organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl 1-(4-meth­­oxy­phen­yl)-2,6-di­methyl-4-(3-nitro­phen­yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics, University of Jammu, Jammu Tawi 180 006, India, and bChemistry Department, Saurashtra University, Rajkot 360 005, India
*Correspondence e-mail: rkant.ju@gmail.com

(Received 8 September 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, C28H32N2O7, the 1,4-dihydro­pyridine ring adopts a flattened boat conformation. The two benzene rings are approximately perpendicular to the dihydro­pyridine ring, forming dihedral angles of 84.29 (9) and 82.96 (9)° with the mean plane of the 1,4-dihydro­pyridine unit, whereas the ester groups are only slightly twisted relative to this plane, with dihedral angles of 10.6 (1) and 9.0 (1)°.

Related literature

For background to the pharmaceutical applications of 1,4-dihydro­pyridine derivatives, see: Gaveriya et al. (2001[Gaveriya, H., Desai, B., Vora, V. & Shah, A. (2001). Heterocycl. Commun. 7, 481-484.]); Shah et al. (2000[Shah, A., Gaveriya, H., Motohashi, N., Kawase, M., Saito, S., Sakagami, H., Satoh, Y., Solymosi, A., Walfard, K. & Molnar, J. (2000). Anticancer Res. 20, 373-377.], 2002[Shah, A., Gaveriya, H., Motohashi, N., Kawase, M., Farkas, S., Gyorgyi, G. & Molnar, J. (2002). Int. J. Antimicrob. Agents, 20, 227-235.]); Marchalin et al. (2004[Marchalin, S., Cvopova, K., Kriz, M. M., Baran, P., Oulydi, H. & Daich, A. (2004). J. Org. Chem. 69, 4227-4237.]); Chhillar et al. (2006[Chhillar, A. K., Arya, P., Mukherjee, C., Kumar, P., Yadav, Y., Sharma, A. K., Yadav, V., Gupta, J., Gupta, J., Dabur, R., Jha, H. N., Watterson, A. C., Parmar, V. S., Prasad, A. K. & Sharma, G. L. (2006). Bioorg. Med. Chem. 14, 973-981.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N2O7

  • Mr = 508.56

  • Triclinic, [P \overline 1]

  • a = 9.5043 (8) Å

  • b = 10.7570 (7) Å

  • c = 15.1279 (12) Å

  • α = 90.501 (6)°

  • β = 105.873 (7)°

  • γ = 114.601 (7)°

  • V = 1339.27 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.825, Tmax = 1.000

  • 8313 measured reflections

  • 4688 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.203

  • S = 0.93

  • 4688 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Studies on 1,4-dihydropyridine (1,4-DHP) derivatives have been carried out in many research institutes all over the world because of their attractive biological activities ( Marchalin et al., 2004; Chhillar et al., 2006). 1,4-Dihydropyridines have played important role as chemotherapeutic agents, such as multi-drug resistance reversal in tumor cells (Shah et al., 2000), potential immunomodulating (Shah et al., 2002) and antitubercular compounds (Gaveriya et al., 2001; Shah et al., 2002). These compounds have also been investigated for other pharmacological activities such as antidiabetic, antiviral, antibacterial, membrane protecting, anticancer and antimicrobial. Calcium channel blockers of the 1,4-dihydropyridine derivatives, exemplified by nifedipine and nilvadipine, are well known as clinically important drugs since they first appeared on the market in 1975. To date, the structure-activity relationship of the DHPs has indicated that the desired structural characteristic of the substituents at the 4-position of the dihydropyridine nucleus had been thought to be the benzene ring. A favorable substituent on the 4-phenyl ring of DHP derivatives was suggested to be an electron-withdrawing group, such as the nitro group. Nitrophenyl substitution led to many cardiovascular drugs, namely, nilvadipine, nimodipine, nicardipine, nisoldipine, nifrendipine, etc. In view of the above, the crystal structure of the title compound was determined.

The classical preparation method of 1,4-DHP is the Hantzsch method. However, the classical methods were not enough to make pyridine libraries. Development of an efficient and versatile method for the preparation of 1,4 - dihydropyridines is an active ongoing research area and we have synthesized the title compound using catalytic method. In catalytic method the overall yields of the product are higher than the conventional classical method.

As in other dihydropyridine (DHP) structures, the DHP ring exhibits a flatened boat conformation. The N1 and C4 atoms lie 0.138 (3) and 0.336 (3) Å, respectively, from the least-squares plane defined by the remaining four atoms of the DHP ring. The puckering of the 1,4-DHP ring at N1 and C4, which is important for the biological activity of this class of compounds, is reflected in the torsion angles C3—C4—C5—C6 and C2—C3—C4—C5 which are 27.3 (4) and -26.5 (4)°o, respectively. The torsion angles about the bonds to N1 are -13.1 (5) (C2—N1—C6—C5) and 13.7 (5)° (C6—N1—C2—C3); All these values indicate that the puckering of the 1,4-DHP ring is largere at C4 site.

The values of the torsion angles, C6—N1—C9—C10 [-79.6 (4)°] and C5—C4—C29—C34 [79.9 (4)°]], describe the conformation around the inter-ring bond. The bezene rings are approximately perpendicular to the dihydropyridine ring. The dihedral angle found between the plane 1 (N1, C2, C3, C4, C5, C6) and plane 2 (C29, C30, C31, C32, C33, C34) is 84.29 (9)° and between the plane 1 (N1, C2, C3, C4, C5, C6) and plane 3 (C9, C10, C11, C12, C13, C14) is 82.96 (9)°. Owing to the absence of any strong donor group, cohesion of the crystal is mainly achieved by van der Waals interactions (Fig. 2)

Related literature top

For background to the pharmaceutical applications of 1,4-dihydropyridine derivatives, see: Gaveriya et al. (2001); Shah et al. (2000, 2002); Marchalin et al. (2004); Chhillar et al. (2006).

Experimental top

A mixture of 3-nitrobenzaldehyde (5 mmol, 0.45 g), isopropyl acetoacetate (10 mmol, 1.44 g), 4-methoxyaniline (5 mmol, 0.615 g) was heated (without solvent) on steam bath for 2.5h. After elimination of water, iodine (1.5 mmol, 0.38 g) and ethanol (5 ml) were added to the reaction mixture.The reaction mixture was stirred, at room temperature, till the reaction was complet(4h monitored by TLC). The reaction mixture was treated with aqueous Na2S2O3 solution and the product was extracted with ethyl acetate (2x 20 ml). The solvent was removed under pressure and the resulting crude product (94%) was recrystallized from ethanol to give the analytical grade pure product. In catalytic method the overall yields of the product are higher than in the conventional classical method.

Refinement top

All H atoms were included in calculated positions and refined using a riding model approximation with C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq (C), exept for the methyl groups where Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with thedisplacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a-axis.
Diisopropyl 1-(4-methoxyphenyl)-2,6-dimethyl-4-(3-nitrophenyl)-1,4- dihydropyridine-3,5-dicarboxylate top
Crystal data top
C28H32N2O7Z = 2
Mr = 508.56F(000) = 540
Triclinic, P1Dx = 1.261 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5043 (8) ÅCell parameters from 3153 reflections
b = 10.7570 (7) Åθ = 3.4–29.0°
c = 15.1279 (12) ŵ = 0.09 mm1
α = 90.501 (6)°T = 293 K
β = 105.873 (7)°Block, light-yellow
γ = 114.601 (7)°0.30 × 0.20 × 0.20 mm
V = 1339.27 (18) Å3
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4688 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1112
Tmin = 0.825, Tmax = 1.000l = 1717
8313 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0993P)2]
where P = (Fo2 + 2Fc2)/3
4688 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C28H32N2O7γ = 114.601 (7)°
Mr = 508.56V = 1339.27 (18) Å3
Triclinic, P1Z = 2
a = 9.5043 (8) ÅMo Kα radiation
b = 10.7570 (7) ŵ = 0.09 mm1
c = 15.1279 (12) ÅT = 293 K
α = 90.501 (6)°0.30 × 0.20 × 0.20 mm
β = 105.873 (7)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4688 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2417 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 1.000Rint = 0.043
8313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 0.93Δρmax = 0.23 e Å3
4688 reflectionsΔρmin = 0.23 e Å3
334 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5454 (3)0.3122 (2)0.46535 (16)0.0543 (7)
C20.6907 (4)0.4335 (3)0.4872 (2)0.0506 (8)
C30.7718 (4)0.4905 (3)0.5771 (2)0.0488 (8)
C40.7183 (3)0.4147 (3)0.6544 (2)0.0473 (7)
H40.73550.48370.70380.057*
C50.5384 (4)0.3176 (3)0.6209 (2)0.0476 (7)
C60.4637 (4)0.2640 (3)0.5308 (2)0.0505 (8)
C70.7469 (4)0.4920 (3)0.4068 (2)0.0689 (10)
H7A0.67080.43450.35000.103*
H7B0.85180.49520.41340.103*
H7C0.75410.58360.40540.103*
C80.2886 (4)0.1574 (4)0.4926 (2)0.0729 (10)
H8A0.26200.13410.42690.109*
H8B0.21870.19450.50480.109*
H8C0.27420.07610.52200.109*
C90.4847 (4)0.2280 (3)0.3756 (2)0.0514 (8)
C100.5215 (4)0.1169 (3)0.3684 (2)0.0547 (8)
H100.58300.09710.42050.066*
C110.4672 (4)0.0366 (3)0.2846 (2)0.0628 (9)
H110.49080.03840.28000.075*
C120.3773 (4)0.0671 (3)0.2067 (2)0.0572 (8)
C130.3389 (4)0.1750 (3)0.2140 (2)0.0665 (9)
H130.27750.19510.16190.080*
C140.3912 (4)0.2535 (4)0.2984 (2)0.0674 (10)
H140.36270.32560.30330.081*
O150.3339 (3)0.0171 (2)0.12593 (16)0.0828 (8)
C160.2611 (6)0.0187 (4)0.0422 (3)0.1070 (15)
H16A0.23670.04870.00850.161*
H16B0.33440.10790.03330.161*
H16C0.16260.02130.04480.161*
C170.9226 (4)0.6192 (3)0.6040 (2)0.0523 (8)
O180.9944 (3)0.6917 (2)0.55631 (16)0.0822 (8)
O190.9781 (3)0.6499 (2)0.69719 (15)0.0682 (7)
C201.1316 (4)0.7699 (3)0.7403 (2)0.0651 (9)
H201.19830.79030.69830.078*
C211.2148 (5)0.7310 (5)0.8269 (3)0.1041 (14)
H21A1.23360.65380.81120.156*
H21B1.14750.70640.86700.156*
H21C1.31680.80790.85810.156*
C221.0989 (5)0.8909 (4)0.7570 (4)0.1150 (17)
H22A1.04820.91180.69870.172*
H22B1.19950.96930.78800.172*
H22C1.02810.86940.79500.172*
C230.4521 (4)0.2803 (3)0.6907 (2)0.0518 (8)
O240.3176 (3)0.1942 (3)0.68094 (17)0.0891 (9)
O250.5433 (3)0.3580 (3)0.77256 (16)0.0820 (8)
C260.4739 (5)0.3377 (4)0.8499 (3)0.0810 (12)
H260.37170.25320.83360.097*
C270.5956 (7)0.3234 (5)0.9321 (3)0.1202 (17)
H27A0.60840.24200.91850.180*
H27B0.55770.31600.98540.180*
H27C0.69820.40300.94470.180*
C280.4423 (6)0.4586 (5)0.8653 (3)0.1123 (16)
H28A0.36030.45950.81190.169*
H28B0.54050.54180.87500.169*
H28C0.40550.45280.91890.169*
C290.8208 (3)0.3391 (3)0.6953 (2)0.0485 (8)
C300.8803 (4)0.3461 (3)0.7905 (2)0.0568 (8)
H300.85850.39740.83030.068*
C310.9715 (4)0.2768 (4)0.8259 (3)0.0675 (9)
C321.0054 (4)0.2001 (4)0.7710 (3)0.0778 (11)
H321.06440.15180.79710.093*
C330.9512 (4)0.1942 (3)0.6758 (3)0.0767 (11)
H330.97680.14480.63710.092*
C340.8584 (4)0.2629 (3)0.6389 (2)0.0584 (9)
H340.82040.25780.57480.070*
N351.0345 (5)0.2876 (4)0.9286 (3)0.0962 (11)
O361.1211 (4)0.2294 (4)0.9581 (3)0.1430 (14)
O370.9971 (5)0.3491 (4)0.9761 (2)0.1302 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0572 (17)0.0623 (16)0.0429 (16)0.0260 (15)0.0145 (13)0.0017 (13)
C20.056 (2)0.0542 (18)0.048 (2)0.0272 (16)0.0208 (17)0.0066 (15)
C30.0532 (19)0.0475 (16)0.052 (2)0.0259 (15)0.0195 (16)0.0089 (15)
C40.0547 (19)0.0484 (16)0.0477 (18)0.0263 (15)0.0224 (15)0.0089 (14)
C50.0486 (18)0.0518 (17)0.054 (2)0.0284 (15)0.0228 (16)0.0088 (15)
C60.0521 (19)0.0541 (18)0.052 (2)0.0278 (16)0.0183 (17)0.0042 (15)
C70.080 (2)0.076 (2)0.052 (2)0.033 (2)0.0221 (19)0.0109 (17)
C80.054 (2)0.086 (2)0.067 (2)0.0203 (19)0.0183 (19)0.0025 (19)
C90.0554 (19)0.0587 (19)0.0429 (19)0.0289 (16)0.0126 (16)0.0034 (15)
C100.064 (2)0.0585 (19)0.0454 (19)0.0339 (17)0.0107 (16)0.0081 (15)
C110.077 (2)0.0546 (19)0.061 (2)0.0349 (19)0.018 (2)0.0045 (17)
C120.067 (2)0.0543 (19)0.047 (2)0.0239 (17)0.0171 (17)0.0020 (16)
C130.072 (2)0.071 (2)0.052 (2)0.035 (2)0.0041 (18)0.0044 (17)
C140.078 (2)0.074 (2)0.058 (2)0.050 (2)0.0054 (19)0.0052 (18)
O150.112 (2)0.0769 (16)0.0501 (16)0.0386 (15)0.0150 (14)0.0045 (13)
C160.145 (4)0.098 (3)0.051 (3)0.038 (3)0.014 (3)0.002 (2)
C170.057 (2)0.0531 (18)0.054 (2)0.0285 (17)0.0220 (18)0.0110 (16)
O180.0751 (17)0.0845 (17)0.0591 (15)0.0070 (14)0.0230 (14)0.0159 (13)
O190.0722 (16)0.0624 (14)0.0524 (15)0.0109 (12)0.0222 (12)0.0007 (11)
C200.056 (2)0.063 (2)0.060 (2)0.0106 (18)0.0172 (18)0.0001 (17)
C210.086 (3)0.120 (3)0.085 (3)0.037 (3)0.006 (3)0.008 (3)
C220.099 (3)0.063 (2)0.150 (5)0.028 (2)0.000 (3)0.014 (3)
C230.052 (2)0.0596 (19)0.053 (2)0.0315 (17)0.0172 (18)0.0084 (17)
O240.0658 (17)0.1032 (19)0.0690 (17)0.0041 (16)0.0291 (14)0.0024 (15)
O250.0675 (16)0.1061 (19)0.0551 (15)0.0144 (14)0.0309 (13)0.0085 (14)
C260.071 (2)0.099 (3)0.058 (2)0.014 (2)0.035 (2)0.006 (2)
C270.172 (5)0.161 (5)0.087 (3)0.105 (4)0.072 (4)0.053 (3)
C280.152 (4)0.158 (4)0.080 (3)0.103 (4)0.058 (3)0.027 (3)
C290.0398 (17)0.0478 (17)0.056 (2)0.0168 (14)0.0162 (16)0.0078 (15)
C300.0509 (19)0.062 (2)0.064 (2)0.0265 (17)0.0235 (17)0.0153 (17)
C310.057 (2)0.070 (2)0.074 (3)0.029 (2)0.015 (2)0.0243 (19)
C320.053 (2)0.067 (2)0.115 (4)0.033 (2)0.015 (2)0.022 (2)
C330.062 (2)0.065 (2)0.113 (4)0.035 (2)0.029 (2)0.003 (2)
C340.0502 (19)0.0586 (19)0.064 (2)0.0262 (17)0.0107 (17)0.0004 (17)
N350.079 (3)0.105 (3)0.100 (3)0.043 (2)0.016 (2)0.044 (2)
O360.127 (3)0.195 (4)0.128 (3)0.100 (3)0.019 (2)0.077 (3)
O370.154 (3)0.177 (4)0.072 (2)0.098 (3)0.012 (2)0.025 (2)
Geometric parameters (Å, º) top
N1—C61.395 (4)O19—C201.455 (3)
N1—C21.401 (3)C20—C221.492 (5)
N1—C91.453 (4)C20—C211.495 (5)
C2—C31.356 (4)C20—H200.9800
C2—C71.501 (4)C21—H21A0.9600
C3—C171.468 (4)C21—H21B0.9600
C3—C41.511 (4)C21—H21C0.9600
C4—C51.517 (4)C22—H22A0.9600
C4—C291.527 (4)C22—H22B0.9600
C4—H40.9800C22—H22C0.9600
C5—C61.346 (4)C23—O241.193 (3)
C5—C231.468 (4)C23—O251.332 (4)
C6—C81.514 (4)O25—C261.470 (4)
C7—H7A0.9600C26—C281.481 (5)
C7—H7B0.9600C26—C271.507 (6)
C7—H7C0.9600C26—H260.9800
C8—H8A0.9600C27—H27A0.9600
C8—H8B0.9600C27—H27B0.9600
C8—H8C0.9600C27—H27C0.9600
C9—C141.368 (4)C28—H28A0.9600
C9—C101.388 (4)C28—H28B0.9600
C10—C111.368 (4)C28—H28C0.9600
C10—H100.9300C29—C301.385 (4)
C11—C121.384 (4)C29—C341.389 (4)
C11—H110.9300C30—C311.373 (5)
C12—C131.366 (4)C30—H300.9300
C12—O151.370 (4)C31—C321.353 (5)
C13—C141.370 (4)C31—N351.488 (5)
C13—H130.9300C32—C331.382 (5)
C14—H140.9300C32—H320.9300
O15—C161.408 (5)C33—C341.384 (5)
C16—H16A0.9600C33—H330.9300
C16—H16B0.9600C34—H340.9300
C16—H16C0.9600N35—O371.187 (4)
C17—O181.196 (3)N35—O361.225 (4)
C17—O191.347 (4)
C6—N1—C2121.3 (2)O19—C20—C22109.1 (3)
C6—N1—C9118.7 (2)O19—C20—C21106.6 (3)
C2—N1—C9119.8 (2)C22—C20—C21113.8 (3)
C3—C2—N1119.8 (3)O19—C20—H20109.1
C3—C2—C7124.0 (3)C22—C20—H20109.1
N1—C2—C7116.2 (3)C21—C20—H20109.1
C2—C3—C17122.2 (3)C20—C21—H21A109.5
C2—C3—C4120.3 (3)C20—C21—H21B109.5
C17—C3—C4117.2 (3)H21A—C21—H21B109.5
C3—C4—C5110.7 (2)C20—C21—H21C109.5
C3—C4—C29111.3 (2)H21A—C21—H21C109.5
C5—C4—C29111.7 (2)H21B—C21—H21C109.5
C3—C4—H4107.6C20—C22—H22A109.5
C5—C4—H4107.6C20—C22—H22B109.5
C29—C4—H4107.6H22A—C22—H22B109.5
C6—C5—C23121.8 (3)C20—C22—H22C109.5
C6—C5—C4120.5 (3)H22A—C22—H22C109.5
C23—C5—C4117.7 (3)H22B—C22—H22C109.5
C5—C6—N1120.0 (3)O24—C23—O25120.5 (3)
C5—C6—C8124.1 (3)O24—C23—C5128.0 (3)
N1—C6—C8115.8 (3)O25—C23—C5111.5 (3)
C2—C7—H7A109.5C23—O25—C26118.8 (3)
C2—C7—H7B109.5O25—C26—C28107.1 (3)
H7A—C7—H7B109.5O25—C26—C27106.9 (3)
C2—C7—H7C109.5C28—C26—C27113.5 (3)
H7A—C7—H7C109.5O25—C26—H26109.7
H7B—C7—H7C109.5C28—C26—H26109.7
C6—C8—H8A109.5C27—C26—H26109.7
C6—C8—H8B109.5C26—C27—H27A109.5
H8A—C8—H8B109.5C26—C27—H27B109.5
C6—C8—H8C109.5H27A—C27—H27B109.5
H8A—C8—H8C109.5C26—C27—H27C109.5
H8B—C8—H8C109.5H27A—C27—H27C109.5
C14—C9—C10119.0 (3)H27B—C27—H27C109.5
C14—C9—N1122.2 (3)C26—C28—H28A109.5
C10—C9—N1118.8 (3)C26—C28—H28B109.5
C11—C10—C9120.1 (3)H28A—C28—H28B109.5
C11—C10—H10120.0C26—C28—H28C109.5
C9—C10—H10120.0H28A—C28—H28C109.5
C10—C11—C12120.0 (3)H28B—C28—H28C109.5
C10—C11—H11120.0C30—C29—C34118.1 (3)
C12—C11—H11120.0C30—C29—C4120.5 (3)
C13—C12—O15124.9 (3)C34—C29—C4121.4 (3)
C13—C12—C11120.0 (3)C31—C30—C29119.6 (3)
O15—C12—C11115.1 (3)C31—C30—H30120.2
C12—C13—C14119.7 (3)C29—C30—H30120.2
C12—C13—H13120.1C32—C31—C30122.4 (4)
C14—C13—H13120.1C32—C31—N35119.5 (4)
C9—C14—C13121.2 (3)C30—C31—N35118.1 (4)
C9—C14—H14119.4C31—C32—C33119.2 (4)
C13—C14—H14119.4C31—C32—H32120.4
C12—O15—C16118.1 (3)C33—C32—H32120.4
O15—C16—H16A109.5C32—C33—C34119.1 (3)
O15—C16—H16B109.5C32—C33—H33120.5
H16A—C16—H16B109.5C34—C33—H33120.5
O15—C16—H16C109.5C33—C34—C29121.5 (3)
H16A—C16—H16C109.5C33—C34—H34119.2
H16B—C16—H16C109.5C29—C34—H34119.2
O18—C17—O19121.0 (3)O37—N35—O36124.4 (5)
O18—C17—C3129.6 (3)O37—N35—C31119.0 (4)
O19—C17—C3109.4 (3)O36—N35—C31116.6 (4)
C17—O19—C20119.2 (2)
C6—N1—C2—C313.7 (4)C12—C13—C14—C91.5 (6)
C9—N1—C2—C3161.0 (3)C13—C12—O15—C167.9 (5)
C6—N1—C2—C7166.6 (3)C11—C12—O15—C16171.8 (3)
C9—N1—C2—C718.7 (4)C2—C3—C17—O180.8 (5)
N1—C2—C3—C17178.6 (2)C4—C3—C17—O18174.6 (3)
C7—C2—C3—C171.8 (5)C2—C3—C17—O19178.8 (3)
N1—C2—C3—C47.8 (4)C4—C3—C17—O194.9 (3)
C7—C2—C3—C4171.9 (3)O18—C17—O19—C202.8 (4)
C2—C3—C4—C526.5 (4)C3—C17—O19—C20176.8 (2)
C17—C3—C4—C5159.5 (2)C17—O19—C20—C2294.3 (4)
C2—C3—C4—C2998.4 (3)C17—O19—C20—C21142.4 (3)
C17—C3—C4—C2975.6 (3)C6—C5—C23—O247.0 (5)
C3—C4—C5—C627.3 (4)C4—C5—C23—O24170.3 (3)
C29—C4—C5—C697.4 (3)C6—C5—C23—O25172.2 (3)
C3—C4—C5—C23155.4 (2)C4—C5—C23—O2510.5 (4)
C29—C4—C5—C2380.0 (3)O24—C23—O25—C261.3 (5)
C23—C5—C6—N1173.7 (3)C5—C23—O25—C26178.0 (3)
C4—C5—C6—N19.0 (4)C23—O25—C26—C28107.6 (4)
C23—C5—C6—C82.6 (5)C23—O25—C26—C27130.4 (3)
C4—C5—C6—C8174.7 (3)C3—C4—C29—C30134.9 (3)
C2—N1—C6—C513.1 (4)C5—C4—C29—C30100.8 (3)
C9—N1—C6—C5161.7 (3)C3—C4—C29—C3444.5 (4)
C2—N1—C6—C8163.5 (3)C5—C4—C29—C3479.9 (3)
C9—N1—C6—C821.7 (4)C34—C29—C30—C310.9 (4)
C6—N1—C9—C1499.7 (4)C4—C29—C30—C31179.7 (3)
C2—N1—C9—C1485.5 (4)C29—C30—C31—C320.5 (5)
C6—N1—C9—C1079.6 (3)C29—C30—C31—N35179.5 (3)
C2—N1—C9—C1095.3 (3)C30—C31—C32—C332.2 (5)
C14—C9—C10—C111.3 (5)N35—C31—C32—C33177.8 (3)
N1—C9—C10—C11179.4 (3)C31—C32—C33—C342.4 (5)
C9—C10—C11—C120.8 (5)C32—C33—C34—C291.0 (5)
C10—C11—C12—C131.8 (5)C30—C29—C34—C330.6 (4)
C10—C11—C12—O15177.9 (3)C4—C29—C34—C33180.0 (3)
O15—C12—C13—C14179.0 (3)C32—C31—N35—O37176.1 (4)
C11—C12—C13—C140.7 (5)C30—C31—N35—O373.9 (6)
C10—C9—C14—C132.5 (5)C32—C31—N35—O362.9 (5)
N1—C9—C14—C13178.3 (3)C30—C31—N35—O36177.1 (3)

Experimental details

Crystal data
Chemical formulaC28H32N2O7
Mr508.56
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5043 (8), 10.7570 (7), 15.1279 (12)
α, β, γ (°)90.501 (6), 105.873 (7), 114.601 (7)
V3)1339.27 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8313, 4688, 2417
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.203, 0.93
No. of reflections4688
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

References

First citationChhillar, A. K., Arya, P., Mukherjee, C., Kumar, P., Yadav, Y., Sharma, A. K., Yadav, V., Gupta, J., Gupta, J., Dabur, R., Jha, H. N., Watterson, A. C., Parmar, V. S., Prasad, A. K. & Sharma, G. L. (2006). Bioorg. Med. Chem. 14, 973–981.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGaveriya, H., Desai, B., Vora, V. & Shah, A. (2001). Heterocycl. Commun. 7, 481–484.  CrossRef Google Scholar
First citationMarchalin, S., Cvopova, K., Kriz, M. M., Baran, P., Oulydi, H. & Daich, A. (2004). J. Org. Chem. 69, 4227–4237.  PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationShah, A., Gaveriya, H., Motohashi, N., Kawase, M., Farkas, S., Gyorgyi, G. & Molnar, J. (2002). Int. J. Antimicrob. Agents, 20, 227–235.  PubMed Google Scholar
First citationShah, A., Gaveriya, H., Motohashi, N., Kawase, M., Saito, S., Sakagami, H., Satoh, Y., Solymosi, A., Walfard, K. & Molnar, J. (2000). Anticancer Res. 20, 373–377.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds