organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Nitro­phen­yl)propano­yl]urea acetic acid monosolvate

aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exats, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, bLaboratoire de Cristallographie, Résonance Magnétique et Modélisations, (CRM2, UMR CNRS 7036), Institut Jean Barriol, Nancy Université, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès Nancy, France, and cDépartement de Chimie, Faculté des Sciences, Université de Jijel, 18000-Jijel, Algeria
*Correspondence e-mail: karim.bouchouit@laposte.net

(Received 10 August 2011; accepted 27 September 2011; online 8 October 2011)

The title compound, C10H11N3O4·C2H4O2, was prepared by an electrochemical technique. In the crystal, acetic acid mol­ecules are involved in hydrogen bonding to two separate propano­ylurea mol­ecules, acting as a donor in an O—H⋯O inter­action and as an acceptor in two N—H⋯O inter­actions. The propano­ylurea mol­ecules inter­act with each other via N—H⋯O hydrogen bonds. C—H⋯O inter­actions also stabilize the crystal structure.

Related literature

For the preparation of heterocyclic compounds, see: Weinberg & Tilak (1982[Weinberg, N. L. & Tilak, B. V. (1982). Technique of Electroorganic Synthesis, Scale-up and Engineering Aspects, Vol. 5. New York: Wiley.]); Katritzky & Lagowski (1971[Katritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-oxides. London: Academic Press.]); Sicker et al. (1995[Sicker, D., Hartenstein, H., Mouats, C., Hazards, R. & Tallec, A. (1995). Electrochim. Acta, 40, 1669-1674.]). For bond lengths and angles in similar compounds, see: Cai et al. (2011[Cai, Q., Fei, Z. & Li, L. (2011). Acta Cryst. E67, o1494.]); Yakimanski et al. (1997[Yakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603-614.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O4·C2H4O2

  • Mr = 297.27

  • Triclinic, [P \overline 1]

  • a = 7.4252 (3) Å

  • b = 7.9601 (3) Å

  • c = 11.4375 (4) Å

  • α = 92.736 (3)°

  • β = 92.939 (3)°

  • γ = 91.091 (3)°

  • V = 674.20 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction SuperNova diffractometer

  • Absorption correction: integration (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]) Tmin = 0.954, Tmax = 0.988

  • 16680 measured reflections

  • 3913 independent reflections

  • 3563 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.05

  • 3913 reflections

  • 250 parameters

  • All H-atom parameters refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H⋯O4i 0.90 (2) 1.76 (2) 2.6492 (12) 166 (2)
N2—H9⋯O4ii 0.863 (15) 1.998 (15) 2.8611 (12) 178.7 (15)
N3—H10⋯O3 0.884 (15) 2.036 (16) 2.6892 (12) 129.8 (13)
N3—H10⋯O5iii 0.884 (15) 2.349 (15) 2.9434 (13) 124.7 (13)
N3—H11⋯O5iv 0.899 (16) 2.017 (16) 2.9050 (12) 169.1 (14)
C2—H2⋯O3i 0.980 (16) 2.550 (17) 3.3434 (14) 138.0 (13)
C3—H3⋯O5v 0.957 (16) 2.536 (15) 3.4793 (13) 168.6 (12)
C5—H5⋯O2iv 0.945 (16) 2.463 (16) 3.3724 (14) 161.6 (12)
C8—H81⋯O1vi 0.950 (15) 2.496 (15) 3.4266 (15) 166.3 (13)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+1, -y+2, -z+1; (vi) -x+2, -y+2, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Over the past few years, significant research has been directed toward the development of new technologies for environment-friendly processes, such as electrochemical synthesis and green chemistry, which are both economically and technologically feasible. Electrochemistry seems to be a method of choice to prepare various heterocyclic compounds, because the anodic oxidation and the cathodic reduction allow the selective preparation of the active intermediates (Weinberg & Tilak, 1982). However, obtaining aniline products is generally not easy. The chemical reductions are not always selective and often lead to mixtures (Katritzky & Lagowski, 1971). In particular, the reduction of substituted nitrobenzenes with controlled potential can produce a number of heterocycles (Sicker et al., 1995).

The present paper reports the crystal structure determination and analysis of a new organic compound. The asymmetric unit contains one 1-(3-(4-nitrophenyl)propanoyl)urea and one acetic acid molecule (Fig. 1). The cohesion and stability of the crystal is provided by N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1).

These interactions form molecular tapes composed of alternating acetic acid and 1-(3-(4-nitrophenyl)propanoyl)urea molecules (Fig. 2).

All bond lengths and angles are within usual values and are comparable to those observed in similar compounds (Cai et al., 2011; Yakimanski et al., 1997).

Related literature top

For the preparation of heterocyclic compounds, see: Weinberg & Tilak (1982); Katritzky & Lagowski (1971); Sicker et al. (1995). For bond lengths and angles in similar compounds, see: Cai et al. (2011); Yakimanski et al. (1997).

Experimental top

The electrochemical studies were carried out in ethanol using sodium acetate buffer (1 N) as electrolyte support. We worked on a potential of -1 V/SCE with mercury electrode. The electroreduction of ethyl 3-(4-nitrophenyl)propanoate gave a mixture of the title compound and 6-hydroxy-2,3-dihydroinden-1-one. Only the title compound is soluble in ethanol, which allowed easy separation of the two reaction products. The title compound was recrystallized from ethanol/acetic acid (1:1), and gave crystals that melt at 110°C. 6-Hydroxy-2,3-dihydroinden-1-one, after recrystallization from ethanol/water (2:1), was found to melt at 156°C.

Refinement top

The electron density of the H atoms was clearly identified in the Fourier difference map, and the atomic coordinates and isotropic displacements parameters of the H atoms were refined freely.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. ORTEP-3 drawing of the title compound with the atom-numbering scheme. Ellispoids are drawn at the 50 % probability level.
[Figure 2] Fig. 2. Molecular packing and hydrogen bond pattern.
1-[3-(4-Nitrophenyl)propanoyl]urea acetic acid monosolvate top
Crystal data top
C10H11N3O4·C2H4O2Z = 2
Mr = 297.27F(000) = 312
Triclinic, P1Dx = 1.464 Mg m3
a = 7.4252 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9601 (3) ÅCell parameters from 4625 reflections
c = 11.4375 (4) Åθ = 3.2–30.0°
α = 92.736 (3)°µ = 0.12 mm1
β = 92.939 (3)°T = 100 K
γ = 91.091 (3)°Prism, yellow
V = 674.20 (4) Å30.40 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
3913 independent reflections
Radiation source: fine-focus sealed tube3563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: integration
(ABSORB; DeTitta, 1985)
h = 1010
Tmin = 0.954, Tmax = 0.988k = 1111
16680 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2344P]
where P = (Fo2 + 2Fc2)/3
3913 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H11N3O4·C2H4O2γ = 91.091 (3)°
Mr = 297.27V = 674.20 (4) Å3
Triclinic, P1Z = 2
a = 7.4252 (3) ÅMo Kα radiation
b = 7.9601 (3) ŵ = 0.12 mm1
c = 11.4375 (4) ÅT = 100 K
α = 92.736 (3)°0.40 × 0.20 × 0.10 mm
β = 92.939 (3)°
Data collection top
Oxford Diffraction SuperNova
diffractometer
3913 independent reflections
Absorption correction: integration
(ABSORB; DeTitta, 1985)
3563 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.026
16680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.05Δρmax = 0.41 e Å3
3913 reflectionsΔρmin = 0.32 e Å3
250 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.77505 (12)0.49422 (11)0.56957 (8)0.01868 (18)
O30.51190 (10)0.47679 (9)0.66343 (7)0.02065 (17)
C90.64971 (13)0.55423 (12)0.64495 (8)0.01614 (18)
C100.77604 (14)0.33654 (13)0.51251 (9)0.01820 (19)
O40.91036 (11)0.30011 (10)0.45541 (7)0.02409 (18)
N30.63746 (13)0.23181 (11)0.52143 (8)0.01982 (18)
O50.71569 (11)0.90282 (10)0.41754 (7)0.02333 (17)
O60.95760 (12)1.01068 (11)0.33799 (8)0.0291 (2)
C110.84078 (14)0.88799 (13)0.35312 (9)0.0189 (2)
C120.87300 (17)0.73163 (14)0.28067 (10)0.0242 (2)
H710.450 (2)0.7953 (19)0.7578 (13)0.025 (4)*
H810.820 (2)0.714 (2)0.7386 (14)0.029 (4)*
H60.865 (2)1.0680 (19)1.1039 (14)0.028 (4)*
H20.619 (2)1.350 (2)0.8551 (15)0.038 (4)*
H820.710 (2)0.8064 (19)0.6429 (13)0.026 (4)*
H50.763 (2)0.822 (2)0.9966 (13)0.029 (4)*
H720.556 (2)0.687 (2)0.8510 (14)0.029 (4)*
H30.524 (2)1.101 (2)0.7488 (14)0.029 (4)*
H90.871 (2)0.555 (2)0.5624 (14)0.030 (4)*
H100.545 (2)0.263 (2)0.5625 (14)0.029 (4)*
H110.646 (2)0.127 (2)0.4896 (14)0.033 (4)*
H1210.832 (2)0.635 (2)0.3199 (16)0.041 (5)*
H0.927 (3)1.101 (3)0.383 (2)0.064 (6)*
H1220.999 (3)0.723 (2)0.2602 (16)0.047 (5)*
H1230.802 (3)0.738 (3)0.207 (2)0.067 (6)*
C40.63442 (13)0.93684 (12)0.86240 (9)0.01726 (19)
C10.75280 (14)1.22675 (12)0.98721 (9)0.0184 (2)
C80.70192 (14)0.72292 (12)0.70362 (9)0.01779 (19)
N10.81408 (14)1.38040 (12)1.05424 (9)0.0242 (2)
C50.73579 (15)0.92833 (13)0.96774 (9)0.0193 (2)
C70.56967 (15)0.77809 (13)0.79493 (9)0.0203 (2)
C30.59529 (15)1.09439 (14)0.82046 (9)0.0218 (2)
O10.90310 (14)1.36682 (12)1.14622 (9)0.0386 (2)
C20.65298 (16)1.24075 (13)0.88280 (10)0.0221 (2)
C60.79598 (15)1.07320 (13)1.03125 (9)0.0195 (2)
O20.77247 (18)1.51546 (11)1.01607 (10)0.0464 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0173 (4)0.0162 (4)0.0221 (4)0.0037 (3)0.0049 (3)0.0059 (3)
O30.0193 (4)0.0183 (3)0.0243 (4)0.0037 (3)0.0052 (3)0.0026 (3)
C90.0170 (4)0.0159 (4)0.0154 (4)0.0010 (3)0.0007 (3)0.0014 (3)
C100.0188 (5)0.0172 (4)0.0182 (4)0.0014 (3)0.0017 (3)0.0035 (3)
O40.0215 (4)0.0205 (4)0.0298 (4)0.0053 (3)0.0099 (3)0.0104 (3)
N30.0193 (4)0.0173 (4)0.0227 (4)0.0028 (3)0.0052 (3)0.0036 (3)
O50.0230 (4)0.0203 (4)0.0266 (4)0.0034 (3)0.0065 (3)0.0053 (3)
O60.0293 (4)0.0218 (4)0.0359 (5)0.0090 (3)0.0145 (4)0.0114 (3)
C110.0194 (5)0.0183 (4)0.0186 (4)0.0016 (4)0.0001 (4)0.0027 (3)
C120.0280 (6)0.0189 (5)0.0252 (5)0.0010 (4)0.0050 (4)0.0064 (4)
C40.0173 (4)0.0162 (4)0.0183 (4)0.0010 (3)0.0063 (3)0.0033 (3)
C10.0206 (5)0.0138 (4)0.0209 (5)0.0014 (3)0.0050 (4)0.0031 (3)
C80.0171 (4)0.0164 (4)0.0195 (4)0.0024 (3)0.0036 (3)0.0045 (3)
N10.0284 (5)0.0159 (4)0.0279 (5)0.0018 (3)0.0036 (4)0.0043 (3)
C50.0236 (5)0.0135 (4)0.0208 (5)0.0018 (4)0.0032 (4)0.0012 (3)
C70.0197 (5)0.0189 (5)0.0219 (5)0.0034 (4)0.0062 (4)0.0068 (4)
C30.0247 (5)0.0215 (5)0.0192 (5)0.0001 (4)0.0003 (4)0.0012 (4)
O10.0432 (6)0.0270 (5)0.0426 (5)0.0031 (4)0.0148 (4)0.0129 (4)
C20.0282 (5)0.0160 (4)0.0225 (5)0.0010 (4)0.0028 (4)0.0029 (4)
C60.0228 (5)0.0174 (4)0.0180 (4)0.0016 (4)0.0015 (4)0.0020 (3)
O20.0810 (8)0.0129 (4)0.0435 (6)0.0018 (4)0.0115 (5)0.0004 (4)
Geometric parameters (Å, º) top
N2—C91.3776 (12)C4—C71.5064 (14)
N2—C101.3871 (12)C1—C61.3811 (14)
N2—H90.866 (17)C1—C21.3831 (15)
O3—C91.2175 (13)C1—N11.4643 (13)
C9—C81.5070 (13)C8—C71.5250 (14)
C10—O41.2510 (12)C8—H810.950 (16)
C10—N31.3230 (14)C8—H820.987 (15)
N3—H100.884 (17)N1—O21.2187 (13)
N3—H110.898 (18)N1—O11.2237 (14)
O5—C111.2189 (13)C5—C61.3872 (14)
O6—C111.3174 (13)C5—H50.942 (16)
O6—H0.90 (2)C7—H710.981 (15)
C11—C121.4920 (14)C7—H721.000 (16)
C12—H1210.960 (18)C3—C21.3854 (15)
C12—H1220.98 (2)C3—H30.956 (15)
C12—H1230.97 (2)C2—H20.977 (17)
C4—C51.3926 (15)C6—H60.958 (16)
C4—C31.3944 (14)
C9—N2—C10127.24 (9)C9—C8—C7112.08 (8)
C9—N2—H9117.7 (11)C9—C8—H81107.3 (10)
C10—N2—H9114.6 (11)C7—C8—H81110.8 (10)
O3—C9—N2123.04 (9)C9—C8—H82108.7 (9)
O3—C9—C8123.57 (9)C7—C8—H82110.8 (9)
N2—C9—C8113.38 (8)H81—C8—H82106.8 (13)
O4—C10—N3123.15 (9)O2—N1—O1123.29 (10)
O4—C10—N2117.71 (9)O2—N1—C1118.30 (10)
N3—C10—N2119.13 (9)O1—N1—C1118.41 (9)
C10—N3—H10120.3 (11)C6—C5—C4121.10 (9)
C10—N3—H11117.3 (11)C6—C5—H5119.4 (10)
H10—N3—H11122.2 (15)C4—C5—H5119.4 (10)
C11—O6—H107.8 (14)C4—C7—C8111.51 (8)
O5—C11—O6123.10 (10)C4—C7—H71109.6 (9)
O5—C11—C12123.45 (10)C8—C7—H71110.7 (9)
O6—C11—C12113.42 (9)C4—C7—H72108.9 (9)
C11—C12—H121109.7 (11)C8—C7—H72109.1 (9)
C11—C12—H122112.0 (11)H71—C7—H72106.8 (13)
H121—C12—H122112.5 (15)C2—C3—C4121.03 (10)
C11—C12—H123107.4 (13)C2—C3—H3119.5 (10)
H121—C12—H123108.7 (17)C4—C3—H3119.4 (10)
H122—C12—H123106.3 (17)C1—C2—C3118.28 (10)
C5—C4—C3118.86 (9)C1—C2—H2121.2 (10)
C5—C4—C7120.31 (9)C3—C2—H2120.5 (10)
C3—C4—C7120.83 (10)C1—C6—C5118.21 (10)
C6—C1—C2122.52 (9)C1—C6—H6120.4 (9)
C6—C1—N1118.62 (9)C5—C6—H6121.4 (9)
C2—C1—N1118.86 (9)
C10—N2—C9—O36.33 (17)C5—C4—C7—C892.93 (12)
C10—N2—C9—C8172.56 (9)C3—C4—C7—C886.63 (12)
C9—N2—C10—O4173.81 (10)C9—C8—C7—C4173.53 (9)
C9—N2—C10—N35.63 (16)C5—C4—C3—C21.10 (16)
O3—C9—C8—C74.31 (14)C7—C4—C3—C2179.33 (10)
N2—C9—C8—C7174.57 (9)C6—C1—C2—C30.24 (17)
C6—C1—N1—O2178.56 (11)N1—C1—C2—C3179.77 (10)
C2—C1—N1—O21.00 (16)C4—C3—C2—C10.88 (17)
C6—C1—N1—O10.81 (15)C2—C1—C6—C50.18 (16)
C2—C1—N1—O1179.63 (11)N1—C1—C6—C5179.36 (9)
C3—C4—C5—C60.67 (15)C4—C5—C6—C10.04 (16)
C7—C4—C5—C6179.76 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H···O4i0.90 (2)1.76 (2)2.6492 (12)166 (2)
N2—H9···O4ii0.863 (15)1.998 (15)2.8611 (12)178.7 (15)
N3—H10···O30.884 (15)2.036 (16)2.6892 (12)129.8 (13)
N3—H10···O5iii0.884 (15)2.349 (15)2.9434 (13)124.7 (13)
N3—H11···O5iv0.899 (16)2.017 (16)2.9050 (12)169.1 (14)
C2—H2···O3i0.980 (16)2.550 (17)3.3434 (14)138.0 (13)
C3—H3···O5v0.957 (16)2.536 (15)3.4793 (13)168.6 (12)
C5—H5···O2iv0.945 (16)2.463 (16)3.3724 (14)161.6 (12)
C8—H81···O1vi0.950 (15)2.496 (15)3.4266 (15)166.3 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC10H11N3O4·C2H4O2
Mr297.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4252 (3), 7.9601 (3), 11.4375 (4)
α, β, γ (°)92.736 (3), 92.939 (3), 91.091 (3)
V3)674.20 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction SuperNova
diffractometer
Absorption correctionIntegration
(ABSORB; DeTitta, 1985)
Tmin, Tmax0.954, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
16680, 3913, 3563
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.05
No. of reflections3913
No. of parameters250
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H···O4i0.90 (2)1.76 (2)2.6492 (12)166 (2)
N2—H9···O4ii0.863 (15)1.998 (15)2.8611 (12)178.7 (15)
N3—H10···O30.884 (15)2.036 (16)2.6892 (12)129.8 (13)
N3—H10···O5iii0.884 (15)2.349 (15)2.9434 (13)124.7 (13)
N3—H11···O5iv0.899 (16)2.017 (16)2.9050 (12)169.1 (14)
C2—H2···O3i0.980 (16)2.550 (17)3.3434 (14)138.0 (13)
C3—H3···O5v0.957 (16)2.536 (15)3.4793 (13)168.6 (12)
C5—H5···O2iv0.945 (16)2.463 (16)3.3724 (14)161.6 (12)
C8—H81···O1vi0.950 (15)2.496 (15)3.4266 (15)166.3 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y+2, z+1; (vi) x+2, y+2, z+2.
 

Acknowledgements

The authors would like to thank the Service Commun de Diffraction X sur Monocristaux (Nancy University) for providing access to crystallographic experimental facilities.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCai, Q., Fei, Z. & Li, L. (2011). Acta Cryst. E67, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R. & Lagowski, J. M. (1971). In Chemistry of the Heterocyclic N-oxides. London: Academic Press.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSicker, D., Hartenstein, H., Mouats, C., Hazards, R. & Tallec, A. (1995). Electrochim. Acta, 40, 1669–1674.  CrossRef CAS Web of Science Google Scholar
First citationWeinberg, N. L. & Tilak, B. V. (1982). Technique of Electroorganic Synthesis, Scale-up and Engineering Aspects, Vol. 5. New York: Wiley.  Google Scholar
First citationYakimanski, A. V., Kolb, U., Matveeva, G. N., Voigt-Martin, I. G. & Tenkovtsev, A. V. (1997). Acta Cryst. A53, 603–614.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds