metal-organic compounds
Dibromido{2-[(4-nitrophenyl)iminomethyl]pyridine-κ2N,N′}zinc(II)
aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and bDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
*Correspondence e-mail: saleh@basu.ac.ir
In the title compound, [ZnBr2(C12H9N3O2)], the ZnII ion is bonded to two Br ions and two N atoms of the diimine ligand in a distorted tetrahedral geometry. With the exception of the Br atoms, all other atoms are disordered over two sets of sites corresponding to a 180° rotation of the molecule along [02]. The refined occupancies of the components are 0.809 (2) and 0.191 (2). In addition, the crystal studied was a non-merohedral twin with a refined component ratio of 0.343 (2):0.657 (2).
Related literature
For related structures, see: Khalaj et al. (2009). For background information on diimine complexes, see: Khalaj et al. (2010); Salehzadeh et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811042231/gk2406sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042231/gk2406Isup2.hkl
The title complex was prepared by the reaction of ZnBr2 (22.5 mg, 0.1 mmol) and (4-nitrophenyl)pyridin-2-ylmethyleneamine (22.7 mg, 0.1 mmol) in 15 ml acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether vapor into the concentrated solution gave yellow crystals of the title compound in 60% yield.
The H(C) atom positions were calculated and refined in isotropic approximation within riding model with the Uiso(H) parameters equal to 1.2 Ueq(C) where Ueq(C) is the equivalent thermal parameter of the carbon atoms to which corresponding H atoms are bonded. When the results of the initial refinements of the structure were examined for
the PLATON (Spek, 2009) software indicated that the crystal was a non-merohedral twin with twin matrix -1 0 0, 0 -1 0, -1 0 1. When refined using data generated by this twin matrix the ratio of the twin components refined to 0.342 (2): 0.658. Further to of the twin components, residual electron density peaks were located in difference Fourier maps which indicated the structure was disordered. All atoms, except for the Br atoms were modeled as disordered corresponding to a rotation of approximately 180° (see Fig. 1). The Br atoms related by translations along the a axis are in sites which coordinate to both the major and minor components of disorder with an occupancy ratio of 0.809 (2):0.191 (2). The geometry of the twin components were constrained to be the same using the SAME instruction in SHELXL (Sheldrick, 2008) and the anisotropic displacement parameters of each individual major and minor atom site were constrained to be equal using the EADP instruction in SHELXL. The corresponds to a 180° rotation about the [-1 0 2] direction and this direction is parallel to the rotation axis relating the two disordered sites of the molecule.Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[ZnBr2(C12H9N3O2)] | Z = 2 |
Mr = 452.41 | F(000) = 436 |
Triclinic, P1 | Dx = 2.004 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2614 (5) Å | Cell parameters from 6572 reflections |
b = 7.9228 (8) Å | θ = 2.6–27.5° |
c = 13.6436 (15) Å | µ = 6.97 mm−1 |
α = 87.724 (4)° | T = 150 K |
β = 74.719 (6)° | Plate, colourless |
γ = 82.007 (6)° | 0.28 × 0.15 × 0.08 mm |
V = 749.81 (12) Å3 |
Nonius KappaCCD diffractometer | 3252 independent reflections |
Radiation source: fine-focus sealed tube | 2630 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 9 pixels mm-1 | θmax = 27.6°, θmin = 2.6° |
ϕ scans and ω scans with κ offsets | h = −9→9 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −10→10 |
Tmin = 0.417, Tmax = 0.588 | l = −9→17 |
5868 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0564P)2 + 2.802P] where P = (Fo2 + 2Fc2)/3 |
3252 reflections | (Δ/σ)max < 0.001 |
237 parameters | Δρmax = 0.70 e Å−3 |
48 restraints | Δρmin = −1.24 e Å−3 |
[ZnBr2(C12H9N3O2)] | γ = 82.007 (6)° |
Mr = 452.41 | V = 749.81 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2614 (5) Å | Mo Kα radiation |
b = 7.9228 (8) Å | µ = 6.97 mm−1 |
c = 13.6436 (15) Å | T = 150 K |
α = 87.724 (4)° | 0.28 × 0.15 × 0.08 mm |
β = 74.719 (6)° |
Nonius KappaCCD diffractometer | 3252 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2630 reflections with I > 2σ(I) |
Tmin = 0.417, Tmax = 0.588 | Rint = 0.082 |
5868 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 48 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.70 e Å−3 |
3252 reflections | Δρmin = −1.24 e Å−3 |
237 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.33600 (13) | 0.49862 (12) | 0.72990 (8) | 0.0358 (2) | |
Br2 | 0.43682 (13) | −0.00007 (12) | 0.71961 (8) | 0.0366 (3) | |
Zn1 | 0.20560 (17) | 0.24153 (16) | 0.74480 (11) | 0.0259 (3) | 0.809 (2) |
O1 | 0.056 (2) | 0.137 (2) | 0.2086 (8) | 0.036 (3) | 0.809 (2) |
O2 | 0.2084 (14) | 0.3589 (19) | 0.1962 (8) | 0.034 (3) | 0.809 (2) |
N1 | −0.0223 (12) | 0.2369 (13) | 0.8687 (7) | 0.027 (2) | 0.809 (2) |
N2 | −0.0123 (10) | 0.2536 (11) | 0.6714 (6) | 0.0235 (16) | 0.809 (2) |
N3 | 0.1139 (15) | 0.2531 (18) | 0.2458 (5) | 0.027 (2) | 0.809 (2) |
C1 | −0.0292 (14) | 0.2250 (15) | 0.9678 (9) | 0.032 (2) | 0.809 (2) |
H1A | 0.0888 | 0.2123 | 0.9868 | 0.038* | 0.809 (2) |
C2 | −0.2000 (15) | 0.2302 (17) | 1.0447 (9) | 0.036 (3) | 0.809 (2) |
H2A | −0.1998 | 0.2239 | 1.1143 | 0.043* | 0.809 (2) |
C3 | −0.3711 (15) | 0.245 (2) | 1.0150 (10) | 0.038 (3) | 0.809 (2) |
H3A | −0.4906 | 0.2452 | 1.0647 | 0.046* | 0.809 (2) |
C4 | −0.3672 (16) | 0.259 (2) | 0.9150 (10) | 0.042 (3) | 0.809 (2) |
H4A | −0.4839 | 0.2762 | 0.8947 | 0.050* | 0.809 (2) |
C5 | −0.1929 (19) | 0.249 (2) | 0.8435 (6) | 0.029 (2) | 0.809 (2) |
C6 | −0.1789 (12) | 0.2637 (12) | 0.7350 (8) | 0.027 (2) | 0.809 (2) |
H6A | −0.2922 | 0.2807 | 0.7115 | 0.032* | 0.809 (2) |
C7 | 0.0079 (12) | 0.2568 (13) | 0.5649 (7) | 0.022 (2) | 0.809 (2) |
C8 | −0.1213 (16) | 0.1964 (17) | 0.5189 (8) | 0.026 (2) | 0.809 (2) |
H8A | −0.2320 | 0.1533 | 0.5603 | 0.032* | 0.809 (2) |
C9 | −0.091 (2) | 0.198 (2) | 0.4148 (11) | 0.028 (3) | 0.809 (2) |
H9A | −0.1801 | 0.1597 | 0.3837 | 0.033* | 0.809 (2) |
C10 | 0.074 (3) | 0.259 (2) | 0.3573 (6) | 0.023 (3) | 0.809 (2) |
C11 | 0.2013 (19) | 0.3242 (17) | 0.3996 (9) | 0.024 (3) | 0.809 (2) |
H11A | 0.3071 | 0.3731 | 0.3575 | 0.029* | 0.809 (2) |
C12 | 0.1737 (16) | 0.3183 (16) | 0.5044 (8) | 0.027 (2) | 0.809 (2) |
H12A | 0.2651 | 0.3551 | 0.5345 | 0.032* | 0.809 (2) |
Zn1A | −0.4500 (7) | 0.2540 (7) | 0.7425 (4) | 0.0259 (3) | 0.191 (2) |
O1A | 0.101 (12) | 0.141 (12) | 0.196 (3) | 0.036 (3) | 0.191 (2) |
O2A | 0.252 (8) | 0.354 (10) | 0.211 (3) | 0.034 (3) | 0.191 (2) |
N1A | −0.349 (2) | 0.259 (6) | 0.8676 (10) | 0.027 (2) | 0.191 (2) |
N2A | −0.1587 (13) | 0.243 (4) | 0.6709 (11) | 0.0235 (16) | 0.191 (2) |
N3A | 0.156 (7) | 0.240 (8) | 0.2468 (11) | 0.027 (2) | 0.191 (2) |
C1A | −0.441 (3) | 0.265 (6) | 0.9666 (11) | 0.032 (2) | 0.191 (2) |
H1AA | −0.5778 | 0.2718 | 0.9850 | 0.038* | 0.191 (2) |
C2A | −0.348 (4) | 0.262 (8) | 1.0440 (14) | 0.036 (3) | 0.191 (2) |
H2AA | −0.4183 | 0.2797 | 1.1130 | 0.043* | 0.191 (2) |
C3A | −0.147 (4) | 0.233 (9) | 1.0156 (16) | 0.038 (3) | 0.191 (2) |
H3AA | −0.0783 | 0.2113 | 1.0660 | 0.046* | 0.191 (2) |
C4A | −0.051 (3) | 0.234 (10) | 0.916 (2) | 0.042 (3) | 0.191 (2) |
H4AA | 0.0856 | 0.2229 | 0.8961 | 0.050* | 0.191 (2) |
C5A | −0.154 (3) | 0.252 (7) | 0.8437 (12) | 0.029 (2) | 0.191 (2) |
C6A | −0.0591 (17) | 0.252 (5) | 0.7351 (15) | 0.027 (2) | 0.191 (2) |
H6AA | 0.0752 | 0.2576 | 0.7121 | 0.032* | 0.191 (2) |
C7A | −0.072 (2) | 0.246 (4) | 0.5645 (11) | 0.022 (2) | 0.191 (2) |
C8A | 0.108 (4) | 0.298 (7) | 0.5209 (16) | 0.026 (2) | 0.191 (2) |
H8AA | 0.1774 | 0.3375 | 0.5635 | 0.032* | 0.191 (2) |
C9A | 0.187 (6) | 0.292 (10) | 0.4172 (18) | 0.028 (3) | 0.191 (2) |
H9AA | 0.3085 | 0.3294 | 0.3875 | 0.033* | 0.191 (2) |
C10A | 0.083 (8) | 0.231 (11) | 0.3581 (11) | 0.023 (3) | 0.191 (2) |
C11A | −0.090 (8) | 0.169 (11) | 0.3986 (17) | 0.024 (3) | 0.191 (2) |
H11B | −0.1520 | 0.1210 | 0.3556 | 0.029* | 0.191 (2) |
C12A | −0.171 (5) | 0.178 (8) | 0.5029 (14) | 0.027 (2) | 0.191 (2) |
H12B | −0.2923 | 0.1394 | 0.5319 | 0.032* | 0.191 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0307 (5) | 0.0262 (4) | 0.0540 (6) | −0.0087 (3) | −0.0146 (5) | −0.0002 (5) |
Br2 | 0.0281 (4) | 0.0272 (4) | 0.0537 (7) | −0.0054 (3) | −0.0079 (5) | −0.0030 (5) |
Zn1 | 0.0226 (5) | 0.0275 (5) | 0.0292 (6) | −0.0083 (4) | −0.0068 (5) | −0.0006 (6) |
O1 | 0.041 (9) | 0.039 (4) | 0.031 (5) | −0.007 (6) | −0.013 (4) | −0.010 (4) |
O2 | 0.037 (7) | 0.035 (4) | 0.029 (5) | −0.010 (5) | −0.009 (4) | 0.009 (4) |
N1 | 0.028 (4) | 0.024 (4) | 0.031 (5) | −0.005 (3) | −0.008 (4) | 0.001 (5) |
N2 | 0.026 (4) | 0.016 (4) | 0.031 (4) | −0.004 (3) | −0.009 (4) | −0.004 (4) |
N3 | 0.023 (6) | 0.029 (4) | 0.031 (4) | 0.006 (5) | −0.013 (4) | −0.003 (5) |
C1 | 0.026 (5) | 0.032 (5) | 0.040 (7) | −0.001 (4) | −0.013 (5) | 0.003 (6) |
C2 | 0.042 (6) | 0.043 (7) | 0.017 (5) | −0.007 (6) | 0.003 (5) | −0.006 (6) |
C3 | 0.018 (5) | 0.065 (9) | 0.028 (7) | −0.005 (5) | 0.002 (5) | −0.008 (7) |
C4 | 0.023 (5) | 0.060 (8) | 0.042 (8) | −0.010 (5) | −0.006 (6) | 0.012 (8) |
C5 | 0.026 (6) | 0.029 (4) | 0.034 (5) | −0.009 (5) | −0.008 (5) | −0.009 (5) |
C6 | 0.023 (4) | 0.023 (5) | 0.037 (6) | −0.006 (4) | −0.011 (5) | 0.001 (5) |
C7 | 0.020 (6) | 0.020 (4) | 0.024 (4) | −0.002 (5) | −0.002 (4) | 0.001 (4) |
C8 | 0.025 (6) | 0.022 (5) | 0.030 (6) | −0.009 (4) | −0.001 (5) | 0.000 (5) |
C9 | 0.031 (6) | 0.019 (8) | 0.033 (7) | −0.004 (5) | −0.008 (5) | −0.007 (5) |
C10 | 0.025 (4) | 0.015 (8) | 0.027 (4) | 0.003 (4) | −0.006 (4) | 0.001 (4) |
C11 | 0.033 (6) | 0.014 (6) | 0.021 (6) | −0.005 (4) | 0.001 (5) | 0.002 (4) |
C12 | 0.025 (6) | 0.027 (5) | 0.029 (6) | −0.011 (5) | −0.003 (4) | −0.001 (5) |
Zn1A | 0.0226 (5) | 0.0275 (5) | 0.0292 (6) | −0.0083 (4) | −0.0068 (5) | −0.0006 (6) |
O1A | 0.041 (9) | 0.039 (4) | 0.031 (5) | −0.007 (6) | −0.013 (4) | −0.010 (4) |
O2A | 0.037 (7) | 0.035 (4) | 0.029 (5) | −0.010 (5) | −0.009 (4) | 0.009 (4) |
N1A | 0.028 (4) | 0.024 (4) | 0.031 (5) | −0.005 (3) | −0.008 (4) | 0.001 (5) |
N2A | 0.026 (4) | 0.016 (4) | 0.031 (4) | −0.004 (3) | −0.009 (4) | −0.004 (4) |
N3A | 0.023 (6) | 0.029 (4) | 0.031 (4) | 0.006 (5) | −0.013 (4) | −0.003 (5) |
C1A | 0.026 (5) | 0.032 (5) | 0.040 (7) | −0.001 (4) | −0.013 (5) | 0.003 (6) |
C2A | 0.042 (6) | 0.043 (7) | 0.017 (5) | −0.007 (6) | 0.003 (5) | −0.006 (6) |
C3A | 0.018 (5) | 0.065 (9) | 0.028 (7) | −0.005 (5) | 0.002 (5) | −0.008 (7) |
C4A | 0.023 (5) | 0.060 (8) | 0.042 (8) | −0.010 (5) | −0.006 (6) | 0.012 (8) |
C5A | 0.026 (6) | 0.029 (4) | 0.034 (5) | −0.009 (5) | −0.008 (5) | −0.009 (5) |
C6A | 0.023 (4) | 0.023 (5) | 0.037 (6) | −0.006 (4) | −0.011 (5) | 0.001 (5) |
C7A | 0.020 (6) | 0.020 (4) | 0.024 (4) | −0.002 (5) | −0.002 (4) | 0.001 (4) |
C8A | 0.025 (6) | 0.022 (5) | 0.030 (6) | −0.009 (4) | −0.001 (5) | 0.000 (5) |
C9A | 0.031 (6) | 0.019 (8) | 0.033 (7) | −0.004 (5) | −0.008 (5) | −0.007 (5) |
C10A | 0.025 (4) | 0.015 (8) | 0.027 (4) | 0.003 (4) | −0.006 (4) | 0.001 (4) |
C11A | 0.033 (6) | 0.014 (6) | 0.021 (6) | −0.005 (4) | 0.001 (5) | 0.002 (4) |
C12A | 0.025 (6) | 0.027 (5) | 0.029 (6) | −0.011 (5) | −0.003 (4) | −0.001 (5) |
Br1—Zn1Ai | 2.340 (5) | C12—H12A | 0.9500 |
Br1—Zn1 | 2.3428 (14) | Zn1A—N1A | 2.033 (9) |
Br2—Zn1 | 2.3357 (16) | Zn1A—N2A | 2.074 (8) |
Br2—Zn1Ai | 2.339 (5) | Zn1A—Br2ii | 2.339 (5) |
Zn1—N1 | 2.034 (9) | Zn1A—Br1ii | 2.340 (5) |
Zn1—N2 | 2.074 (7) | O1A—N3A | 1.239 (10) |
O1—N3 | 1.239 (10) | O2A—N3A | 1.226 (10) |
O2—N3 | 1.226 (10) | N1A—C1A | 1.340 (14) |
N1—C1 | 1.340 (14) | N1A—C5A | 1.361 (16) |
N1—C5 | 1.361 (16) | N2A—C6A | 1.284 (11) |
N2—C6 | 1.284 (11) | N2A—C7A | 1.422 (12) |
N2—C7 | 1.421 (12) | N3A—C10A | 1.472 (10) |
N3—C10 | 1.472 (10) | C1A—C2A | 1.394 (14) |
C1—C2 | 1.394 (14) | C1A—H1AA | 0.9500 |
C1—H1A | 0.9500 | C2A—C3A | 1.394 (15) |
C2—C3 | 1.394 (15) | C2A—H2AA | 0.9500 |
C2—H2A | 0.9500 | C3A—C4A | 1.357 (18) |
C3—C4 | 1.357 (18) | C3A—H3AA | 0.9500 |
C3—H3A | 0.9500 | C4A—C5A | 1.373 (16) |
C4—C5 | 1.373 (16) | C4A—H4AA | 0.9500 |
C4—H4A | 0.9500 | C5A—C6A | 1.459 (14) |
C5—C6 | 1.459 (14) | C6A—H6AA | 0.9500 |
C6—H6A | 0.9500 | C7A—C8A | 1.400 (14) |
C7—C8 | 1.400 (14) | C7A—C12A | 1.406 (12) |
C7—C12 | 1.405 (12) | C8A—C9A | 1.379 (18) |
C8—C9 | 1.379 (18) | C8A—H8AA | 0.9500 |
C8—H8A | 0.9500 | C9A—C10A | 1.381 (18) |
C9—C10 | 1.381 (18) | C9A—H9AA | 0.9500 |
C9—H9A | 0.9500 | C10A—C11A | 1.380 (19) |
C10—C11 | 1.380 (19) | C11A—C12A | 1.390 (16) |
C11—C12 | 1.390 (16) | C11A—H11B | 0.9500 |
C11—H11A | 0.9500 | C12A—H12B | 0.9500 |
Zn1Ai—Br1—Zn1 | 64.77 (11) | C7—C12—H12A | 120.6 |
Zn1—Br2—Zn1Ai | 64.90 (12) | N1A—Zn1A—N2A | 81.2 (3) |
N1—Zn1—N2 | 81.2 (3) | N1A—Zn1A—Br2ii | 114.8 (13) |
N1—Zn1—Br2 | 116.1 (3) | N2A—Zn1A—Br2ii | 110.8 (8) |
N2—Zn1—Br2 | 118.0 (2) | N1A—Zn1A—Br1ii | 111.9 (12) |
N1—Zn1—Br1 | 112.3 (3) | N2A—Zn1A—Br1ii | 120.6 (8) |
N2—Zn1—Br1 | 111.5 (2) | Br2ii—Zn1A—Br1ii | 113.73 (19) |
Br2—Zn1—Br1 | 113.75 (5) | C1A—N1A—C5A | 116.9 (9) |
C1—N1—C5 | 117.0 (8) | C1A—N1A—Zn1A | 130.7 (7) |
C1—N1—Zn1 | 130.6 (7) | C5A—N1A—Zn1A | 112.4 (7) |
C5—N1—Zn1 | 112.4 (7) | C6A—N2A—C7A | 121.1 (8) |
C6—N2—C7 | 121.2 (7) | C6A—N2A—Zn1A | 111.5 (6) |
C6—N2—Zn1 | 111.5 (6) | C7A—N2A—Zn1A | 127.0 (6) |
C7—N2—Zn1 | 127.2 (5) | O2A—N3A—O1A | 124.4 (8) |
O2—N3—O1 | 124.5 (7) | O2A—N3A—C10A | 117.9 (9) |
O2—N3—C10 | 118.0 (9) | O1A—N3A—C10A | 117.4 (9) |
O1—N3—C10 | 117.5 (9) | N1A—C1A—C2A | 123.4 (10) |
N1—C1—C2 | 123.6 (10) | N1A—C1A—H1AA | 118.3 |
N1—C1—H1A | 118.2 | C2A—C1A—H1AA | 118.3 |
C2—C1—H1A | 118.2 | C1A—C2A—C3A | 117.0 (12) |
C1—C2—C3 | 117.2 (12) | C1A—C2A—H2AA | 121.5 |
C1—C2—H2A | 121.4 | C3A—C2A—H2AA | 121.5 |
C3—C2—H2A | 121.4 | C4A—C3A—C2A | 119.8 (12) |
C4—C3—C2 | 120.0 (11) | C4A—C3A—H3AA | 120.1 |
C4—C3—H3A | 120.0 | C2A—C3A—H3AA | 120.1 |
C2—C3—H3A | 120.0 | C3A—C4A—C5A | 119.3 (11) |
C3—C4—C5 | 119.4 (11) | C3A—C4A—H4AA | 120.4 |
C3—C4—H4A | 120.3 | C5A—C4A—H4AA | 120.4 |
C5—C4—H4A | 120.3 | N1A—C5A—C4A | 122.7 (10) |
N1—C5—C4 | 122.6 (10) | N1A—C5A—C6A | 115.1 (9) |
N1—C5—C6 | 115.1 (9) | C4A—C5A—C6A | 122.1 (12) |
C4—C5—C6 | 122.1 (11) | N2A—C6A—C5A | 119.5 (9) |
N2—C6—C5 | 119.5 (9) | N2A—C6A—H6AA | 120.2 |
N2—C6—H6A | 120.2 | C5A—C6A—H6AA | 120.2 |
C5—C6—H6A | 120.2 | C8A—C7A—C12A | 119.9 (9) |
C8—C7—C12 | 119.9 (8) | C8A—C7A—N2A | 123.9 (8) |
C8—C7—N2 | 123.9 (8) | C12A—C7A—N2A | 116.0 (8) |
C12—C7—N2 | 116.1 (8) | C9A—C8A—C7A | 121.2 (10) |
C9—C8—C7 | 121.2 (10) | C9A—C8A—H8AA | 119.4 |
C9—C8—H8A | 119.4 | C7A—C8A—H8AA | 119.4 |
C7—C8—H8A | 119.4 | C8A—C9A—C10A | 117.6 (12) |
C8—C9—C10 | 117.6 (11) | C8A—C9A—H9AA | 121.2 |
C8—C9—H9A | 121.2 | C10A—C9A—H9AA | 121.2 |
C10—C9—H9A | 121.2 | C11A—C10A—C9A | 122.9 (9) |
C11—C10—C9 | 122.9 (8) | C11A—C10A—N3A | 118.6 (12) |
C11—C10—N3 | 118.7 (12) | C9A—C10A—N3A | 118.4 (13) |
C9—C10—N3 | 118.4 (13) | C10A—C11A—C12A | 119.5 (10) |
C10—C11—C12 | 119.4 (9) | C10A—C11A—H11B | 120.3 |
C10—C11—H11A | 120.3 | C12A—C11A—H11B | 120.3 |
C12—C11—H11A | 120.3 | C11A—C12A—C7A | 118.7 (10) |
C11—C12—C7 | 118.7 (10) | C11A—C12A—H12B | 120.6 |
C11—C12—H12A | 120.6 | C7A—C12A—H12B | 120.6 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C12H9N3O2)] |
Mr | 452.41 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 7.2614 (5), 7.9228 (8), 13.6436 (15) |
α, β, γ (°) | 87.724 (4), 74.719 (6), 82.007 (6) |
V (Å3) | 749.81 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.97 |
Crystal size (mm) | 0.28 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.417, 0.588 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5868, 3252, 2630 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.140, 1.04 |
No. of reflections | 3252 |
No. of parameters | 237 |
No. of restraints | 48 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −1.24 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
Br1—Zn1 | 2.3428 (14) | Zn1—N1 | 2.034 (9) |
Br2—Zn1 | 2.3357 (16) | Zn1—N2 | 2.074 (7) |
N1—Zn1—N2 | 81.2 (3) | N1—Zn1—Br1 | 112.3 (3) |
N1—Zn1—Br2 | 116.1 (3) | N2—Zn1—Br1 | 111.5 (2) |
N2—Zn1—Br2 | 118.0 (2) | Br2—Zn1—Br1 | 113.75 (5) |
Acknowledgements
The authors would like to acknowledge the Bu-Ali Sina and Alzahra University Research Councils for partial support of this work
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S., Aleeshah, R. & Mahmoudi, A. (2010). Acta Cryst. E66, m1647. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands Khalaj et al. (2010); Salehzadeh et al. (2011), we report herein the crystal structure of the title complex that was prepared by the reaction of ZnBr2 with the bidentate ligand (4-nitrophenyl)-pyridine-2-ylmethylene-amine (Scheme I).
The molecluar structure of the title complex is shown in Fig. 1. The ZnII ion is in a distorted tetrahedral environment formed by the chelating ligand and two Br ions. A comparison of the dihedral angles between the planes of the pyridine, chelate and the benzene ring indicates that the ligand is distorted from planarity, with twist of 22.23 (24)° between the chelate (N1C5C6N2) and the benzene (C7C8C9C10C11C12) planes. The Zn—Br and Zn—N bond dimensions compare well with the values found in other tetrahedral diimine complexes of zinc bromide (Khalaj et al., 2009).