metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-[(4-nitro­phen­yl)imino­meth­yl]pyridine-κ2N,N′}zinc(II)

aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
*Correspondence e-mail: saleh@basu.ac.ir

(Received 2 September 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, [ZnBr2(C12H9N3O2)], the ZnII ion is bonded to two Br ions and two N atoms of the diimine ligand in a distorted tetra­hedral geometry. With the exception of the Br atoms, all other atoms are disordered over two sets of sites corresponding to a 180° rotation of the mol­ecule along [[\overline{1}]02]. The refined occupancies of the components are 0.809 (2) and 0.191 (2). In addition, the crystal studied was a non-merohedral twin with a refined component ratio of 0.343 (2):0.657 (2).

Related literature

For related structures, see: Khalaj et al. (2009[Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.]). For background information on diimine complexes, see: Khalaj et al. (2010[Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647.]); Salehzadeh et al. (2011[Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H9N3O2)]

  • Mr = 452.41

  • Triclinic, [P \overline 1]

  • a = 7.2614 (5) Å

  • b = 7.9228 (8) Å

  • c = 13.6436 (15) Å

  • α = 87.724 (4)°

  • β = 74.719 (6)°

  • γ = 82.007 (6)°

  • V = 749.81 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.97 mm−1

  • T = 150 K

  • 0.28 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.417, Tmax = 0.588

  • 5868 measured reflections

  • 3252 independent reflections

  • 2630 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.04

  • 3252 reflections

  • 237 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br1—Zn1 2.3428 (14)
Br2—Zn1 2.3357 (16)
Zn1—N1 2.034 (9)
Zn1—N2 2.074 (7)
N1—Zn1—N2 81.2 (3)
N1—Zn1—Br2 116.1 (3)
N2—Zn1—Br2 118.0 (2)
N1—Zn1—Br1 112.3 (3)
N2—Zn1—Br1 111.5 (2)
Br2—Zn1—Br1 113.75 (5)

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands Khalaj et al. (2010); Salehzadeh et al. (2011), we report herein the crystal structure of the title complex that was prepared by the reaction of ZnBr2 with the bidentate ligand (4-nitrophenyl)-pyridine-2-ylmethylene-amine (Scheme I).

The molecluar structure of the title complex is shown in Fig. 1. The ZnII ion is in a distorted tetrahedral environment formed by the chelating ligand and two Br ions. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene ring indicates that the ligand is distorted from planarity, with twist of 22.23 (24)° between the chelate (N1C5C6N2) and the benzene (C7C8C9C10C11C12) planes. The Zn—Br and Zn—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of zinc bromide (Khalaj et al., 2009).

Related literature top

For related structures, see: Khalaj et al. (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).

Experimental top

The title complex was prepared by the reaction of ZnBr2 (22.5 mg, 0.1 mmol) and (4-nitrophenyl)pyridin-2-ylmethyleneamine (22.7 mg, 0.1 mmol) in 15 ml acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of the title compound in 60% yield.

Refinement top

The H(C) atom positions were calculated and refined in isotropic approximation within riding model with the Uiso(H) parameters equal to 1.2 Ueq(C) where Ueq(C) is the equivalent thermal parameter of the carbon atoms to which corresponding H atoms are bonded. When the results of the initial refinements of the structure were examined for twinning the PLATON (Spek, 2009) software indicated that the crystal was a non-merohedral twin with twin matrix -1 0 0, 0 -1 0, -1 0 1. When refined using data generated by this twin matrix the ratio of the twin components refined to 0.342 (2): 0.658. Further to refinement of the twin components, residual electron density peaks were located in difference Fourier maps which indicated the structure was disordered. All atoms, except for the Br atoms were modeled as disordered corresponding to a rotation of approximately 180° (see Fig. 1). The Br atoms related by unit cell translations along the a axis are in sites which coordinate to both the major and minor components of disorder with an occupancy ratio of 0.809 (2):0.191 (2). The geometry of the twin components were constrained to be the same using the SAME instruction in SHELXL (Sheldrick, 2008) and the anisotropic displacement parameters of each individual major and minor atom site were constrained to be equal using the EADP instruction in SHELXL. The twin law corresponds to a 180° rotation about the [-1 0 2] direction and this direction is parallel to the rotation axis relating the two disordered sites of the molecule.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing both disordered components. The minor component is labeled with the suffix 'A'. The atoms Br1a and Br2a are related by the symmetry operation (x-1, y, x).
Dibromido{2-[(4-nitrophenyl)iminomethyl]pyridine- κ2N,N'}zinc(II) top
Crystal data top
[ZnBr2(C12H9N3O2)]Z = 2
Mr = 452.41F(000) = 436
Triclinic, P1Dx = 2.004 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2614 (5) ÅCell parameters from 6572 reflections
b = 7.9228 (8) Åθ = 2.6–27.5°
c = 13.6436 (15) ŵ = 6.97 mm1
α = 87.724 (4)°T = 150 K
β = 74.719 (6)°Plate, colourless
γ = 82.007 (6)°0.28 × 0.15 × 0.08 mm
V = 749.81 (12) Å3
Data collection top
Nonius KappaCCD
diffractometer
3252 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 2.6°
ϕ scans and ω scans with κ offsetsh = 99
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1010
Tmin = 0.417, Tmax = 0.588l = 917
5868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0564P)2 + 2.802P]
where P = (Fo2 + 2Fc2)/3
3252 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.70 e Å3
48 restraintsΔρmin = 1.24 e Å3
Crystal data top
[ZnBr2(C12H9N3O2)]γ = 82.007 (6)°
Mr = 452.41V = 749.81 (12) Å3
Triclinic, P1Z = 2
a = 7.2614 (5) ÅMo Kα radiation
b = 7.9228 (8) ŵ = 6.97 mm1
c = 13.6436 (15) ÅT = 150 K
α = 87.724 (4)°0.28 × 0.15 × 0.08 mm
β = 74.719 (6)°
Data collection top
Nonius KappaCCD
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2630 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.588Rint = 0.082
5868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05648 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
3252 reflectionsΔρmin = 1.24 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.33600 (13)0.49862 (12)0.72990 (8)0.0358 (2)
Br20.43682 (13)0.00007 (12)0.71961 (8)0.0366 (3)
Zn10.20560 (17)0.24153 (16)0.74480 (11)0.0259 (3)0.809 (2)
O10.056 (2)0.137 (2)0.2086 (8)0.036 (3)0.809 (2)
O20.2084 (14)0.3589 (19)0.1962 (8)0.034 (3)0.809 (2)
N10.0223 (12)0.2369 (13)0.8687 (7)0.027 (2)0.809 (2)
N20.0123 (10)0.2536 (11)0.6714 (6)0.0235 (16)0.809 (2)
N30.1139 (15)0.2531 (18)0.2458 (5)0.027 (2)0.809 (2)
C10.0292 (14)0.2250 (15)0.9678 (9)0.032 (2)0.809 (2)
H1A0.08880.21230.98680.038*0.809 (2)
C20.2000 (15)0.2302 (17)1.0447 (9)0.036 (3)0.809 (2)
H2A0.19980.22391.11430.043*0.809 (2)
C30.3711 (15)0.245 (2)1.0150 (10)0.038 (3)0.809 (2)
H3A0.49060.24521.06470.046*0.809 (2)
C40.3672 (16)0.259 (2)0.9150 (10)0.042 (3)0.809 (2)
H4A0.48390.27620.89470.050*0.809 (2)
C50.1929 (19)0.249 (2)0.8435 (6)0.029 (2)0.809 (2)
C60.1789 (12)0.2637 (12)0.7350 (8)0.027 (2)0.809 (2)
H6A0.29220.28070.71150.032*0.809 (2)
C70.0079 (12)0.2568 (13)0.5649 (7)0.022 (2)0.809 (2)
C80.1213 (16)0.1964 (17)0.5189 (8)0.026 (2)0.809 (2)
H8A0.23200.15330.56030.032*0.809 (2)
C90.091 (2)0.198 (2)0.4148 (11)0.028 (3)0.809 (2)
H9A0.18010.15970.38370.033*0.809 (2)
C100.074 (3)0.259 (2)0.3573 (6)0.023 (3)0.809 (2)
C110.2013 (19)0.3242 (17)0.3996 (9)0.024 (3)0.809 (2)
H11A0.30710.37310.35750.029*0.809 (2)
C120.1737 (16)0.3183 (16)0.5044 (8)0.027 (2)0.809 (2)
H12A0.26510.35510.53450.032*0.809 (2)
Zn1A0.4500 (7)0.2540 (7)0.7425 (4)0.0259 (3)0.191 (2)
O1A0.101 (12)0.141 (12)0.196 (3)0.036 (3)0.191 (2)
O2A0.252 (8)0.354 (10)0.211 (3)0.034 (3)0.191 (2)
N1A0.349 (2)0.259 (6)0.8676 (10)0.027 (2)0.191 (2)
N2A0.1587 (13)0.243 (4)0.6709 (11)0.0235 (16)0.191 (2)
N3A0.156 (7)0.240 (8)0.2468 (11)0.027 (2)0.191 (2)
C1A0.441 (3)0.265 (6)0.9666 (11)0.032 (2)0.191 (2)
H1AA0.57780.27180.98500.038*0.191 (2)
C2A0.348 (4)0.262 (8)1.0440 (14)0.036 (3)0.191 (2)
H2AA0.41830.27971.11300.043*0.191 (2)
C3A0.147 (4)0.233 (9)1.0156 (16)0.038 (3)0.191 (2)
H3AA0.07830.21131.06600.046*0.191 (2)
C4A0.051 (3)0.234 (10)0.916 (2)0.042 (3)0.191 (2)
H4AA0.08560.22290.89610.050*0.191 (2)
C5A0.154 (3)0.252 (7)0.8437 (12)0.029 (2)0.191 (2)
C6A0.0591 (17)0.252 (5)0.7351 (15)0.027 (2)0.191 (2)
H6AA0.07520.25760.71210.032*0.191 (2)
C7A0.072 (2)0.246 (4)0.5645 (11)0.022 (2)0.191 (2)
C8A0.108 (4)0.298 (7)0.5209 (16)0.026 (2)0.191 (2)
H8AA0.17740.33750.56350.032*0.191 (2)
C9A0.187 (6)0.292 (10)0.4172 (18)0.028 (3)0.191 (2)
H9AA0.30850.32940.38750.033*0.191 (2)
C10A0.083 (8)0.231 (11)0.3581 (11)0.023 (3)0.191 (2)
C11A0.090 (8)0.169 (11)0.3986 (17)0.024 (3)0.191 (2)
H11B0.15200.12100.35560.029*0.191 (2)
C12A0.171 (5)0.178 (8)0.5029 (14)0.027 (2)0.191 (2)
H12B0.29230.13940.53190.032*0.191 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0307 (5)0.0262 (4)0.0540 (6)0.0087 (3)0.0146 (5)0.0002 (5)
Br20.0281 (4)0.0272 (4)0.0537 (7)0.0054 (3)0.0079 (5)0.0030 (5)
Zn10.0226 (5)0.0275 (5)0.0292 (6)0.0083 (4)0.0068 (5)0.0006 (6)
O10.041 (9)0.039 (4)0.031 (5)0.007 (6)0.013 (4)0.010 (4)
O20.037 (7)0.035 (4)0.029 (5)0.010 (5)0.009 (4)0.009 (4)
N10.028 (4)0.024 (4)0.031 (5)0.005 (3)0.008 (4)0.001 (5)
N20.026 (4)0.016 (4)0.031 (4)0.004 (3)0.009 (4)0.004 (4)
N30.023 (6)0.029 (4)0.031 (4)0.006 (5)0.013 (4)0.003 (5)
C10.026 (5)0.032 (5)0.040 (7)0.001 (4)0.013 (5)0.003 (6)
C20.042 (6)0.043 (7)0.017 (5)0.007 (6)0.003 (5)0.006 (6)
C30.018 (5)0.065 (9)0.028 (7)0.005 (5)0.002 (5)0.008 (7)
C40.023 (5)0.060 (8)0.042 (8)0.010 (5)0.006 (6)0.012 (8)
C50.026 (6)0.029 (4)0.034 (5)0.009 (5)0.008 (5)0.009 (5)
C60.023 (4)0.023 (5)0.037 (6)0.006 (4)0.011 (5)0.001 (5)
C70.020 (6)0.020 (4)0.024 (4)0.002 (5)0.002 (4)0.001 (4)
C80.025 (6)0.022 (5)0.030 (6)0.009 (4)0.001 (5)0.000 (5)
C90.031 (6)0.019 (8)0.033 (7)0.004 (5)0.008 (5)0.007 (5)
C100.025 (4)0.015 (8)0.027 (4)0.003 (4)0.006 (4)0.001 (4)
C110.033 (6)0.014 (6)0.021 (6)0.005 (4)0.001 (5)0.002 (4)
C120.025 (6)0.027 (5)0.029 (6)0.011 (5)0.003 (4)0.001 (5)
Zn1A0.0226 (5)0.0275 (5)0.0292 (6)0.0083 (4)0.0068 (5)0.0006 (6)
O1A0.041 (9)0.039 (4)0.031 (5)0.007 (6)0.013 (4)0.010 (4)
O2A0.037 (7)0.035 (4)0.029 (5)0.010 (5)0.009 (4)0.009 (4)
N1A0.028 (4)0.024 (4)0.031 (5)0.005 (3)0.008 (4)0.001 (5)
N2A0.026 (4)0.016 (4)0.031 (4)0.004 (3)0.009 (4)0.004 (4)
N3A0.023 (6)0.029 (4)0.031 (4)0.006 (5)0.013 (4)0.003 (5)
C1A0.026 (5)0.032 (5)0.040 (7)0.001 (4)0.013 (5)0.003 (6)
C2A0.042 (6)0.043 (7)0.017 (5)0.007 (6)0.003 (5)0.006 (6)
C3A0.018 (5)0.065 (9)0.028 (7)0.005 (5)0.002 (5)0.008 (7)
C4A0.023 (5)0.060 (8)0.042 (8)0.010 (5)0.006 (6)0.012 (8)
C5A0.026 (6)0.029 (4)0.034 (5)0.009 (5)0.008 (5)0.009 (5)
C6A0.023 (4)0.023 (5)0.037 (6)0.006 (4)0.011 (5)0.001 (5)
C7A0.020 (6)0.020 (4)0.024 (4)0.002 (5)0.002 (4)0.001 (4)
C8A0.025 (6)0.022 (5)0.030 (6)0.009 (4)0.001 (5)0.000 (5)
C9A0.031 (6)0.019 (8)0.033 (7)0.004 (5)0.008 (5)0.007 (5)
C10A0.025 (4)0.015 (8)0.027 (4)0.003 (4)0.006 (4)0.001 (4)
C11A0.033 (6)0.014 (6)0.021 (6)0.005 (4)0.001 (5)0.002 (4)
C12A0.025 (6)0.027 (5)0.029 (6)0.011 (5)0.003 (4)0.001 (5)
Geometric parameters (Å, º) top
Br1—Zn1Ai2.340 (5)C12—H12A0.9500
Br1—Zn12.3428 (14)Zn1A—N1A2.033 (9)
Br2—Zn12.3357 (16)Zn1A—N2A2.074 (8)
Br2—Zn1Ai2.339 (5)Zn1A—Br2ii2.339 (5)
Zn1—N12.034 (9)Zn1A—Br1ii2.340 (5)
Zn1—N22.074 (7)O1A—N3A1.239 (10)
O1—N31.239 (10)O2A—N3A1.226 (10)
O2—N31.226 (10)N1A—C1A1.340 (14)
N1—C11.340 (14)N1A—C5A1.361 (16)
N1—C51.361 (16)N2A—C6A1.284 (11)
N2—C61.284 (11)N2A—C7A1.422 (12)
N2—C71.421 (12)N3A—C10A1.472 (10)
N3—C101.472 (10)C1A—C2A1.394 (14)
C1—C21.394 (14)C1A—H1AA0.9500
C1—H1A0.9500C2A—C3A1.394 (15)
C2—C31.394 (15)C2A—H2AA0.9500
C2—H2A0.9500C3A—C4A1.357 (18)
C3—C41.357 (18)C3A—H3AA0.9500
C3—H3A0.9500C4A—C5A1.373 (16)
C4—C51.373 (16)C4A—H4AA0.9500
C4—H4A0.9500C5A—C6A1.459 (14)
C5—C61.459 (14)C6A—H6AA0.9500
C6—H6A0.9500C7A—C8A1.400 (14)
C7—C81.400 (14)C7A—C12A1.406 (12)
C7—C121.405 (12)C8A—C9A1.379 (18)
C8—C91.379 (18)C8A—H8AA0.9500
C8—H8A0.9500C9A—C10A1.381 (18)
C9—C101.381 (18)C9A—H9AA0.9500
C9—H9A0.9500C10A—C11A1.380 (19)
C10—C111.380 (19)C11A—C12A1.390 (16)
C11—C121.390 (16)C11A—H11B0.9500
C11—H11A0.9500C12A—H12B0.9500
Zn1Ai—Br1—Zn164.77 (11)C7—C12—H12A120.6
Zn1—Br2—Zn1Ai64.90 (12)N1A—Zn1A—N2A81.2 (3)
N1—Zn1—N281.2 (3)N1A—Zn1A—Br2ii114.8 (13)
N1—Zn1—Br2116.1 (3)N2A—Zn1A—Br2ii110.8 (8)
N2—Zn1—Br2118.0 (2)N1A—Zn1A—Br1ii111.9 (12)
N1—Zn1—Br1112.3 (3)N2A—Zn1A—Br1ii120.6 (8)
N2—Zn1—Br1111.5 (2)Br2ii—Zn1A—Br1ii113.73 (19)
Br2—Zn1—Br1113.75 (5)C1A—N1A—C5A116.9 (9)
C1—N1—C5117.0 (8)C1A—N1A—Zn1A130.7 (7)
C1—N1—Zn1130.6 (7)C5A—N1A—Zn1A112.4 (7)
C5—N1—Zn1112.4 (7)C6A—N2A—C7A121.1 (8)
C6—N2—C7121.2 (7)C6A—N2A—Zn1A111.5 (6)
C6—N2—Zn1111.5 (6)C7A—N2A—Zn1A127.0 (6)
C7—N2—Zn1127.2 (5)O2A—N3A—O1A124.4 (8)
O2—N3—O1124.5 (7)O2A—N3A—C10A117.9 (9)
O2—N3—C10118.0 (9)O1A—N3A—C10A117.4 (9)
O1—N3—C10117.5 (9)N1A—C1A—C2A123.4 (10)
N1—C1—C2123.6 (10)N1A—C1A—H1AA118.3
N1—C1—H1A118.2C2A—C1A—H1AA118.3
C2—C1—H1A118.2C1A—C2A—C3A117.0 (12)
C1—C2—C3117.2 (12)C1A—C2A—H2AA121.5
C1—C2—H2A121.4C3A—C2A—H2AA121.5
C3—C2—H2A121.4C4A—C3A—C2A119.8 (12)
C4—C3—C2120.0 (11)C4A—C3A—H3AA120.1
C4—C3—H3A120.0C2A—C3A—H3AA120.1
C2—C3—H3A120.0C3A—C4A—C5A119.3 (11)
C3—C4—C5119.4 (11)C3A—C4A—H4AA120.4
C3—C4—H4A120.3C5A—C4A—H4AA120.4
C5—C4—H4A120.3N1A—C5A—C4A122.7 (10)
N1—C5—C4122.6 (10)N1A—C5A—C6A115.1 (9)
N1—C5—C6115.1 (9)C4A—C5A—C6A122.1 (12)
C4—C5—C6122.1 (11)N2A—C6A—C5A119.5 (9)
N2—C6—C5119.5 (9)N2A—C6A—H6AA120.2
N2—C6—H6A120.2C5A—C6A—H6AA120.2
C5—C6—H6A120.2C8A—C7A—C12A119.9 (9)
C8—C7—C12119.9 (8)C8A—C7A—N2A123.9 (8)
C8—C7—N2123.9 (8)C12A—C7A—N2A116.0 (8)
C12—C7—N2116.1 (8)C9A—C8A—C7A121.2 (10)
C9—C8—C7121.2 (10)C9A—C8A—H8AA119.4
C9—C8—H8A119.4C7A—C8A—H8AA119.4
C7—C8—H8A119.4C8A—C9A—C10A117.6 (12)
C8—C9—C10117.6 (11)C8A—C9A—H9AA121.2
C8—C9—H9A121.2C10A—C9A—H9AA121.2
C10—C9—H9A121.2C11A—C10A—C9A122.9 (9)
C11—C10—C9122.9 (8)C11A—C10A—N3A118.6 (12)
C11—C10—N3118.7 (12)C9A—C10A—N3A118.4 (13)
C9—C10—N3118.4 (13)C10A—C11A—C12A119.5 (10)
C10—C11—C12119.4 (9)C10A—C11A—H11B120.3
C10—C11—H11A120.3C12A—C11A—H11B120.3
C12—C11—H11A120.3C11A—C12A—C7A118.7 (10)
C11—C12—C7118.7 (10)C11A—C12A—H12B120.6
C11—C12—H12A120.6C7A—C12A—H12B120.6
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H9N3O2)]
Mr452.41
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.2614 (5), 7.9228 (8), 13.6436 (15)
α, β, γ (°)87.724 (4), 74.719 (6), 82.007 (6)
V3)749.81 (12)
Z2
Radiation typeMo Kα
µ (mm1)6.97
Crystal size (mm)0.28 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.417, 0.588
No. of measured, independent and
observed [I > 2σ(I)] reflections
5868, 3252, 2630
Rint0.082
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.04
No. of reflections3252
No. of parameters237
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 1.24

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Br1—Zn12.3428 (14)Zn1—N12.034 (9)
Br2—Zn12.3357 (16)Zn1—N22.074 (7)
N1—Zn1—N281.2 (3)N1—Zn1—Br1112.3 (3)
N1—Zn1—Br2116.1 (3)N2—Zn1—Br1111.5 (2)
N2—Zn1—Br2118.0 (2)Br2—Zn1—Br1113.75 (5)
 

Acknowledgements

The authors would like to acknowledge the Bu-Ali Sina and Alzahra University Research Councils for partial support of this work

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSalehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds