organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro­phen­yl)-1-(propan-2-yl­­idene)thio­semicarbazone

aFaculty of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland, and bDepartment of Medical Chemistry, The Medical University, 3 Oczki Str., 02-007 Warsaw, Poland
*Correspondence e-mail: barbara.miroslaw@poczta.umcs.lublin.pl

(Received 17 August 2011; accepted 13 October 2011; online 22 October 2011)

The title compound, C10H12FN3S, crystallizes in the same space group (P21/c) as two polymorphic forms of 4-phenyl-1-(propan-2-yl­idene)thio­semicarbazone [Jian et al. (2005). Acta Cryst. E61, o653–o654; Venkatraman et al. (2005). Acta Cryst. E61, o3914–o3916]. The arrangement of mol­ecules relative to the twofold screw axes is similar to that in the crystal structure of the lower density polymorph. In the solid state, the mol­ecular conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond. The mol­ecules form centrosymmetric R22(8) dimers in the crystal through pairs of N—H⋯S hydrogen bonds.

Related literature

For related structures, see: Basu & Das (2011[Basu, A. & Das, G. (2011). Dalton Trans. 40, 2837-2843.]); Park & Ahn (1985[Park, Y. J. & Ahn, C. T. (1985). J. Korean Chem. Soc. 29, 73-79.]); Parsons et al. (2000[Parsons, S., Smith, A. G., Tasker, P. A. & White, D. J. (2000). Acta Cryst. C56, 237-238.]); Jian et al. (2005[Jian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653-o654.]); Venkatraman et al. (2005[Venkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914-o3916.]). For description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the anti­tumor, anti­viral and anti­fungal activity of thio­semicarbazones, see: Kalinowski et al. (2009[Kalinowski, D. S., Quach, P. & Richardson, D. R. (2009). Future Med. Chem. 1, 1143-1151.]); Smee & Sidwell (2003[Smee, D. F. & Sidwell, R. W. (2003). Antiviral Res. 57, 41-52.]); Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). For their metal-chelating properties, see: Paterson & Donnelly (2011[Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005-3018.]); Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12FN3S

  • Mr = 225.29

  • Monoclinic, P 21 /c

  • a = 9.038 (2) Å

  • b = 10.515 (2) Å

  • c = 11.869 (2) Å

  • β = 99.77 (3)°

  • V = 1111.6 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.48 mm−1

  • T = 296 K

  • 0.55 × 0.30 × 0.10 mm

Data collection
  • Kuma KM-4 diffractometer

  • Absorption correction: for a cylinder mounted on the φ axis (Dwiggins, 1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) Tmin = 0.435, Tmax = 0.485

  • 3800 measured reflections

  • 1942 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.084

  • 3 standard reflections every 100 reflections intensity decay: 3.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.217

  • S = 1.04

  • 1942 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.86 2.12 2.553 (5) 111
N2—H2⋯S1i 0.86 2.67 3.465 (3) 154
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: KM-4 Software (Kuma Diffraction, 1991[Kuma Diffraction (1991). KM4 Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones are widely studied due to their antitumor, antiviral and antifungal activity (Kalinowski et al., 2009; Smee & Sidwell, 2003; Beraldo & Gambino, 2004) as well as for their metal chelating properties (Paterson & Donnelly, 2011; Casas et al., 2000). The molecular structure of the title compound (I) with numbering scheme is shown in Fig. 1. Recently, two crystal forms of 4-phenyl-1-(propan-2-ylidene)thiosemicarbazone have been reported. However, they were not identified as polymorphs (Jian et al., 2005, CSD Refcode: FIDDUS; Venkatraman et al., 2005, Refcode: FIDDUS01). Crystals of FIDDUS were obtained by recrystallisation from dimethyl sulfoxide, while those of FIDDUS01 from an acetone:methanol solution. The crystal structure reported here is similar to the lower density polymorph, FIDDUS (d = 1.258 Mg/m-3 vs. 1.302 Mg/m-3 for FIDDUS01).

The bond lengths confirm the thione form of the title molecule, the presence of a double bond between the N3 and C2 atoms, and they indicate some π-delocalisation along the thiosemicarbazone fragment. The S1 and the hydrazinic N3 atoms are in the trans conformation with the S1—C1—N2—N3 torsion angle equal to -177.7 (3)°. This conformation enables the formation of an intramolecular N1—H···N3 hydrogen bond. Consequently, the thiosemicarbazone part of the molecule (N1—C1—S1—N2—N3) is planar, with the maximum deviation from the mean plane of these atoms being 0.014 (2) Å for N3. This conformation seems to be characteristic of the thiosemicarbazone fragment, and it is observed in all related crystal structures found in the CSD (Allen, 2002) [Refcodes: CUZXOK (Parsons et al., 2000), DAWPOG (Park & Ahn, 1985), FIDDUS (Jian et al., 2005), FIDDUS01 (Venkatraman et al., 2005) and UQOWAZ (Basu & Das, 2011))]. The dihedral angles between the central thiosemicarbazone plane of (I) and the planes formed by the propan-2-ylidene (C2—C3—C4) and phenyl (C1P to C6P) groups are 16.7 (4) and 38.9 (2)°, respectively. For comparison, the respective angles in FIDDUS are 14.0° and 38.6°; and in FIDDUS01 they are 23.6° and 42.8°.

The thiosemicarbazone part is also involved in intermolecular (N2—H···S1) hydrogen bonds (Fig. 2, Table 1), resulting in R22(8) centrosymmetric dimers. (The same pattern have been found in DAWPOG, FIDDUS, FIDDUS01 and UQOWAZ.) The main difference between the two aforementioned polymorphs is the orientation of the molecules relative to the twofold screw axes. In FIDDUS and in (I) the 21 screw axis passes through the C1—N1 bond, while in FIDDUS01 it runs through the N2—N3 bond (Figs. 3 and 4). Additionally, in FIDDUS01 the thiosemicarbazone plane is almost perpendicular to the b direction (85.7°) while in FIDDDUS and in (I) the corresponding angles are 62.0° and 59.9 (4)°, respectively. In (I) and in FIDDUS there are offset stacking interactions between the aromatic rings (Fig. 3) with interplanar distances of 3.5 (1) Å and 3.6 Å, respectively. The physical consequence of these stacking interactions is the yellow colour of FIDDUS crystals, in contrast to the colourless crystals of FIDDUS01, where overlapping of the heteroatoms is observed (Fig. 4). Surprisingly, the crystals of (I) are colourless, despite the similar molecular and crystal structure with FIDDUS. This could be explained by the changes in the electronic structure of the aromatic ring in molecule (I) caused by the electronegative fluorine substituent. The presence of the fluorine atom in (I) causes only slight differences in crystal packing with respect to FIDDUS. In (I) there is a short intermolecular contact between the F1 and C2 (1 - x, 1/2 + y, 0.5 - z) atoms with a distance of 3.107 (5) Å (the sum of van der Waals radii is 3.17 Å).

Related literature top

For related structures, see: Basu & Das (2011); Park & Ahn (1985); Parsons et al. (2000); Jian et al. (2005); Venkatraman et al. (2005). For description of the Cambridge Structural Database, see: Allen (2002). For the antitumor, antiviral and antifungal activity of thiosemicarbazones, see: Kalinowski et al. (2009); Smee & Sidwell (2003); Beraldo & Gambino (2004). For their metal-chelating properties, see: Paterson & Donnelly (2011); Casas et al. (2000).

Experimental top

The title compound, C10H12FN3S, was obtained in the reaction of 4-amino-1,7,8,9,10-pentamethyl-4-azatricyclo[2.5.1.02,6]dec-8-ene-3,5-dione and 3-fluorophenyl isothiocyanate in acetonitrile. The mixture of the reagents was refluxed for 6 h. After heating, the solvent was removed on a rotary evaporator. The residue was purified by column chromatography (chloroform:methanol 5.5:0.5). Two products were obtained in this reaction, viz.: 1-(3-fluorophenyl)-3-(1,7,8,9,10-pentametyl-3,5-dioxo-4-azatricyclo[5.2.1.02,6]dec-8-en-4-yl)thiourea (60%) and 4-(3-fluorophenyl)-1-(propan-2-ylidene)thiosemicarbazone (40%). The title compound was recrystallised from acetonitrile.

Refinement top

All C-bonded H atoms were positioned geometrically and allowed to ride on the attached atom with C—H bond lengths of 0.93 Å for aromatic atoms and 0.96 Å for methyl groups. The positions of N-bonded H atoms were located in the difference electron density maps and then constrained with an N—H distance of 0.86 Å. Uiso(H) values were fixed to 1.2Ueq(C,N).

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1991); cell refinement: KM-4 Software (Kuma Diffraction, 1991); data reduction: KM-4 Software (Kuma Diffraction, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids. H atoms are shown as small spheres of an arbitrary size. Thin single line represents the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Dimer in (I) formed by hydrogen bonds around a centre of symmetry.
[Figure 3] Fig. 3. Orientation of molecules in relation to the 21 screw axes in (I). View along the b axis. Green symbols indicate the positions of 21 screw axes in the unit cells.
[Figure 4] Fig. 4. Orientation of molecules in relation to the 21 screw axes in FIDDUS01. View along b axis. Green symbols indicate positions of 21 screw axes in the unit cells.
N-(3-fluorophenyl)-2-(propan-2-ylidene)hydrazinecarbothioamide top
Crystal data top
C10H12FN3SF(000) = 472
Mr = 225.29Dx = 1.346 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 75 reflections
a = 9.038 (2) Åθ = 6–20°
b = 10.515 (2) ŵ = 2.48 mm1
c = 11.869 (2) ÅT = 296 K
β = 99.77 (3)°Plate, colourless
V = 1111.6 (4) Å30.55 × 0.30 × 0.10 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer
1252 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 67.7°, θmin = 5.0°
ω–2θ scansh = 1010
Absorption correction: for a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
k = 1212
Tmin = 0.435, Tmax = 0.485l = 014
3800 measured reflections3 standard reflections every 100 reflections
1942 independent reflections intensity decay: 3.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1522P)2]
where P = (Fo2 + 2Fc2)/3
1942 reflections(Δ/σ)max = 0.013
138 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C10H12FN3SV = 1111.6 (4) Å3
Mr = 225.29Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.038 (2) ŵ = 2.48 mm1
b = 10.515 (2) ÅT = 296 K
c = 11.869 (2) Å0.55 × 0.30 × 0.10 mm
β = 99.77 (3)°
Data collection top
Kuma KM-4
diffractometer
1252 reflections with I > 2σ(I)
Absorption correction: for a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
Rint = 0.084
Tmin = 0.435, Tmax = 0.4853 standard reflections every 100 reflections
3800 measured reflections intensity decay: 3.3%
1942 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
1942 reflectionsΔρmin = 0.39 e Å3
138 parameters
Special details top

Experimental. cylinder dimensions used for absorption correction: 0.2 mm radius and a 0.1 mm height

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4980 (4)0.4433 (3)0.2021 (3)0.0493 (8)
C1P0.3908 (4)0.4006 (4)0.3776 (3)0.0506 (9)
C20.8673 (4)0.3455 (4)0.1991 (3)0.0557 (9)
C2P0.3249 (5)0.5171 (4)0.3911 (3)0.0566 (9)
H2P0.33810.58640.34510.068*
C30.9760 (5)0.2575 (6)0.2680 (4)0.0785 (14)
H3A0.93950.23440.33660.094*
H3B1.07150.29890.28760.094*
H3C0.98700.18230.22420.094*
C3P0.2380 (5)0.5252 (4)0.4767 (4)0.0613 (10)
C40.9221 (5)0.4267 (5)0.1128 (4)0.0718 (13)
H4A0.90860.38300.04080.086*
H4B1.02680.44480.13730.086*
H5C0.86650.50490.10460.086*
C4P0.2123 (5)0.4283 (5)0.5460 (4)0.0675 (11)
H4P0.15210.43840.60150.081*
C5P0.2802 (6)0.3136 (5)0.5299 (4)0.0700 (12)
H5P0.26620.24470.57610.084*
C6P0.3682 (5)0.2991 (4)0.4467 (4)0.0639 (11)
H6P0.41240.22090.43700.077*
N10.4913 (4)0.3838 (3)0.3000 (3)0.0564 (8)
H10.55860.32630.31890.068*
N20.6276 (4)0.4233 (3)0.1607 (3)0.0560 (8)
H20.64270.45870.09830.067*
N30.7337 (4)0.3444 (4)0.2220 (3)0.0567 (8)
S10.36293 (11)0.53442 (10)0.12753 (8)0.0578 (4)
F10.1751 (4)0.6403 (3)0.4920 (3)0.0941 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (18)0.0465 (19)0.0519 (19)0.0021 (16)0.0037 (14)0.0012 (15)
C1P0.0412 (17)0.061 (2)0.0499 (18)0.0004 (16)0.0070 (14)0.0020 (16)
C20.052 (2)0.057 (2)0.058 (2)0.0001 (18)0.0065 (17)0.0026 (18)
C2P0.063 (2)0.052 (2)0.055 (2)0.0007 (18)0.0113 (17)0.0036 (17)
C30.062 (3)0.099 (3)0.073 (3)0.027 (3)0.006 (2)0.007 (3)
C3P0.072 (3)0.061 (2)0.0521 (19)0.012 (2)0.0145 (18)0.0026 (18)
C40.049 (2)0.087 (3)0.078 (3)0.008 (2)0.0078 (19)0.011 (3)
C4P0.071 (3)0.078 (3)0.058 (2)0.008 (2)0.0247 (19)0.007 (2)
C5P0.075 (3)0.071 (3)0.068 (3)0.001 (2)0.026 (2)0.016 (2)
C6P0.068 (3)0.057 (2)0.067 (2)0.006 (2)0.0116 (19)0.0073 (19)
N10.0545 (18)0.0620 (19)0.0541 (17)0.0156 (16)0.0133 (13)0.0080 (15)
N20.0498 (17)0.0609 (18)0.0572 (18)0.0055 (15)0.0087 (13)0.0070 (15)
N30.0502 (17)0.064 (2)0.0564 (17)0.0092 (15)0.0107 (14)0.0049 (15)
S10.0535 (6)0.0664 (7)0.0528 (6)0.0100 (5)0.0069 (4)0.0064 (4)
F10.139 (3)0.0729 (18)0.0802 (18)0.0358 (19)0.0475 (18)0.0055 (15)
Geometric parameters (Å, º) top
C1—N11.331 (5)C3P—C4P1.354 (6)
C1—N21.361 (5)C3P—F11.362 (5)
C1—S11.681 (4)C4—H4A0.9600
C1P—C6P1.382 (6)C4—H4B0.9600
C1P—C2P1.383 (6)C4—H5C0.9600
C1P—N11.409 (5)C4P—C5P1.381 (7)
C2—N31.282 (5)C4P—H4P0.9300
C2—C41.482 (6)C5P—C6P1.377 (6)
C2—C31.489 (6)C5P—H5P0.9300
C2P—C3P1.389 (6)C6P—H6P0.9300
C2P—H2P0.9300N1—H10.8600
C3—H3A0.9600N2—N31.379 (5)
C3—H3B0.9600N2—H20.8600
C3—H3C0.9600
N1—C1—N2114.4 (3)C2—C4—H4B109.5
N1—C1—S1126.2 (3)H4A—C4—H4B109.5
N2—C1—S1119.4 (3)C2—C4—H5C109.5
C6P—C1P—C2P120.3 (4)H4A—C4—H5C109.5
C6P—C1P—N1117.9 (4)H4B—C4—H5C109.5
C2P—C1P—N1121.6 (4)C3P—C4P—C5P116.6 (4)
N3—C2—C4126.1 (4)C3P—C4P—H4P121.7
N3—C2—C3115.8 (4)C5P—C4P—H4P121.7
C4—C2—C3118.1 (4)C6P—C5P—C4P121.3 (4)
C1P—C2P—C3P116.6 (4)C6P—C5P—H5P119.3
C1P—C2P—H2P121.7C4P—C5P—H5P119.3
C3P—C2P—H2P121.7C5P—C6P—C1P120.1 (4)
C2—C3—H3A109.5C5P—C6P—H6P119.9
C2—C3—H3B109.5C1P—C6P—H6P119.9
H3A—C3—H3B109.5C1—N1—C1P129.9 (3)
C2—C3—H3C109.5C1—N1—H1115.0
H3A—C3—H3C109.5C1P—N1—H1115.0
H3B—C3—H3C109.5C1—N2—N3117.8 (3)
C4P—C3P—F1118.1 (4)C1—N2—H2121.1
C4P—C3P—C2P125.0 (4)N3—N2—H2121.1
F1—C3P—C2P116.9 (4)C2—N3—N2118.6 (4)
C2—C4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.122.553 (5)111
N2—H2···S1i0.862.673.465 (3)154
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H12FN3S
Mr225.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.038 (2), 10.515 (2), 11.869 (2)
β (°) 99.77 (3)
V3)1111.6 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.48
Crystal size (mm)0.55 × 0.30 × 0.10
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correctionFor a cylinder mounted on the ϕ axis
(Dwiggins, 1975)
Tmin, Tmax0.435, 0.485
No. of measured, independent and
observed [I > 2σ(I)] reflections
3800, 1942, 1252
Rint0.084
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.217, 1.04
No. of reflections1942
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.39

Computer programs: KM-4 Software (Kuma Diffraction, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.862.122.553 (5)111
N2—H2···S1i0.862.673.465 (3)154
Symmetry code: (i) x+1, y+1, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasu, A. & Das, G. (2011). Dalton Trans. 40, 2837–2843.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJian, F.-F., Bai, Z.-S., Xiao, H.-L. & Li, K. (2005). Acta Cryst. E61, o653–o654.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalinowski, D. S., Quach, P. & Richardson, D. R. (2009). Future Med. Chem. 1, 1143–1151.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKuma Diffraction (1991). KM4 Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, Y. J. & Ahn, C. T. (1985). J. Korean Chem. Soc. 29, 73–79.  CAS Google Scholar
First citationParsons, S., Smith, A. G., Tasker, P. A. & White, D. J. (2000). Acta Cryst. C56, 237–238.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmee, D. F. & Sidwell, R. W. (2003). Antiviral Res. 57, 41–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVenkatraman, R., Swesi, A. T. & Yamin, B. M. (2005). Acta Cryst. E61, o3914–o3916.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds