organic compounds
1-[3-(4-Nitrophenyl)propanoyl]urea acetic acid monosolvate
aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exats, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, bLaboratoire de Cristallographie, Résonance Magnétique et Modélisations, (CRM2, UMR CNRS 7036), Institut Jean Barriol, Nancy Université, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès Nancy, France, and cDépartement de Chimie, Faculté des Sciences, Université de Jijel, 18000-Jijel, Algeria
*Correspondence e-mail: karim.bouchouit@laposte.net
The title compound, C10H11N3O4·C2H4O2, was prepared by an electrochemical technique. In the crystal, acetic acid molecules are involved in hydrogen bonding to two separate propanoylurea molecules, acting as a donor in an O—H⋯O interaction and as an acceptor in two N—H⋯O interactions. The propanoylurea molecules interact with each other via N—H⋯O hydrogen bonds. C—H⋯O interactions also stabilize the crystal structure.
Related literature
For the preparation of ); Katritzky & Lagowski (1971); Sicker et al. (1995). For bond lengths and angles in similar compounds, see: Cai et al. (2011); Yakimanski et al. (1997).
see: Weinberg & Tilak (1982Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536811039729/fy2022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811039729/fy2022Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811039729/fy2022Isup3.cml
The electrochemical studies were carried out in ethanol using sodium acetate buffer (1 N) as electrolyte support. We worked on a potential of -1 V/SCE with mercury electrode. The electroreduction of ethyl 3-(4-nitrophenyl)propanoate gave a mixture of the title compound and 6-hydroxy-2,3-dihydroinden-1-one. Only the title compound is soluble in ethanol, which allowed easy separation of the two reaction products. The title compound was recrystallized from ethanol/acetic acid (1:1), and gave crystals that melt at 110°C. 6-Hydroxy-2,3-dihydroinden-1-one, after recrystallization from ethanol/water (2:1), was found to melt at 156°C.
The electron density of the H atoms was clearly identified in the Fourier difference map, and the atomic coordinates and isotropic displacements parameters of the H atoms were refined freely.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).Fig. 1. ORTEP-3 drawing of the title compound with the atom-numbering scheme. Ellispoids are drawn at the 50 % probability level. | |
Fig. 2. Molecular packing and hydrogen bond pattern. |
C10H11N3O4·C2H4O2 | Z = 2 |
Mr = 297.27 | F(000) = 312 |
Triclinic, P1 | Dx = 1.464 Mg m−3 |
a = 7.4252 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.9601 (3) Å | Cell parameters from 4625 reflections |
c = 11.4375 (4) Å | θ = 3.2–30.0° |
α = 92.736 (3)° | µ = 0.12 mm−1 |
β = 92.939 (3)° | T = 100 K |
γ = 91.091 (3)° | Prism, yellow |
V = 674.20 (4) Å3 | 0.40 × 0.20 × 0.10 mm |
Oxford Diffraction SuperNova diffractometer | 3913 independent reflections |
Radiation source: fine-focus sealed tube | 3563 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 30.0°, θmin = 3.2° |
Absorption correction: integration (ABSORB; DeTitta, 1985) | h = −10→10 |
Tmin = 0.954, Tmax = 0.988 | k = −11→11 |
16680 measured reflections | l = 0→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2344P] where P = (Fo2 + 2Fc2)/3 |
3913 reflections | (Δ/σ)max < 0.001 |
250 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C10H11N3O4·C2H4O2 | γ = 91.091 (3)° |
Mr = 297.27 | V = 674.20 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4252 (3) Å | Mo Kα radiation |
b = 7.9601 (3) Å | µ = 0.12 mm−1 |
c = 11.4375 (4) Å | T = 100 K |
α = 92.736 (3)° | 0.40 × 0.20 × 0.10 mm |
β = 92.939 (3)° |
Oxford Diffraction SuperNova diffractometer | 3913 independent reflections |
Absorption correction: integration (ABSORB; DeTitta, 1985) | 3563 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.988 | Rint = 0.026 |
16680 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.111 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.41 e Å−3 |
3913 reflections | Δρmin = −0.32 e Å−3 |
250 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.77505 (12) | 0.49422 (11) | 0.56957 (8) | 0.01868 (18) | |
O3 | 0.51190 (10) | 0.47679 (9) | 0.66343 (7) | 0.02065 (17) | |
C9 | 0.64971 (13) | 0.55423 (12) | 0.64495 (8) | 0.01614 (18) | |
C10 | 0.77604 (14) | 0.33654 (13) | 0.51251 (9) | 0.01820 (19) | |
O4 | 0.91036 (11) | 0.30011 (10) | 0.45541 (7) | 0.02409 (18) | |
N3 | 0.63746 (13) | 0.23181 (11) | 0.52143 (8) | 0.01982 (18) | |
O5 | 0.71569 (11) | 0.90282 (10) | 0.41754 (7) | 0.02333 (17) | |
O6 | 0.95760 (12) | 1.01068 (11) | 0.33799 (8) | 0.0291 (2) | |
C11 | 0.84078 (14) | 0.88799 (13) | 0.35312 (9) | 0.0189 (2) | |
C12 | 0.87300 (17) | 0.73163 (14) | 0.28067 (10) | 0.0242 (2) | |
H71 | 0.450 (2) | 0.7953 (19) | 0.7578 (13) | 0.025 (4)* | |
H81 | 0.820 (2) | 0.714 (2) | 0.7386 (14) | 0.029 (4)* | |
H6 | 0.865 (2) | 1.0680 (19) | 1.1039 (14) | 0.028 (4)* | |
H2 | 0.619 (2) | 1.350 (2) | 0.8551 (15) | 0.038 (4)* | |
H82 | 0.710 (2) | 0.8064 (19) | 0.6429 (13) | 0.026 (4)* | |
H5 | 0.763 (2) | 0.822 (2) | 0.9966 (13) | 0.029 (4)* | |
H72 | 0.556 (2) | 0.687 (2) | 0.8510 (14) | 0.029 (4)* | |
H3 | 0.524 (2) | 1.101 (2) | 0.7488 (14) | 0.029 (4)* | |
H9 | 0.871 (2) | 0.555 (2) | 0.5624 (14) | 0.030 (4)* | |
H10 | 0.545 (2) | 0.263 (2) | 0.5625 (14) | 0.029 (4)* | |
H11 | 0.646 (2) | 0.127 (2) | 0.4896 (14) | 0.033 (4)* | |
H121 | 0.832 (2) | 0.635 (2) | 0.3199 (16) | 0.041 (5)* | |
H | 0.927 (3) | 1.101 (3) | 0.383 (2) | 0.064 (6)* | |
H122 | 0.999 (3) | 0.723 (2) | 0.2602 (16) | 0.047 (5)* | |
H123 | 0.802 (3) | 0.738 (3) | 0.207 (2) | 0.067 (6)* | |
C4 | 0.63442 (13) | 0.93684 (12) | 0.86240 (9) | 0.01726 (19) | |
C1 | 0.75280 (14) | 1.22675 (12) | 0.98721 (9) | 0.0184 (2) | |
C8 | 0.70192 (14) | 0.72292 (12) | 0.70362 (9) | 0.01779 (19) | |
N1 | 0.81408 (14) | 1.38040 (12) | 1.05424 (9) | 0.0242 (2) | |
C5 | 0.73579 (15) | 0.92833 (13) | 0.96774 (9) | 0.0193 (2) | |
C7 | 0.56967 (15) | 0.77809 (13) | 0.79493 (9) | 0.0203 (2) | |
C3 | 0.59529 (15) | 1.09439 (14) | 0.82046 (9) | 0.0218 (2) | |
O1 | 0.90310 (14) | 1.36682 (12) | 1.14622 (9) | 0.0386 (2) | |
C2 | 0.65298 (16) | 1.24075 (13) | 0.88280 (10) | 0.0221 (2) | |
C6 | 0.79598 (15) | 1.07320 (13) | 1.03125 (9) | 0.0195 (2) | |
O2 | 0.77247 (18) | 1.51546 (11) | 1.01607 (10) | 0.0464 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0173 (4) | 0.0162 (4) | 0.0221 (4) | −0.0037 (3) | 0.0049 (3) | −0.0059 (3) |
O3 | 0.0193 (4) | 0.0183 (3) | 0.0243 (4) | −0.0037 (3) | 0.0052 (3) | −0.0026 (3) |
C9 | 0.0170 (4) | 0.0159 (4) | 0.0154 (4) | 0.0010 (3) | 0.0007 (3) | −0.0014 (3) |
C10 | 0.0188 (5) | 0.0172 (4) | 0.0182 (4) | −0.0014 (3) | 0.0017 (3) | −0.0035 (3) |
O4 | 0.0215 (4) | 0.0205 (4) | 0.0298 (4) | −0.0053 (3) | 0.0099 (3) | −0.0104 (3) |
N3 | 0.0193 (4) | 0.0173 (4) | 0.0227 (4) | −0.0028 (3) | 0.0052 (3) | −0.0036 (3) |
O5 | 0.0230 (4) | 0.0203 (4) | 0.0266 (4) | −0.0034 (3) | 0.0065 (3) | −0.0053 (3) |
O6 | 0.0293 (4) | 0.0218 (4) | 0.0359 (5) | −0.0090 (3) | 0.0145 (4) | −0.0114 (3) |
C11 | 0.0194 (5) | 0.0183 (4) | 0.0186 (4) | −0.0016 (4) | 0.0001 (4) | −0.0027 (3) |
C12 | 0.0280 (6) | 0.0189 (5) | 0.0252 (5) | −0.0010 (4) | 0.0050 (4) | −0.0064 (4) |
C4 | 0.0173 (4) | 0.0162 (4) | 0.0183 (4) | −0.0010 (3) | 0.0063 (3) | −0.0033 (3) |
C1 | 0.0206 (5) | 0.0138 (4) | 0.0209 (5) | −0.0014 (3) | 0.0050 (4) | −0.0031 (3) |
C8 | 0.0171 (4) | 0.0164 (4) | 0.0195 (4) | −0.0024 (3) | 0.0036 (3) | −0.0045 (3) |
N1 | 0.0284 (5) | 0.0159 (4) | 0.0279 (5) | −0.0018 (3) | 0.0036 (4) | −0.0043 (3) |
C5 | 0.0236 (5) | 0.0135 (4) | 0.0208 (5) | 0.0018 (4) | 0.0032 (4) | −0.0012 (3) |
C7 | 0.0197 (5) | 0.0189 (5) | 0.0219 (5) | −0.0034 (4) | 0.0062 (4) | −0.0068 (4) |
C3 | 0.0247 (5) | 0.0215 (5) | 0.0192 (5) | −0.0001 (4) | 0.0003 (4) | 0.0012 (4) |
O1 | 0.0432 (6) | 0.0270 (5) | 0.0426 (5) | 0.0031 (4) | −0.0148 (4) | −0.0129 (4) |
C2 | 0.0282 (5) | 0.0160 (4) | 0.0225 (5) | 0.0010 (4) | 0.0028 (4) | 0.0029 (4) |
C6 | 0.0228 (5) | 0.0174 (4) | 0.0180 (4) | 0.0016 (4) | 0.0015 (4) | −0.0020 (3) |
O2 | 0.0810 (8) | 0.0129 (4) | 0.0435 (6) | −0.0018 (4) | −0.0115 (5) | −0.0004 (4) |
N2—C9 | 1.3776 (12) | C4—C7 | 1.5064 (14) |
N2—C10 | 1.3871 (12) | C1—C6 | 1.3811 (14) |
N2—H9 | 0.866 (17) | C1—C2 | 1.3831 (15) |
O3—C9 | 1.2175 (13) | C1—N1 | 1.4643 (13) |
C9—C8 | 1.5070 (13) | C8—C7 | 1.5250 (14) |
C10—O4 | 1.2510 (12) | C8—H81 | 0.950 (16) |
C10—N3 | 1.3230 (14) | C8—H82 | 0.987 (15) |
N3—H10 | 0.884 (17) | N1—O2 | 1.2187 (13) |
N3—H11 | 0.898 (18) | N1—O1 | 1.2237 (14) |
O5—C11 | 1.2189 (13) | C5—C6 | 1.3872 (14) |
O6—C11 | 1.3174 (13) | C5—H5 | 0.942 (16) |
O6—H | 0.90 (2) | C7—H71 | 0.981 (15) |
C11—C12 | 1.4920 (14) | C7—H72 | 1.000 (16) |
C12—H121 | 0.960 (18) | C3—C2 | 1.3854 (15) |
C12—H122 | 0.98 (2) | C3—H3 | 0.956 (15) |
C12—H123 | 0.97 (2) | C2—H2 | 0.977 (17) |
C4—C5 | 1.3926 (15) | C6—H6 | 0.958 (16) |
C4—C3 | 1.3944 (14) | ||
C9—N2—C10 | 127.24 (9) | C9—C8—C7 | 112.08 (8) |
C9—N2—H9 | 117.7 (11) | C9—C8—H81 | 107.3 (10) |
C10—N2—H9 | 114.6 (11) | C7—C8—H81 | 110.8 (10) |
O3—C9—N2 | 123.04 (9) | C9—C8—H82 | 108.7 (9) |
O3—C9—C8 | 123.57 (9) | C7—C8—H82 | 110.8 (9) |
N2—C9—C8 | 113.38 (8) | H81—C8—H82 | 106.8 (13) |
O4—C10—N3 | 123.15 (9) | O2—N1—O1 | 123.29 (10) |
O4—C10—N2 | 117.71 (9) | O2—N1—C1 | 118.30 (10) |
N3—C10—N2 | 119.13 (9) | O1—N1—C1 | 118.41 (9) |
C10—N3—H10 | 120.3 (11) | C6—C5—C4 | 121.10 (9) |
C10—N3—H11 | 117.3 (11) | C6—C5—H5 | 119.4 (10) |
H10—N3—H11 | 122.2 (15) | C4—C5—H5 | 119.4 (10) |
C11—O6—H | 107.8 (14) | C4—C7—C8 | 111.51 (8) |
O5—C11—O6 | 123.10 (10) | C4—C7—H71 | 109.6 (9) |
O5—C11—C12 | 123.45 (10) | C8—C7—H71 | 110.7 (9) |
O6—C11—C12 | 113.42 (9) | C4—C7—H72 | 108.9 (9) |
C11—C12—H121 | 109.7 (11) | C8—C7—H72 | 109.1 (9) |
C11—C12—H122 | 112.0 (11) | H71—C7—H72 | 106.8 (13) |
H121—C12—H122 | 112.5 (15) | C2—C3—C4 | 121.03 (10) |
C11—C12—H123 | 107.4 (13) | C2—C3—H3 | 119.5 (10) |
H121—C12—H123 | 108.7 (17) | C4—C3—H3 | 119.4 (10) |
H122—C12—H123 | 106.3 (17) | C1—C2—C3 | 118.28 (10) |
C5—C4—C3 | 118.86 (9) | C1—C2—H2 | 121.2 (10) |
C5—C4—C7 | 120.31 (9) | C3—C2—H2 | 120.5 (10) |
C3—C4—C7 | 120.83 (10) | C1—C6—C5 | 118.21 (10) |
C6—C1—C2 | 122.52 (9) | C1—C6—H6 | 120.4 (9) |
C6—C1—N1 | 118.62 (9) | C5—C6—H6 | 121.4 (9) |
C2—C1—N1 | 118.86 (9) | ||
C10—N2—C9—O3 | −6.33 (17) | C5—C4—C7—C8 | −92.93 (12) |
C10—N2—C9—C8 | 172.56 (9) | C3—C4—C7—C8 | 86.63 (12) |
C9—N2—C10—O4 | −173.81 (10) | C9—C8—C7—C4 | 173.53 (9) |
C9—N2—C10—N3 | 5.63 (16) | C5—C4—C3—C2 | −1.10 (16) |
O3—C9—C8—C7 | 4.31 (14) | C7—C4—C3—C2 | 179.33 (10) |
N2—C9—C8—C7 | −174.57 (9) | C6—C1—C2—C3 | −0.24 (17) |
C6—C1—N1—O2 | −178.56 (11) | N1—C1—C2—C3 | −179.77 (10) |
C2—C1—N1—O2 | 1.00 (16) | C4—C3—C2—C1 | 0.88 (17) |
C6—C1—N1—O1 | 0.81 (15) | C2—C1—C6—C5 | −0.18 (16) |
C2—C1—N1—O1 | −179.63 (11) | N1—C1—C6—C5 | 179.36 (9) |
C3—C4—C5—C6 | 0.67 (15) | C4—C5—C6—C1 | −0.04 (16) |
C7—C4—C5—C6 | −179.76 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H···O4i | 0.90 (2) | 1.76 (2) | 2.6492 (12) | 166 (2) |
N2—H9···O4ii | 0.863 (15) | 1.998 (15) | 2.8611 (12) | 178.7 (15) |
N3—H10···O3 | 0.884 (15) | 2.036 (16) | 2.6892 (12) | 129.8 (13) |
N3—H10···O5iii | 0.884 (15) | 2.349 (15) | 2.9434 (13) | 124.7 (13) |
N3—H11···O5iv | 0.899 (16) | 2.017 (16) | 2.9050 (12) | 169.1 (14) |
C2—H2···O3i | 0.980 (16) | 2.550 (17) | 3.3434 (14) | 138.0 (13) |
C3—H3···O5v | 0.957 (16) | 2.536 (15) | 3.4793 (13) | 168.6 (12) |
C5—H5···O2iv | 0.945 (16) | 2.463 (16) | 3.3724 (14) | 161.6 (12) |
C8—H81···O1vi | 0.950 (15) | 2.496 (15) | 3.4266 (15) | 166.3 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x+1, −y+2, −z+1; (vi) −x+2, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H11N3O4·C2H4O2 |
Mr | 297.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.4252 (3), 7.9601 (3), 11.4375 (4) |
α, β, γ (°) | 92.736 (3), 92.939 (3), 91.091 (3) |
V (Å3) | 674.20 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction SuperNova diffractometer |
Absorption correction | Integration (ABSORB; DeTitta, 1985) |
Tmin, Tmax | 0.954, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16680, 3913, 3563 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.111, 1.05 |
No. of reflections | 3913 |
No. of parameters | 250 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.41, −0.32 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H···O4i | 0.90 (2) | 1.76 (2) | 2.6492 (12) | 166 (2) |
N2—H9···O4ii | 0.863 (15) | 1.998 (15) | 2.8611 (12) | 178.7 (15) |
N3—H10···O3 | 0.884 (15) | 2.036 (16) | 2.6892 (12) | 129.8 (13) |
N3—H10···O5iii | 0.884 (15) | 2.349 (15) | 2.9434 (13) | 124.7 (13) |
N3—H11···O5iv | 0.899 (16) | 2.017 (16) | 2.9050 (12) | 169.1 (14) |
C2—H2···O3i | 0.980 (16) | 2.550 (17) | 3.3434 (14) | 138.0 (13) |
C3—H3···O5v | 0.957 (16) | 2.536 (15) | 3.4793 (13) | 168.6 (12) |
C5—H5···O2iv | 0.945 (16) | 2.463 (16) | 3.3724 (14) | 161.6 (12) |
C8—H81···O1vi | 0.950 (15) | 2.496 (15) | 3.4266 (15) | 166.3 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y−1, z; (v) −x+1, −y+2, −z+1; (vi) −x+2, −y+2, −z+2. |
Acknowledgements
The authors would like to thank the Service Commun de Diffraction X sur Monocristaux (Nancy University) for providing access to crystallographic experimental facilities.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cai, Q., Fei, Z. & Li, L. (2011). Acta Cryst. E67, o1494. Web of Science CSD CrossRef IUCr Journals Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Katritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-oxides. London: Academic Press. Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sicker, D., Hartenstein, H., Mouats, C., Hazards, R. & Tallec, A. (1995). Electrochim. Acta, 40, 1669–1674. CrossRef CAS Web of Science Google Scholar
Weinberg, N. L. & Tilak, B. V. (1982). Technique of Electroorganic Synthesis, Scale-up and Engineering Aspects, Vol. 5. New York: Wiley. Google Scholar
Yakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603–614. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past few years, significant research has been directed toward the development of new technologies for environment-friendly processes, such as electrochemical synthesis and green chemistry, which are both economically and technologically feasible. Electrochemistry seems to be a method of choice to prepare various heterocyclic compounds, because the anodic oxidation and the cathodic reduction allow the selective preparation of the active intermediates (Weinberg & Tilak, 1982). However, obtaining aniline products is generally not easy. The chemical reductions are not always selective and often lead to mixtures (Katritzky & Lagowski, 1971). In particular, the reduction of substituted nitrobenzenes with controlled potential can produce a number of heterocycles (Sicker et al., 1995).
The present paper reports the crystal structure determination and analysis of a new organic compound. The asymmetric unit contains one 1-(3-(4-nitrophenyl)propanoyl)urea and one acetic acid molecule (Fig. 1). The cohesion and stability of the crystal is provided by N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1).
These interactions form molecular tapes composed of alternating acetic acid and 1-(3-(4-nitrophenyl)propanoyl)urea molecules (Fig. 2).
All bond lengths and angles are within usual values and are comparable to those observed in similar compounds (Cai et al., 2011; Yakimanski et al., 1997).