118.68 (16)
C6—C5—H5A108.2C11—C12—C16120.35 (16)
C4—C5—H5B108.2C13—C12—C16120.98 (17)
C6—C5—H5B108.2C14—C13—C12120.43 (17)
H5A—C5—H5B107.4C14—C13—H13119.8
C1—C6—C5122.6 (2)C12—C13—H13119.8
C1—C6—H6118.7C13—C14—C9120.50 (16)
C5—C6—H6118.7C13—C14—H14119.8
C8—C7—C1111.70 (15)C9—C14—H14119.8
C8—C7—H7A109.3N1—C15—C11178.3 (2)
C1—C7—H7A109.3N2—C16—C12179.3 (2)
C8—C7—H7B109.3C9—O1—C8117.90 (13)
C1—C7—H7B109.3
C6—C1—C2—C31.2 (3)C9—C10—C11—C15178.35 (16)
C7—C1—C2—C3179.0 (2)C10—C11—C12—C130.1 (2)
C1—C2—C3—C41.0 (4)C15—C11—C12—C13177.84 (16)
C2—C3—C4—C50.5 (4)C10—C11—C12—C16179.71 (16)
C3—C4—C5—C61.7 (4)C15—C11—C12—C161.8 (2)
C2—C1—C6—C50.1 (3)C11—C12—C13—C140.5 (3)
C7—C1—C6—C5179.7 (2)C16—C12—C13—C14179.92 (16)
C4—C5—C6—C11.5 (4)C12—C13—C14—C90.4 (3)
C6—C1—C7—C8107.6 (2)O1—C9—C14—C13179.97 (15)
C2—C1—C7—C872.2 (3)C10—C9—C14—C130.1 (3)
C1—C7—C8—O1175.64 (17)C10—C9—O1—C88.2 (3)
O1—C9—C10—C11179.61 (16)C14—C9—O1—C8171.72 (16)
C14—C9—C10—C110.5 (3)C7—C8—O1—C9177.27 (17)
C9—C10—C11—C120.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.932.563.453 (3)162
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O
Mr250.29
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.6291 (3), 27.5913 (14), 11.7246 (5)
V3)2791.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.37 × 0.32
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.968, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19074, 2790, 1901
Rint0.047
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.139, 1.07
No. of reflections19074
No. of parameters172
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.13

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.932.563.453 (3)161.7
Symmetry code: (i) x+3/2, y, z1/2.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationDialer, H., Nöth, H., Seifert, T. & Beck, W. (2004). Z. Kristallogr. New Cryst. Struct. 219, 309–310.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationJandacek, R. J. & Simonsen, S. H. (1969). J. Am. Chem. Soc. 91, 6663–6665.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeznoff, C. C. & Lever, A. B. P. (1989–1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.  Google Scholar
First citationLou, W.-J. & Hu, X.-R. (2009). Acta Cryst. E65, o1916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKeown, N. B. (1998). In Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.  Google Scholar
First citationMenzek, A., Karakaya, M. G. & Kaya, A. A. (2008). Helv. Chim. Acta, 91, 2299–2307.  CrossRef CAS Google Scholar
First citationMoser, F. H. & Thomas, A. L. (1983). The Phthalocyanines, Vols. 1 and 2. Boca Raton, Florida: CRC Press.  Google Scholar
First citationNesi, R., Turchi, S., Giomi, D. & Corsi, C. (1998). Tetrahedron, 54, 10851–10856.  Web of Science CSD CrossRef CAS Google Scholar
First citationOcak Ískeleli, N., Atalay, S., Ağar, E. & Akdemir, N. (2005). Acta Cryst. E61, o2294–o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSubbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164–o167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTherrien, B. & Süss-Fink, G. (2006). Acta Cryst. E62, o1877–o1878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, L., Zhou, X., Yin, Y., Li, R. & Peng, T. (2010). Acta Cryst. E66, o2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds