metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[(2-{(E)-[(2,3-dihy­dr­oxy­prop­yl)imino]­meth­yl}phenolato)copper(II)] methanol monosolvate

aSuzhou Vocational University, Suzhou 215104, People's Republic of China
*Correspondence e-mail: szhliyong@yahoo.cn

(Received 3 September 2011; accepted 8 October 2011; online 12 October 2011)

In the title compound, [Cu2Cl2(C10H12NO3)2]·CH3OH, each of the two CuII atoms is bound to two O and one N atoms of the bis-chelating monoanionic Schiff base and two bridging chloride ligands. The metal atoms each show a distorted square-pyramidal coordination geometry. Intra­molecular O—H⋯O hydrogen bonds occur. In the crystal, O—H⋯O hydrogen bonds join the components into a chain extending along the a axis.

Related literature

For a uranyl complex of the same Schiff base ligand, see: Bharara et al. (2007[Bharara, M. S., Strawbridge, K., Vilsek, J. Z., Bray, T. H. & Gorden, A. E. V. (2007). Inorg. Chem. 46, 8309-8315.]). For two penta­nuclear manganese complexes of a similar Schiff base ligand, see: Yang et al. (2010[Yang, P. P., Song, X. Y., Liu, R. N., Li, L. C. & Liao, D. Z. (2010). Dalton Trans. 39, 6285-6294.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl2(C10H12NO3)2]·CH4O

  • Mr = 618.43

  • Orthorhombic, P b c a

  • a = 15.490 (3) Å

  • b = 15.252 (3) Å

  • c = 19.951 (4) Å

  • V = 4713.6 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 113 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.760, Tmax = 0.851

  • 25866 measured reflections

  • 4151 independent reflections

  • 3727 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.092

  • S = 1.07

  • 4151 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.82 2.29 2.892 (4) 131
O3—H3⋯O7i 0.82 2.05 2.817 (6) 156
O3—H3⋯O6i 0.82 2.60 3.118 (6) 122
O5—H5⋯O7 0.82 1.88 2.567 (3) 141
O6—H6⋯O4ii 0.82 2.09 2.906 (4) 171
O7—H7A⋯O1 0.82 1.79 2.613 (5) 177
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Design and investigation of polynuclear transition metal complexes have received a great attention. The motivation in this field is justified not only by architectural beauty of the structures, but also by intellectual challenge of understanding the fundamental correlation between structures and magnetic properties (Yang et al., 2010). Crucial to such efforts is the continuing development of new synthetic procedures of polynuclear transition metal species.

In order to synthesize new polynuclear paramagnetic clusters, we have recently begun to employ an asymmetric Schiff-base ligand, 3-(2-hydroxybenzylideneamino)-propane-1,2-diol, which contains a tetradentate {NO3} donor set and three hydroxyl groups that possess chelating and bridging capabilities. We believe that the four potential incorporable sites and multiple coordination modes will make the ligand a good candidate for the achievement of new polynuclear complexes. Here, we present the synthesis and structure of a new dinuclear copper complex, namely [Cu2(C10H12NO3)2Cl2].CH3OH (Scheme 1).

X-ray characterization of the title complex reveals that the dinuclear unit consists of two copper(II) atoms linked by two chloride ions. Each copper atom is coordinated by N-O-O atoms from a Schiff-base ligand and two chloride ions, providing a distorted square pyramidal environment (Fig. 1). Hydrogen bonds connect the complex into a chain extended along the a axis (Fig. 2).

Related literature top

For a uranyl complex of the same Schiff base ligand, see: Bharara et al. (2007). For two pentanuclear manganese complexes of a similar Schiff base ligand, see: Yang et al. (2010).

Experimental top

3-(2-Hydroxybenzylideneamino)propane-1,2-diol (0.0384 g, 0.2 mmol) and NaOH (0.0080 g, 0.2 mmol) were dissolved in methanol (10 ml). A solution of CuCl2.2H2O (0.0341 g, 0.2 mmol) in methanol (10 ml) was added drop-wise into the previous mixture. The resulting solution was stirred at room temperature for two hours and then filtered. Green crystals suitable for X-ray crystallographic analysis were obtained by slow evaporation of the filtrate after one week.

Refinement top

All H atoms bound to C and O atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93-0.98 Å, Uiso(H) = 1.2 or 1.5 Ueq(C) and O—H = 0.82 Å, Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen bonding interactions (dashed lines) between the crystal components components forming a chain extended along the a axis.
Di-µ-chlorido-bis[(2-{(E)-[(2,3- dihydroxypropyl)imino]methyl}phenolato)copper(II)] methanol monosolvate top
Crystal data top
[Cu2Cl2(C10H12NO3)2]·CH4OF(000) = 2528
Mr = 618.43Dx = 1.743 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9875 reflections
a = 15.490 (3) Åθ = 2.1–27.9°
b = 15.252 (3) ŵ = 2.08 mm1
c = 19.951 (4) ÅT = 113 K
V = 4713.6 (16) Å3Block, green
Z = 80.14 × 0.12 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
4151 independent reflections
Radiation source: rotating anode3727 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.061
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 1418
Tmin = 0.760, Tmax = 0.851k = 1816
25866 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 12.2296P]
where P = (Fo2 + 2Fc2)/3
4151 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu2Cl2(C10H12NO3)2]·CH4OV = 4713.6 (16) Å3
Mr = 618.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.490 (3) ŵ = 2.08 mm1
b = 15.252 (3) ÅT = 113 K
c = 19.951 (4) Å0.14 × 0.12 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
4151 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3727 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.851Rint = 0.061
25866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 12.2296P]
where P = (Fo2 + 2Fc2)/3
4151 reflectionsΔρmax = 0.80 e Å3
313 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17247 (3)0.36330 (3)0.23298 (2)0.01406 (13)
Cu20.10400 (3)0.55924 (3)0.29704 (2)0.01452 (13)
Cl10.21021 (6)0.53619 (6)0.21971 (4)0.0182 (2)
Cl20.04687 (6)0.39157 (6)0.28827 (5)0.0238 (2)
O10.11758 (17)0.35442 (16)0.14838 (12)0.0180 (6)
O20.24115 (16)0.36996 (16)0.31914 (12)0.0163 (5)
H20.23550.39850.35370.024*
O30.37759 (19)0.40175 (17)0.41635 (13)0.0237 (6)
H30.41120.44110.40610.036*
O40.17995 (17)0.53598 (17)0.37053 (12)0.0196 (6)
O50.02226 (17)0.59528 (17)0.22427 (12)0.0187 (6)
H50.02130.58650.18370.028*
O60.14092 (18)0.58858 (19)0.14549 (15)0.0277 (7)
H60.19230.57540.14560.042*
N10.2719 (2)0.29782 (19)0.20265 (15)0.0168 (7)
N20.0151 (2)0.6110 (2)0.35199 (16)0.0209 (7)
C10.1449 (3)0.3126 (2)0.09378 (18)0.0172 (8)
C20.0904 (3)0.3119 (2)0.03777 (18)0.0185 (8)
H2A0.03720.34000.03990.022*
C30.1147 (3)0.2701 (2)0.02049 (19)0.0231 (9)
H3A0.07810.27140.05740.028*
C40.1927 (3)0.2260 (3)0.0249 (2)0.0277 (10)
H40.20820.19710.06410.033*
C50.2465 (3)0.2259 (3)0.02955 (19)0.0264 (9)
H5A0.29910.19670.02660.032*
C60.2247 (3)0.2685 (2)0.08995 (18)0.0181 (8)
C70.2841 (3)0.2643 (2)0.14478 (19)0.0209 (8)
H70.33590.23480.13770.025*
C80.3367 (2)0.2832 (2)0.25562 (19)0.0206 (8)
H8A0.39390.28010.23600.025*
H8B0.32510.22820.27830.025*
C90.3326 (3)0.3577 (2)0.30512 (19)0.0206 (8)
H90.35680.41100.28510.025*
C100.3819 (3)0.3342 (2)0.36812 (19)0.0197 (8)
H10A0.35820.28070.38700.024*
H10B0.44190.32320.35680.024*
C110.1593 (3)0.5444 (2)0.43551 (19)0.0182 (8)
C120.2192 (3)0.5162 (3)0.48352 (19)0.0236 (9)
H120.27160.49280.46940.028*
C130.2021 (3)0.5225 (3)0.5512 (2)0.0269 (9)
H130.24290.50280.58200.032*
C140.1249 (3)0.5577 (3)0.5742 (2)0.0244 (9)
H140.11370.56180.61990.029*
C150.0658 (3)0.5862 (2)0.52858 (19)0.0220 (9)
H150.01410.60980.54380.026*
C160.0809 (3)0.5810 (2)0.45905 (19)0.0188 (8)
C170.0135 (3)0.6114 (2)0.41642 (19)0.0209 (8)
H170.03590.63330.43690.025*
C180.0575 (3)0.6484 (3)0.3144 (2)0.0269 (9)
H18A0.04740.71020.30600.032*
H18B0.11040.64270.34000.032*
C190.0652 (2)0.5999 (3)0.2495 (2)0.0220 (9)
H190.08680.54050.25800.026*
C200.1234 (3)0.6453 (2)0.20004 (19)0.0202 (8)
H20A0.17700.66160.22180.024*
H20B0.09580.69830.18390.024*
C210.0663 (3)0.5456 (3)0.0691 (2)0.0254 (9)
H21A0.02620.58920.05380.038*
H21B0.08170.50790.03240.038*
H21C0.11720.57380.08610.038*
O70.02716 (17)0.49461 (16)0.12123 (12)0.0186 (6)
H7A0.05730.45170.12920.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0131 (2)0.0143 (2)0.0148 (2)0.00271 (17)0.00061 (18)0.00130 (17)
Cu20.0124 (2)0.0157 (2)0.0154 (2)0.00183 (17)0.00014 (18)0.00179 (17)
Cl10.0163 (5)0.0192 (4)0.0190 (4)0.0003 (3)0.0018 (4)0.0014 (3)
Cl20.0189 (5)0.0237 (5)0.0288 (5)0.0029 (4)0.0013 (4)0.0048 (4)
O10.0180 (14)0.0212 (13)0.0147 (13)0.0045 (11)0.0023 (11)0.0056 (10)
O20.0144 (13)0.0196 (13)0.0147 (12)0.0020 (10)0.0007 (11)0.0031 (10)
O30.0212 (16)0.0245 (14)0.0255 (15)0.0028 (12)0.0028 (12)0.0068 (12)
O40.0158 (14)0.0275 (14)0.0153 (13)0.0022 (11)0.0003 (11)0.0022 (11)
O50.0159 (14)0.0261 (14)0.0143 (13)0.0037 (11)0.0003 (11)0.0014 (11)
O60.0163 (15)0.0341 (16)0.0329 (16)0.0005 (12)0.0020 (13)0.0101 (13)
N10.0159 (16)0.0160 (15)0.0185 (16)0.0017 (13)0.0001 (13)0.0007 (13)
N20.0197 (18)0.0240 (17)0.0190 (17)0.0049 (14)0.0013 (14)0.0028 (13)
C10.022 (2)0.0135 (18)0.0161 (19)0.0021 (15)0.0044 (16)0.0011 (14)
C20.021 (2)0.0177 (18)0.0169 (19)0.0003 (15)0.0005 (16)0.0024 (15)
C30.029 (2)0.022 (2)0.019 (2)0.0005 (17)0.0017 (18)0.0005 (16)
C40.038 (3)0.031 (2)0.015 (2)0.0042 (19)0.0027 (19)0.0068 (16)
C50.029 (2)0.026 (2)0.024 (2)0.0060 (18)0.0050 (19)0.0062 (17)
C60.021 (2)0.0141 (17)0.0192 (19)0.0008 (15)0.0047 (16)0.0005 (15)
C70.019 (2)0.0175 (18)0.026 (2)0.0028 (15)0.0041 (17)0.0018 (16)
C80.0151 (19)0.0224 (19)0.024 (2)0.0034 (16)0.0024 (17)0.0021 (16)
C90.017 (2)0.0217 (19)0.023 (2)0.0020 (15)0.0009 (17)0.0009 (16)
C100.016 (2)0.0205 (19)0.022 (2)0.0016 (16)0.0008 (16)0.0011 (16)
C110.018 (2)0.0185 (18)0.0183 (19)0.0053 (15)0.0019 (16)0.0017 (15)
C120.019 (2)0.030 (2)0.022 (2)0.0025 (17)0.0019 (17)0.0017 (17)
C130.028 (2)0.032 (2)0.020 (2)0.0007 (19)0.0056 (18)0.0027 (18)
C140.031 (2)0.026 (2)0.0158 (19)0.0057 (18)0.0008 (18)0.0036 (16)
C150.024 (2)0.024 (2)0.019 (2)0.0020 (17)0.0044 (17)0.0046 (16)
C160.019 (2)0.0183 (18)0.019 (2)0.0045 (15)0.0008 (16)0.0042 (15)
C170.017 (2)0.0204 (19)0.026 (2)0.0021 (15)0.0040 (17)0.0043 (16)
C180.023 (2)0.030 (2)0.027 (2)0.0074 (18)0.0018 (18)0.0049 (18)
C190.014 (2)0.027 (2)0.025 (2)0.0037 (16)0.0029 (17)0.0007 (17)
C200.0152 (19)0.0227 (19)0.023 (2)0.0064 (16)0.0023 (17)0.0006 (16)
C210.026 (2)0.028 (2)0.022 (2)0.0009 (18)0.0041 (18)0.0042 (17)
O70.0172 (14)0.0201 (13)0.0184 (13)0.0051 (11)0.0015 (11)0.0021 (11)
Geometric parameters (Å, º) top
Cu1—O11.895 (2)C6—C71.431 (5)
Cu1—N11.933 (3)C7—H70.9300
Cu1—O22.024 (2)C8—C91.507 (5)
Cu1—Cl22.2777 (11)C8—H8A0.9700
Cu1—Cl12.7139 (11)C8—H8B0.9700
Cu2—O41.913 (3)C9—C101.514 (5)
Cu2—N21.929 (3)C9—H90.9800
Cu2—O52.003 (3)C10—H10A0.9700
Cu2—Cl12.2826 (10)C10—H10B0.9700
Cu2—Cl22.7118 (12)C11—C121.401 (5)
O1—C11.331 (4)C11—C161.417 (5)
O2—C91.457 (5)C12—C131.380 (6)
O2—H20.8200C12—H120.9300
O3—C101.412 (4)C13—C141.389 (6)
O3—H30.8200C13—H130.9300
O4—C111.341 (4)C14—C151.361 (6)
O5—C191.447 (4)C14—H140.9300
O5—H50.8200C15—C161.409 (5)
O6—C201.416 (5)C15—H150.9300
O6—H60.8200C16—C171.424 (5)
N1—C71.277 (5)C17—H170.9300
N1—C81.474 (5)C18—C191.496 (5)
N2—C171.286 (5)C18—H18A0.9700
N2—C181.468 (5)C18—H18B0.9700
C1—C21.400 (5)C19—C201.505 (5)
C1—C61.411 (5)C19—H190.9800
C2—C31.378 (5)C20—H20A0.9700
C2—H2A0.9300C20—H20B0.9700
C3—C41.386 (6)C21—O71.434 (4)
C3—H3A0.9300C21—H21A0.9600
C4—C51.369 (6)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C5—C61.410 (5)O7—H7A0.8200
C5—H5A0.9300
O1—Cu1—N192.39 (12)N1—C8—H8B109.9
O1—Cu1—O2174.84 (11)C9—C8—H8B109.9
N1—Cu1—O282.71 (11)H8A—C8—H8B108.3
O1—Cu1—Cl293.54 (8)O2—C9—C8105.3 (3)
N1—Cu1—Cl2158.44 (9)O2—C9—C10111.2 (3)
O2—Cu1—Cl291.61 (8)C8—C9—C10110.2 (3)
O1—Cu1—Cl194.54 (8)O2—C9—H9110.0
N1—Cu1—Cl1107.46 (9)C8—C9—H9110.0
O2—Cu1—Cl185.46 (7)C10—C9—H9110.0
Cl2—Cu1—Cl192.71 (3)O3—C10—C9111.6 (3)
O4—Cu2—N294.55 (12)O3—C10—H10A109.3
O4—Cu2—O5174.28 (11)C9—C10—H10A109.3
N2—Cu2—O581.28 (12)O3—C10—H10B109.3
O4—Cu2—Cl192.65 (8)C9—C10—H10B109.3
N2—Cu2—Cl1164.07 (10)H10A—C10—H10B108.0
O5—Cu2—Cl190.45 (8)O4—C11—C12118.3 (3)
O4—Cu2—Cl294.32 (8)O4—C11—C16124.2 (3)
N2—Cu2—Cl2100.93 (10)C12—C11—C16117.5 (3)
O5—Cu2—Cl290.33 (8)C13—C12—C11121.4 (4)
Cl1—Cu2—Cl292.66 (3)C13—C12—H12119.3
Cu2—Cl1—Cu185.90 (3)C11—C12—H12119.3
Cu1—Cl2—Cu286.04 (4)C12—C13—C14120.9 (4)
C1—O1—Cu1128.4 (2)C12—C13—H13119.5
C9—O2—Cu1110.0 (2)C14—C13—H13119.5
C9—O2—H2109.5C15—C14—C13118.8 (4)
Cu1—O2—H2133.2C15—C14—H14120.6
C10—O3—H3109.5C13—C14—H14120.6
C11—O4—Cu2125.2 (2)C14—C15—C16121.9 (4)
C19—O5—Cu2110.7 (2)C14—C15—H15119.0
C19—O5—H5109.5C16—C15—H15119.0
Cu2—O5—H5133.0C15—C16—C11119.4 (4)
C20—O6—H6109.5C15—C16—C17116.7 (4)
C7—N1—C8119.1 (3)C11—C16—C17124.0 (3)
C7—N1—Cu1127.5 (3)N2—C17—C16125.6 (4)
C8—N1—Cu1113.3 (2)N2—C17—H17117.2
C17—N2—C18119.6 (3)C16—C17—H17117.2
C17—N2—Cu2125.7 (3)N2—C18—C19108.1 (3)
C18—N2—Cu2114.6 (2)N2—C18—H18A110.1
O1—C1—C2117.8 (3)C19—C18—H18A110.1
O1—C1—C6123.4 (3)N2—C18—H18B110.1
C2—C1—C6118.8 (3)C19—C18—H18B110.1
C3—C2—C1120.8 (4)H18A—C18—H18B108.4
C3—C2—H2A119.6O5—C19—C18104.5 (3)
C1—C2—H2A119.6O5—C19—C20110.8 (3)
C2—C3—C4121.0 (4)C18—C19—C20112.8 (3)
C2—C3—H3A119.5O5—C19—H19109.5
C4—C3—H3A119.5C18—C19—H19109.5
C5—C4—C3118.9 (4)C20—C19—H19109.5
C5—C4—H4120.6O6—C20—C19109.7 (3)
C3—C4—H4120.6O6—C20—H20A109.7
C4—C5—C6122.1 (4)C19—C20—H20A109.7
C4—C5—H5A119.0O6—C20—H20B109.7
C6—C5—H5A119.0C19—C20—H20B109.7
C5—C6—C1118.4 (4)H20A—C20—H20B108.2
C5—C6—C7118.6 (4)O7—C21—H21A109.5
C1—C6—C7123.0 (3)O7—C21—H21B109.5
N1—C7—C6125.3 (4)H21A—C21—H21B109.5
N1—C7—H7117.4O7—C21—H21C109.5
C6—C7—H7117.4H21A—C21—H21C109.5
N1—C8—C9109.1 (3)H21B—C21—H21C109.5
N1—C8—H8A109.9C21—O7—H7A109.5
C9—C8—H8A109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.822.292.892 (4)131
O3—H3···O7i0.822.052.817 (6)156
O3—H3···O6i0.822.603.118 (6)122
O5—H5···O70.821.882.567 (3)141
O6—H6···O4ii0.822.092.906 (4)171
O7—H7A···O10.821.792.613 (5)177
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C10H12NO3)2]·CH4O
Mr618.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)15.490 (3), 15.252 (3), 19.951 (4)
V3)4713.6 (16)
Z8
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.760, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
25866, 4151, 3727
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 1.07
No. of reflections4151
No. of parameters313
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.033P)2 + 12.2296P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.80, 0.52

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.822.292.892 (4)131
O3—H3···O7i0.822.052.817 (6)156
O3—H3···O6i0.822.603.118 (6)122
O5—H5···O70.821.882.567 (3)141
O6—H6···O4ii0.822.092.906 (4)171
O7—H7A···O10.821.792.613 (5)177
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
 

Acknowledgements

The author thanks Suzhou Vocational University for financial support.

References

First citationBharara, M. S., Strawbridge, K., Vilsek, J. Z., Bray, T. H. & Gorden, A. E. V. (2007). Inorg. Chem. 46, 8309–8315.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, P. P., Song, X. Y., Liu, R. N., Li, L. C. & Liao, D. Z. (2010). Dalton Trans. 39, 6285–6294.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds