metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1523-m1524

Bis[μ-3,5-bis­­(2-pyrid­yl)pyrazolato]bis­­(hydrogensulfato)­dicopper(II) methanol disolvate

aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan, bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and cInstitute for Molecular Science, 38 Nishigounaka Okazaki, Aichi 444-8585, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp

(Received 10 August 2011; accepted 21 September 2011; online 12 October 2011)

The title compound, [Cu2(C13H9N4)2(HSO4)2]·2CH3OH, consists of discrete centrosymmetric dinuclear complex mol­ecules and methanol solvent mol­ecules. The CuII atom shows a square-pyramidal coordination geometry and is bonded to four N atoms of the two bis-chelating 3,5-bis­(2-pyrid­yl)pyrazol­ate ions (bpypz) and one O atom of the hydrogensulfate ion. The bpypz ligands in the complex mol­ecule are virtually coplanar [dihedral angle between the mean ligand planes = 0.000(1)°] with the CuII atom deviating in opposite directions from their best plane by 0.2080 (12) Å. ππ stacking inter­actions between the pyridyl and pyrazole rings [centroid–centroid distance = 3.391 (3) Å] and strong O—H⋯O hydrogen bonds between the hydrogensulfate ligands and the methanol mol­ecules assemble the mol­ecules into a one-dimensional polymeric structure extending along the a axis. The methanol mol­ecule acts both as an accepter and a donor in the hydrogen bonding.

Related literature

For metal complexes of 3,5-bis­(2-pyrid­yl)pyrazole, see: Munakata et al. (1995[Munakata, M., Wu, L. P., Yamamoto, M., Kuroda-Sowa, T., Maekawa, M., Kawata, S. & Kitagawa, S. (1995). J. Chem. Soc. Dalton Trans. pp. 4099-4106.]); Nakano et al. (2004[Nakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982-988.]); Du et al. (2005[Du, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. & Ribas, J. (2005). J. Mol. Struct., 737, 17-21.]); Yoneda, Adachi, Hayami et al. (2006[Yoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45-47.]); Yoneda, Adachi, Nishio et al. (2006[Yoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Katada, M., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459-5461.]); Ishikawa et al. (2008[Ishikawa, R., Fuyuhiro, A., Hayami, S., Inoue, K. & Kawata, S. (2008). J. Mol. Struct., 892, 220-224.], 2010[Ishikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139-11144.]). For an example of a coordinated hydrogensulfate ion, see: Dragancea et al. (2008[Dragancea, D., Addison, A. W., Zeller, M., Thompson, L. K., Hoole, D., Revenco, M. D. & Hunter, A. D. (2008). Eur. J. Inorg. Chem. pp. 2530-2536.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H9N4)2(HO4S)2]·2CH4O

  • Mr = 827.82

  • Monoclinic, P 21 /c

  • a = 6.0909 (3) Å

  • b = 16.0581 (6) Å

  • c = 15.6579 (7) Å

  • β = 95.2044 (14)°

  • V = 1525.16 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 200 K

  • 0.35 × 0.04 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.926, Tmax = 0.953

  • 16136 measured reflections

  • 2470 independent reflections

  • 3262 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.08

  • 3470 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.2696 (13)
Cu1—N1 2.0865 (13)
Cu1—N2 1.9558 (13)
Cu1—N3i 1.9507 (13)
Cu1—N4i 2.0924 (14)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

3,5-Bis(2-pyridyl)pyrazole[Hbpypz] is a versatile ligand in the construction of a series of mononuclear, dinuclear and polynuclear complexes (Munakata et al., 1995; Du et al., 2005; Yoneda et al., 2006; Ishikawa et al., 2010). The dinuclear complexes show the structure where two bpypz- ions are bridging two metal ions with the axial coordination sites. This kind of dinuclear complexes with transition metal ions were reported previously (Nakano et al., 2004; Yoneda et al., 2006; Ishikawa et al., 2008). The title compound consists of the CuII dinuclear complex and two methanol solvent molecules. In the dinuclear complex, four N donors from two deprotonated tetradentate bridging bpypz- ligands form the basal plane (Table 1). The copper(II) ion is penta-coordinated and it is in a slightly deformed square-pyramidal coordination environment with the τ value of 0.001 (Fig. 1). The apical position is occupied by the hydrogensulfate ion. An uncommon feature is that a sulfate ion is actually bound as the hydrogensulfate ion as there are only a few instances of unidentately coordinated hydrogensulfate ion (Dragancea et al., 2008). The π···π stacking interactions between pyridyl and pyrazole rings [centroid-centroid distance 3.391 (3) Å ] and strong hydrogen bonds between the hydrogensulfate ligands and the methanol molecules assemble molecules into a one dimensional polymeric structure extended along the a axis (Table 2, Fig. 2). The methanol molecule acts both as an accepter and a donor in O-H···O hydrogen bond.

Related literature top

For metal complexes of 3,5-bis(2-pyridyl)pyrazole, see: Munakata et al. (1995); Nakano et al. (2004); Du et al. (2005); Yoneda, Adachi, Hayami et al. (2006); Yoneda, Adachi, Nishio et al. (2006); Ishikawa et al. (2008, 2010). For an example of a coordinated hydrogensulfate ion, see: Dragancea et al. (2008).

Experimental top

A methanolic solution of CuSO4.6H2O (5ml, 10 mmolL-1) was transferred to a glass tube, and then a methanolic solution of Hbpypz (5ml, 10 mmolL-1) was poured into the glass tube without mixing the solutions. Green crystals began to form at ambient temperature within one week (yield 84%). Elemental analysis: calcd (%) for C28H28Cu2N8O10S2: C 40.62, H 3.41, N 13.54; found: C 40.45, H 3.28, N 13.60.

Refinement top

The C-bound hydrogen atoms in the bpypz- ion and the methyl group of the methanol molecule were placed at calculated positions, C—H 0.950 Å and 0.980 Å respectively, and were treated as riding on their parent atoms with Uiso(H) set to 1.2 Ueq(C). The O-bound hydrogen atoms in the hydrogensulfate ion and the methanol molecule were located in a difference Fourier map. The H-atom coordinates were fixed. The distances were O2–H10 0.90 Å and O5–H11 0.96 Å.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO(Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing for the title complex showing 50% probability displacement ellipsoids. Symmentry code for unlabelled atoms: -x, -y+1, -z+1.
[Figure 2] Fig. 2. A fragment of one-dimensional chain structure of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal structure for the title compound viewed along the a axis (a) and the b axis (b). The C-bound hydrogen atoms have been omitted.
Bis[µ-3,5-bis(2-pyridyl)pyrazolato]bis(hydrogensulfato)dicopper(II) methanol disolvate top
Crystal data top
[Cu2(C13H9N4)2(HO4S)2]·2CH4OF(000) = 844.00
Mr = 827.82Dx = 1.803 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 14158 reflections
a = 6.0909 (3) Åθ = 3.4–27.5°
b = 16.0581 (6) ŵ = 1.61 mm1
c = 15.6579 (7) ÅT = 200 K
β = 95.2044 (14)°Column, green
V = 1525.16 (12) Å30.35 × 0.04 × 0.03 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3262 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.021
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 77
Tmin = 0.926, Tmax = 0.953k = 2020
16136 measured reflectionsl = 2020
2470 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.881P]
where P = (Fo2 + 2Fc2)/3
3470 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu2(C13H9N4)2(HO4S)2]·2CH4OV = 1525.16 (12) Å3
Mr = 827.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0909 (3) ŵ = 1.61 mm1
b = 16.0581 (6) ÅT = 200 K
c = 15.6579 (7) Å0.35 × 0.04 × 0.03 mm
β = 95.2044 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
3262 reflections with F2 > 2.0σ(F2)
Tmin = 0.926, Tmax = 0.953Rint = 0.021
16136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
3470 reflectionsΔρmin = 0.51 e Å3
227 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor(wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28031 (3)0.520598 (11)0.578370 (12)0.01532 (7)
S10.20037 (6)0.55399 (2)0.78731 (2)0.01893 (10)
O10.1195 (2)0.56027 (8)0.69710 (8)0.0266 (3)
O20.4401 (2)0.58901 (8)0.78864 (8)0.0293 (3)
O30.2141 (3)0.46998 (8)0.81989 (9)0.0292 (3)
O40.0797 (3)0.60921 (9)0.84007 (9)0.0356 (4)
O50.7222 (2)0.55846 (10)0.91528 (9)0.0331 (3)
N10.4667 (3)0.42870 (8)0.64544 (9)0.0172 (3)
N20.0927 (2)0.42369 (8)0.55066 (9)0.0175 (3)
N30.1001 (2)0.41178 (8)0.50440 (9)0.0172 (3)
N40.4729 (3)0.37148 (8)0.42106 (9)0.0180 (3)
C10.6627 (3)0.43350 (10)0.69186 (11)0.0222 (4)
C20.7564 (3)0.36790 (11)0.73994 (11)0.0243 (4)
C30.6436 (3)0.29342 (11)0.74028 (11)0.0249 (4)
C40.4411 (3)0.28646 (10)0.69234 (11)0.0221 (4)
C50.3577 (3)0.35468 (10)0.64594 (10)0.0168 (3)
C60.1491 (3)0.35246 (9)0.59261 (10)0.0170 (3)
C70.0117 (3)0.29197 (9)0.57300 (10)0.0186 (3)
C80.1656 (3)0.33282 (9)0.51668 (10)0.0167 (3)
C90.3750 (3)0.30969 (9)0.47033 (10)0.0169 (3)
C100.4679 (3)0.23107 (10)0.47581 (11)0.0226 (4)
C110.6675 (3)0.21423 (11)0.42906 (12)0.0262 (4)
C120.7683 (3)0.27685 (11)0.37925 (12)0.0256 (4)
C130.6672 (3)0.35401 (11)0.37704 (11)0.0232 (4)
C140.7361 (4)0.47382 (13)0.94479 (15)0.0361 (5)
H10.74150.48460.69180.0267*
H20.89550.37410.77200.0292*
H30.70360.24750.77290.0299*
H40.36100.23570.69140.0266*
H50.01540.23630.59320.0223*
H60.39570.18940.51110.0272*
H70.73340.16080.43130.0314*
H80.90540.26710.34690.0308*
H90.73860.39660.34280.0278*
H100.53060.57330.83440.0351*
H110.85290.56970.88730.0397*
H120.86580.44710.92400.0434*
H130.60290.44360.92290.0434*
H140.74890.47301.00760.0434*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01457 (11)0.01325 (11)0.01755 (11)0.00117 (6)0.00178 (7)0.00169 (6)
S10.02020 (19)0.01756 (19)0.01917 (19)0.00183 (14)0.00250 (15)0.00195 (14)
O10.0213 (6)0.0362 (7)0.0219 (6)0.0049 (6)0.0005 (5)0.0002 (5)
O20.0235 (6)0.0335 (7)0.0299 (7)0.0093 (6)0.0023 (5)0.0060 (6)
O30.0320 (7)0.0207 (6)0.0344 (8)0.0032 (5)0.0007 (6)0.0053 (5)
O40.0447 (8)0.0269 (7)0.0380 (8)0.0005 (6)0.0189 (7)0.0097 (6)
O50.0244 (7)0.0382 (8)0.0362 (8)0.0030 (6)0.0003 (6)0.0022 (6)
N10.0175 (6)0.0153 (6)0.0187 (7)0.0016 (5)0.0003 (5)0.0006 (5)
N20.0169 (6)0.0155 (6)0.0195 (7)0.0008 (5)0.0028 (5)0.0018 (5)
N30.0171 (6)0.0146 (6)0.0191 (7)0.0022 (5)0.0022 (5)0.0017 (5)
N40.0166 (6)0.0173 (6)0.0202 (7)0.0014 (5)0.0014 (5)0.0007 (5)
C10.0189 (8)0.0202 (8)0.0269 (9)0.0003 (6)0.0019 (7)0.0028 (7)
C20.0204 (8)0.0268 (9)0.0244 (9)0.0040 (7)0.0052 (7)0.0028 (7)
C30.0255 (9)0.0247 (9)0.0233 (9)0.0054 (7)0.0043 (7)0.0042 (7)
C40.0236 (8)0.0190 (8)0.0232 (8)0.0006 (7)0.0016 (7)0.0035 (6)
C50.0182 (7)0.0164 (7)0.0161 (7)0.0013 (6)0.0022 (6)0.0003 (6)
C60.0182 (7)0.0154 (7)0.0174 (7)0.0015 (6)0.0012 (6)0.0021 (6)
C70.0205 (8)0.0149 (7)0.0203 (8)0.0004 (6)0.0009 (6)0.0022 (6)
C80.0183 (7)0.0141 (7)0.0178 (7)0.0015 (6)0.0026 (6)0.0006 (6)
C90.0175 (7)0.0160 (7)0.0173 (7)0.0006 (6)0.0030 (6)0.0011 (6)
C100.0238 (8)0.0172 (7)0.0267 (9)0.0021 (7)0.0010 (7)0.0006 (6)
C110.0254 (9)0.0208 (8)0.0322 (10)0.0082 (7)0.0020 (7)0.0031 (7)
C120.0186 (8)0.0290 (9)0.0286 (9)0.0070 (7)0.0020 (7)0.0023 (7)
C130.0185 (8)0.0248 (8)0.0254 (8)0.0021 (7)0.0027 (7)0.0026 (7)
C140.0367 (11)0.0384 (12)0.0331 (11)0.0026 (9)0.0014 (8)0.0057 (9)
Geometric parameters (Å, º) top
Cu1—O12.2696 (13)C6—C71.394 (2)
Cu1—N12.0865 (13)C7—C81.392 (2)
Cu1—N21.9558 (13)C8—C91.457 (2)
Cu1—N3i1.9507 (13)C9—C101.389 (3)
Cu1—N4i2.0924 (14)C10—C111.387 (3)
S1—O11.4566 (13)C11—C121.382 (3)
S1—O21.5630 (13)C12—C131.385 (3)
S1—O31.4420 (14)O2—H100.900
S1—O41.4557 (16)O5—H110.960
O5—C141.436 (3)C1—H10.950
N1—C11.342 (2)C2—H20.950
N1—C51.362 (2)C3—H30.950
N2—N31.3368 (18)C4—H40.950
N2—C61.348 (2)C7—H50.950
N3—C81.348 (2)C10—H60.950
N4—C91.361 (2)C11—H70.950
N4—C131.344 (2)C12—H80.950
C1—C21.387 (3)C13—H90.950
C2—C31.380 (3)C14—H120.980
C3—C41.389 (3)C14—H130.980
C4—C51.385 (3)C14—H140.980
C5—C61.457 (2)
O1—Cu1—N192.40 (5)N2—C6—C7109.97 (13)
O1—Cu1—N296.79 (6)C5—C6—C7134.63 (14)
O1—Cu1—N3i97.44 (6)C6—C7—C8103.33 (13)
O1—Cu1—N4i92.72 (5)N3—C8—C7110.04 (13)
N1—Cu1—N280.16 (6)N3—C8—C9115.19 (13)
N1—Cu1—N3i167.37 (6)C7—C8—C9134.77 (14)
N1—Cu1—N4i107.72 (6)N4—C9—C8114.53 (13)
N2—Cu1—N3i90.77 (6)N4—C9—C10122.53 (14)
N2—Cu1—N4i167.42 (6)C8—C9—C10122.94 (14)
N3i—Cu1—N4i79.82 (6)C9—C10—C11119.12 (15)
O1—S1—O2102.78 (7)C10—C11—C12118.63 (16)
O1—S1—O3114.30 (8)C11—C12—C13119.29 (16)
O1—S1—O4111.38 (8)N4—C13—C12123.13 (16)
O2—S1—O3107.92 (8)N1—C1—H1118.240
O2—S1—O4107.00 (8)C2—C1—H1118.243
O3—S1—O4112.66 (9)C1—C2—H2120.658
Cu1—O1—S1129.93 (8)C3—C2—H2120.663
Cu1—N1—C1130.43 (11)C2—C3—H3120.467
Cu1—N1—C5112.14 (10)C4—C3—H3120.467
C1—N1—C5117.20 (14)C3—C4—H4120.496
Cu1—N2—N3134.51 (11)C5—C4—H4120.484
Cu1—N2—C6116.71 (10)C6—C7—H5128.336
N3—N2—C6108.36 (13)C8—C7—H5128.337
Cu1i—N3—N2133.96 (11)C9—C10—H6120.442
Cu1i—N3—C8117.54 (10)C11—C10—H6120.440
N2—N3—C8108.31 (13)C10—C11—H7120.683
Cu1i—N4—C9112.64 (10)C12—C11—H7120.692
Cu1i—N4—C13129.97 (12)C11—C12—H8120.351
C9—N4—C13117.30 (14)C13—C12—H8120.364
N1—C1—C2123.52 (15)N4—C13—H9118.439
C1—C2—C3118.68 (16)C12—C13—H9118.430
C2—C3—C4119.07 (16)O5—C14—H12109.477
C3—C4—C5119.02 (15)O5—C14—H13109.477
N1—C5—C4122.52 (14)O5—C14—H14109.472
N1—C5—C6114.75 (14)H12—C14—H13109.472
C4—C5—C6122.73 (15)H12—C14—H14109.469
N2—C6—C5115.40 (13)H13—C14—H14109.460
O1—Cu1—N1—C185.61 (12)Cu1—N2—C6—C56.86 (18)
O1—Cu1—N1—C588.62 (9)Cu1—N2—C6—C7173.75 (9)
N1—Cu1—O1—S126.68 (10)N3—N2—C6—C5179.56 (12)
O1—Cu1—N2—N388.20 (13)N3—N2—C6—C70.17 (17)
O1—Cu1—N2—C683.23 (10)C6—N2—N3—Cu1i174.97 (13)
N2—Cu1—O1—S1107.06 (10)C6—N2—N3—C80.31 (17)
O1—Cu1—N3i—N2i87.66 (13)Cu1i—N3—C8—C7176.01 (9)
O1—Cu1—N3i—C8i86.62 (10)Cu1i—N3—C8—C94.37 (18)
N3i—Cu1—O1—S1161.27 (10)N2—N3—C8—C70.34 (17)
O1—Cu1—N4i—C9i92.61 (9)N2—N3—C8—C9179.96 (12)
O1—Cu1—N4i—C13i83.70 (12)Cu1i—N4—C9—C83.47 (16)
N4i—Cu1—O1—S181.19 (10)Cu1i—N4—C9—C10176.54 (10)
N1—Cu1—N2—N3179.47 (14)Cu1i—N4—C13—C12175.54 (10)
N1—Cu1—N2—C68.03 (9)C9—N4—C13—C120.6 (3)
N2—Cu1—N1—C1177.90 (13)C13—N4—C9—C8179.71 (13)
N2—Cu1—N1—C57.86 (9)C13—N4—C9—C100.3 (3)
N1—Cu1—N4i—C9i174.00 (8)N1—C1—C2—C30.2 (3)
N1—Cu1—N4i—C13i9.69 (14)C1—C2—C3—C40.3 (3)
N4i—Cu1—N1—C18.01 (14)C2—C3—C4—C50.3 (3)
N4i—Cu1—N1—C5177.75 (8)C3—C4—C5—N10.0 (3)
N2—Cu1—N3i—N2i9.29 (14)C3—C4—C5—C6178.73 (14)
N2—Cu1—N3i—C8i176.42 (10)N1—C5—C6—N20.2 (2)
N3i—Cu1—N2—N39.38 (14)N1—C5—C6—C7178.96 (15)
N3i—Cu1—N2—C6179.19 (10)C4—C5—C6—N2179.10 (14)
N3i—Cu1—N4i—C9i4.46 (9)C4—C5—C6—C70.1 (3)
N3i—Cu1—N4i—C13i179.23 (13)N2—C6—C7—C80.03 (17)
N4i—Cu1—N3i—N2i179.10 (14)C5—C6—C7—C8179.20 (17)
N4i—Cu1—N3i—C8i4.82 (9)C6—C7—C8—N30.22 (17)
O2—S1—O1—Cu147.83 (11)C6—C7—C8—C9179.74 (16)
O3—S1—O1—Cu168.82 (12)N3—C8—C9—N40.3 (2)
O4—S1—O1—Cu1162.08 (10)N3—C8—C9—C10179.68 (13)
Cu1—N1—C1—C2173.45 (10)C7—C8—C9—N4179.81 (17)
Cu1—N1—C5—C4174.59 (10)C7—C8—C9—C100.2 (3)
Cu1—N1—C5—C66.54 (16)N4—C9—C10—C110.4 (3)
C1—N1—C5—C40.5 (3)C8—C9—C10—C11179.63 (14)
C1—N1—C5—C6178.39 (13)C9—C10—C11—C120.7 (3)
C5—N1—C1—C20.5 (3)C10—C11—C12—C130.4 (3)
Cu1—N2—N3—Cu1i13.1 (3)C11—C12—C13—N40.3 (3)
Cu1—N2—N3—C8172.25 (11)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H10···O50.901.662.5509 (18)170
O5—H11···O4ii0.961.742.694 (2)169
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H9N4)2(HO4S)2]·2CH4O
Mr827.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)6.0909 (3), 16.0581 (6), 15.6579 (7)
β (°) 95.2044 (14)
V3)1525.16 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.35 × 0.04 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.926, 0.953
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
16136, 2470, 3262
Rint0.021
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.08
No. of reflections3470
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: RAPID-AUTO (Rigaku, 2002), RAPID-AUTO(Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

Selected geometric parameters (Å, º) top
Cu1—O12.2696 (13)Cu1—N3i1.9507 (13)
Cu1—N12.0865 (13)Cu1—N4i2.0924 (14)
Cu1—N21.9558 (13)
O1—Cu1—N192.40 (5)N1—Cu1—N3i167.37 (6)
O1—Cu1—N296.79 (6)N1—Cu1—N4i107.72 (6)
O1—Cu1—N3i97.44 (6)N2—Cu1—N3i90.77 (6)
O1—Cu1—N4i92.72 (5)N2—Cu1—N4i167.42 (6)
N1—Cu1—N280.16 (6)N3i—Cu1—N4i79.82 (6)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by funds (No. 101501) from the Central Research Institute of Fukuoka University and Grant-in-Aids for Science Research (No. 22550067) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationDragancea, D., Addison, A. W., Zeller, M., Thompson, L. K., Hoole, D., Revenco, M. D. & Hunter, A. D. (2008). Eur. J. Inorg. Chem. pp. 2530–2536.  Web of Science CSD CrossRef Google Scholar
First citationDu, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. & Ribas, J. (2005). J. Mol. Struct., 737, 17–21.  CrossRef CAS Google Scholar
First citationIshikawa, R., Fuyuhiro, A., Hayami, S., Inoue, K. & Kawata, S. (2008). J. Mol. Struct., 892, 220–224.  CrossRef CAS Google Scholar
First citationIshikawa, R., Nakano, M., Fuyuhiro, A., Takeuchi, T., Kimura, S., Kashiwagi, T., Hagiwara, M., Kindo, K., Kaizaki, S. & Kawata, S. (2010). Chem. Eur. J. 16, 11139–11144.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMunakata, M., Wu, L. P., Yamamoto, M., Kuroda-Sowa, T., Maekawa, M., Kawata, S. & Kitagawa, S. (1995). J. Chem. Soc. Dalton Trans. pp. 4099–4106.  CSD CrossRef Web of Science Google Scholar
First citationNakano, K., Suemura, N., Kawata, S., Fuyuhiro, A., Yagi, T., Nasu, S., Morimoto, S. & Kaizaki, S. (2004). Dalton Trans. pp. 982–988.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoneda, K., Adachi, K., Hayami, S., Maeda, Y., Katada, M., Fuyuhiro, A., Kawata, S. & Kaizaki, S. (2006). Chem. Commun. pp. 45–47.  Web of Science CSD CrossRef Google Scholar
First citationYoneda, K., Adachi, K., Nishio, K., Yamasaki, M., Fuyuhiro, A., Katada, M., Kaizaki, S. & Kawata, S. (2006). Angew. Chem. Int. Ed. 45, 5459–5461.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1523-m1524
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds