organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3069-o3070

Ethyl 4-(1,3-benzodioxol-5-yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and cSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: nksusa@gmail.com, venugopala@ukzn.ac.za

(Received 18 October 2011; accepted 20 October 2011; online 29 October 2011)

In the title compound, C15H16N2O4S, the dihedral angles between the planes of the benzodioxole and ester groups and the plane of the six-membered tetra­hydro­pyrimidine ring are 89.5 (1) and 20.2 (1)°, respectively. Inter­molecular N—H⋯S hydrogen bonds assemble the mol­ecules into dimers, which are further connected via N—H⋯O inter­actions into chains parallel to [010]. Weak C—H⋯S and C—H⋯π inter­actions enhance the stability of the crystal structure.

Related literature

For background to the applications of multi-functionalized dihydro­pyrimidines, see: Jauk et al. (2000[Jauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227-239.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Mayer et al. (1999[Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971-974.]). For similar structures, see: Nayak et al. (2009[Nayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2518.], 2010[Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.], 2011[Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011). Acta Cryst. E67, o1559-o1560.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O4S

  • Mr = 320.37

  • Monoclinic, P 21 /c

  • a = 12.5102 (9) Å

  • b = 7.2054 (4) Å

  • c = 17.0881 (12) Å

  • β = 107.178 (8)°

  • V = 1471.62 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 K

  • 0.28 × 0.22 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.936, Tmax = 0.956

  • 18163 measured reflections

  • 2883 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.09

  • 2883 reflections

  • 263 parameters

  • All H-atom parameters refined

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the O3/C11/C12/O5/C15 and C9–C14 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.14 (2) 2.9578 (19) 167 (2)
N2—H2N⋯S1ii 0.76 (2) 2.57 (2) 3.3069 (17) 164 (2)
C10—H10⋯S1iii 0.95 (2) 2.75 (2) 3.678 (2) 166.9 (18)
C15—H15BCg1iv 0.98 (3) 2.95 (3) 3.890 (2) 160 (2)
C6—H6ACg2v 0.98 (2) 2.87 (2) 3.691 (2) 142 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Biginelli compounds are multifunctionalized dihydropyrimidones (DHPM) (Kappe, 2000 and references therein), which have emerged as important target molecule for therapeutic and pharmacological properties such as anticarcinogenic (Kappe, 2000; Mayer et al., 1999) and calcium channel modulators (Jauk et al., 2000 and references therein). In view of the immense range of applications, we became interested in the DHPMS system (Nayak et al.,2009; 2010; 2011). Here we report a single-crystal structure of the title compound.

The preferred conformation of the molecule is that with the dihedral angles between the planes of benzodioxolyl and ester groups (O1/C5/O2/C6/C7) with the plane of the six-membered tetrahydropyrimidine ring of 89.5 (1) ° and 20.2 (1) °, respectively. The centrosymmetric N—H···S dimers of the title molecules are additionally organized into chains along the b axis via N—H···O hydrogen bonds. These chains are also stabilized by weak C—H···S interactions (Fig. 2). Additonal weak C—H···π interactions enhance the crystal stability.

Related literature top

For background to the applications of multi-functionalized dihydropyrimidines, see: Jauk et al. (2000); Kappe (2000); Mayer et al. (1999). For similar structures, see: Nayak et al. (2009, 2010, 2011).

Experimental top

A mixture of ethyl acetoacetate (0.1 mol), 3,4-(methylenedioxy)benzaldehyde (0.1 mol) and thiourea (0.1 mol) was refluxed in 50 ml of ethanol for 2 h in the presence of concentrated hydrochloric acid as a catalyst. The reaction was monitored with thin layer chromatography and the reaction medium was quenched in ice cold water. The precipitate obtained was filtered, dried and crystallized from methanol at room temperature to obtain the title compound.

Refinement top

All H atoms were located from difference Fourier map and refined freely.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids for non-H atoms at the 50% probability level.
[Figure 2] Fig. 2. (a) The crystal packing diagram showing hydrogen-bonded chains formed by hydrogen-bonded dimers. (b) View of the crystal packing along the b axis (yellow circle represents centre of inversion).
Ethyl 4-(1,3-benzodioxol-5-yl)-6-methyl-2-sulfanylidene-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C15H16N2O4SF(000) = 672
Mr = 320.37Dx = 1.446 Mg m3
Monoclinic, P21/cMelting point: 447(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5102 (9) ÅCell parameters from 430 reflections
b = 7.2054 (4) Åθ = 1.0–27.9°
c = 17.0881 (12) ŵ = 0.24 mm1
β = 107.178 (8)°T = 120 K
V = 1471.62 (17) Å3Block, colorless
Z = 40.28 × 0.22 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2883 independent reflections
Radiation source: Enhance (Mo) X-ray Source2349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.936, Tmax = 0.956l = 2121
18163 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.044P)2 + 0.4413P]
where P = (Fo2 + 2Fc2)/3
2883 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H16N2O4SV = 1471.62 (17) Å3
Mr = 320.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5102 (9) ŵ = 0.24 mm1
b = 7.2054 (4) ÅT = 120 K
c = 17.0881 (12) Å0.28 × 0.22 × 0.19 mm
β = 107.178 (8)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2883 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2349 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.956Rint = 0.067
18163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.09Δρmax = 0.33 e Å3
2883 reflectionsΔρmin = 0.30 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03990 (4)0.22578 (6)0.06240 (3)0.02136 (16)
O20.21637 (11)0.77438 (16)0.39149 (7)0.0190 (3)
C40.14810 (16)0.7167 (2)0.17046 (11)0.0167 (4)
O10.14472 (12)0.97853 (17)0.29048 (8)0.0246 (3)
C90.26335 (16)0.7523 (2)0.16168 (10)0.0164 (4)
N10.12326 (13)0.3507 (2)0.21437 (9)0.0178 (4)
N20.08802 (14)0.5707 (2)0.11385 (10)0.0179 (4)
C20.14299 (15)0.4837 (2)0.27642 (11)0.0161 (4)
C50.16897 (15)0.8200 (2)0.31311 (11)0.0164 (4)
C30.15224 (15)0.6627 (2)0.25676 (10)0.0157 (4)
C80.14782 (18)0.4050 (3)0.35838 (12)0.0194 (4)
C10.08656 (15)0.3933 (2)0.13312 (11)0.0173 (4)
C60.23338 (18)0.9229 (3)0.45154 (12)0.0214 (4)
C120.47322 (16)0.8166 (3)0.14736 (12)0.0242 (4)
C100.28717 (17)0.9248 (3)0.13323 (12)0.0240 (4)
O50.57092 (12)0.8812 (2)0.13570 (10)0.0348 (4)
C140.34567 (17)0.6153 (3)0.18099 (12)0.0236 (4)
C130.45264 (18)0.6459 (3)0.17449 (13)0.0268 (5)
O30.43410 (14)1.1070 (2)0.09967 (13)0.0551 (6)
C110.39210 (18)0.9510 (3)0.12682 (13)0.0267 (5)
C70.3423 (2)1.0191 (3)0.46053 (15)0.0316 (5)
C150.54868 (19)1.0701 (3)0.10926 (16)0.0341 (5)
H8A0.1201 (17)0.491 (3)0.3892 (13)0.022 (5)*
H6B0.1710 (17)1.006 (3)0.4352 (12)0.017 (5)*
H100.2310 (19)1.017 (3)0.1214 (13)0.030 (6)*
H8B0.1075 (18)0.292 (3)0.3532 (12)0.022 (5)*
H130.5136 (19)0.551 (3)0.1892 (13)0.030 (6)*
H2N0.0633 (19)0.599 (3)0.0693 (14)0.023 (6)*
H1N0.122 (2)0.240 (3)0.2286 (14)0.031 (7)*
H40.1015 (16)0.829 (3)0.1527 (11)0.015 (5)*
H6A0.2297 (16)0.861 (3)0.5017 (12)0.016 (5)*
H140.326 (2)0.496 (3)0.2002 (14)0.042 (7)*
H7A0.408 (2)0.932 (4)0.4772 (16)0.050 (7)*
H7B0.3470 (19)1.077 (3)0.4079 (14)0.033 (6)*
H8C0.222 (2)0.379 (3)0.3889 (15)0.038 (7)*
H15A0.593 (2)1.155 (4)0.1543 (16)0.048 (7)*
H7C0.349 (2)1.111 (4)0.5042 (16)0.051 (8)*
H15B0.556 (2)1.086 (4)0.0541 (17)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (3)0.0142 (3)0.0213 (3)0.00006 (18)0.0006 (2)0.00166 (17)
O20.0258 (8)0.0137 (7)0.0154 (6)0.0003 (5)0.0032 (6)0.0012 (5)
C40.0206 (10)0.0107 (9)0.0162 (9)0.0004 (7)0.0014 (7)0.0004 (7)
O10.0350 (8)0.0129 (7)0.0225 (7)0.0038 (6)0.0033 (6)0.0012 (5)
C90.0188 (10)0.0162 (9)0.0129 (8)0.0021 (7)0.0023 (7)0.0014 (7)
N10.0230 (9)0.0095 (8)0.0194 (8)0.0010 (6)0.0040 (7)0.0005 (6)
N20.0211 (9)0.0136 (8)0.0157 (9)0.0001 (6)0.0004 (7)0.0027 (6)
C20.0143 (9)0.0145 (9)0.0188 (9)0.0018 (7)0.0037 (7)0.0009 (7)
C50.0159 (9)0.0144 (9)0.0194 (9)0.0008 (7)0.0060 (7)0.0001 (7)
C30.0159 (9)0.0139 (9)0.0162 (9)0.0008 (7)0.0033 (7)0.0003 (7)
C80.0258 (12)0.0126 (10)0.0199 (10)0.0005 (8)0.0067 (9)0.0011 (7)
C10.0127 (9)0.0169 (10)0.0205 (9)0.0017 (7)0.0020 (7)0.0002 (7)
C60.0301 (12)0.0165 (10)0.0164 (9)0.0008 (8)0.0050 (8)0.0028 (7)
C120.0177 (10)0.0290 (11)0.0262 (10)0.0032 (8)0.0070 (8)0.0042 (8)
C100.0209 (11)0.0165 (10)0.0321 (11)0.0008 (8)0.0040 (9)0.0037 (8)
O50.0236 (8)0.0302 (9)0.0538 (10)0.0040 (6)0.0162 (7)0.0021 (7)
C140.0266 (11)0.0175 (10)0.0283 (10)0.0020 (8)0.0102 (9)0.0049 (8)
C130.0232 (11)0.0219 (11)0.0360 (11)0.0047 (8)0.0099 (9)0.0034 (9)
O30.0303 (10)0.0329 (10)0.1070 (16)0.0001 (7)0.0281 (10)0.0314 (10)
C110.0264 (11)0.0187 (10)0.0345 (11)0.0037 (8)0.0083 (9)0.0061 (8)
C70.0301 (13)0.0261 (12)0.0348 (13)0.0056 (10)0.0036 (10)0.0075 (10)
C150.0274 (13)0.0331 (13)0.0427 (14)0.0071 (9)0.0117 (11)0.0052 (10)
Geometric parameters (Å, º) top
S1—C11.6854 (18)C8—H8C0.94 (3)
O2—C51.336 (2)C6—C71.496 (3)
O2—C61.454 (2)C6—H6B0.96 (2)
C4—N21.476 (2)C6—H6A0.98 (2)
C4—C31.511 (2)C12—C131.365 (3)
C4—C91.515 (3)C12—C111.372 (3)
C4—H40.99 (2)C12—O51.376 (2)
O1—C51.215 (2)C10—C111.362 (3)
C9—C141.394 (3)C10—H100.94 (2)
C9—C101.398 (3)O5—C151.435 (3)
N1—C11.362 (2)C14—C131.393 (3)
N1—C21.396 (2)C14—H140.97 (2)
N1—H1N0.84 (2)C13—H131.00 (2)
N2—C11.322 (2)O3—C111.378 (2)
N2—H2N0.76 (2)O3—C151.419 (3)
C2—C31.346 (2)C7—H7A1.01 (3)
C2—C81.495 (3)C7—H7B1.01 (2)
C5—C31.462 (2)C7—H7C0.98 (3)
C8—H8A0.94 (2)C15—H15A1.01 (3)
C8—H8B0.95 (2)C15—H15B0.98 (3)
C5—O2—C6117.10 (14)O2—C6—H6B108.5 (12)
N2—C4—C3108.68 (15)C7—C6—H6B112.3 (12)
N2—C4—C9111.78 (15)O2—C6—H6A104.3 (11)
C3—C4—C9112.39 (15)C7—C6—H6A113.5 (11)
N2—C4—H4104.0 (11)H6B—C6—H6A107.2 (17)
C3—C4—H4110.9 (11)C13—C12—C11121.57 (19)
C9—C4—H4108.7 (11)C13—C12—O5128.22 (19)
C14—C9—C10119.55 (18)C11—C12—O5110.21 (18)
C14—C9—C4120.99 (17)C11—C10—C9117.43 (18)
C10—C9—C4119.46 (16)C11—C10—H10124.0 (14)
C1—N1—C2123.39 (16)C9—C10—H10118.6 (14)
C1—N1—H1N118.8 (16)C12—O5—C15105.58 (16)
C2—N1—H1N116.7 (16)C13—C14—C9121.93 (19)
C1—N2—C4124.61 (16)C13—C14—H14120.6 (15)
C1—N2—H2N118.7 (17)C9—C14—H14117.4 (15)
C4—N2—H2N116.1 (17)C12—C13—C14116.87 (18)
C3—C2—N1118.48 (16)C12—C13—H13119.6 (13)
C3—C2—C8127.90 (17)C14—C13—H13123.6 (13)
N1—C2—C8113.59 (15)C11—O3—C15106.32 (17)
O1—C5—O2123.07 (16)C10—C11—C12122.62 (19)
O1—C5—C3123.06 (16)C10—C11—O3127.79 (19)
O2—C5—C3113.85 (15)C12—C11—O3109.59 (18)
C2—C3—C5125.78 (16)C6—C7—H7A112.5 (15)
C2—C3—C4120.63 (16)C6—C7—H7B113.0 (13)
C5—C3—C4113.58 (15)H7A—C7—H7B105 (2)
C2—C8—H8A110.8 (12)C6—C7—H7C104.9 (15)
C2—C8—H8B111.5 (12)H7A—C7—H7C109 (2)
H8A—C8—H8B110.1 (18)H7B—C7—H7C112.7 (19)
C2—C8—H8C110.8 (15)O3—C15—O5108.02 (17)
H8A—C8—H8C106.6 (19)O3—C15—H15A106.3 (15)
H8B—C8—H8C106.9 (19)O5—C15—H15A108.9 (15)
N2—C1—N1116.51 (16)O3—C15—H15B104.3 (16)
N2—C1—S1122.78 (14)O5—C15—H15B110.3 (16)
N1—C1—S1120.71 (14)H15A—C15—H15B118 (2)
O2—C6—C7110.65 (17)
N2—C4—C9—C1464.5 (2)C4—N2—C1—S1167.04 (14)
C3—C4—C9—C1458.0 (2)C2—N1—C1—N211.3 (3)
N2—C4—C9—C10115.08 (18)C2—N1—C1—S1167.60 (15)
C3—C4—C9—C10122.40 (18)C5—O2—C6—C786.5 (2)
C3—C4—N2—C130.0 (2)C14—C9—C10—C110.9 (3)
C9—C4—N2—C194.6 (2)C4—C9—C10—C11179.58 (18)
C1—N1—C2—C316.3 (3)C13—C12—O5—C15178.2 (2)
C1—N1—C2—C8162.00 (17)C11—C12—O5—C152.3 (2)
C6—O2—C5—O13.2 (3)C10—C9—C14—C131.4 (3)
C6—O2—C5—C3178.61 (16)C4—C9—C14—C13179.05 (18)
N1—C2—C3—C5177.79 (17)C11—C12—C13—C140.5 (3)
C8—C2—C3—C50.2 (3)O5—C12—C13—C14179.97 (19)
N1—C2—C3—C43.5 (3)C9—C14—C13—C120.7 (3)
C8—C2—C3—C4178.49 (18)C9—C10—C11—C120.3 (3)
O1—C5—C3—C2157.7 (2)C9—C10—C11—O3179.2 (2)
O2—C5—C3—C224.2 (3)C13—C12—C11—C101.0 (3)
O1—C5—C3—C423.5 (3)O5—C12—C11—C10179.37 (19)
O2—C5—C3—C4154.60 (16)C13—C12—C11—O3178.55 (19)
N2—C4—C3—C223.6 (2)O5—C12—C11—O31.0 (2)
C9—C4—C3—C2100.7 (2)C15—O3—C11—C10176.5 (2)
N2—C4—C3—C5157.57 (15)C15—O3—C11—C124.0 (3)
C9—C4—C3—C578.17 (19)C11—O3—C15—O55.3 (3)
C4—N2—C1—N114.1 (3)C12—O5—C15—O34.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.14 (2)2.9578 (19)167 (2)
N2—H2N···S1ii0.76 (2)2.57 (2)3.3069 (17)164 (2)
C10—H10···S1iii0.95 (2)2.75 (2)3.678 (2)166.9 (18)
C15—H15B···Cg1iv0.98 (3)2.95 (3)3.890 (2)160 (2)
C6—H6A···Cg2v0.98 (2)2.87 (2)3.691 (2)142 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O4S
Mr320.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.5102 (9), 7.2054 (4), 17.0881 (12)
β (°) 107.178 (8)
V3)1471.62 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.936, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
18163, 2883, 2349
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.09
No. of reflections2883
No. of parameters263
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.14 (2)2.9578 (19)167 (2)
N2—H2N···S1ii0.76 (2)2.57 (2)3.3069 (17)164 (2)
C10—H10···S1iii0.95 (2)2.75 (2)3.678 (2)166.9 (18)
C15—H15B···Cg1iv0.98 (3)2.95 (3)3.890 (2)160 (2)
C6—H6A···Cg2v0.98 (2)2.87 (2)3.691 (2)142 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge funding under DST-FIST (Level II) for the Oxford Diffraction facility at SSCU, IISc. SKN thanks DST, India, for a research associate fellowship and KNV is grateful to the University of KwaZulu-Natal, South Africa, for a postdoctoral fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJauk, B., Pernat, T. & Kappe, C. O. (2000). Molecules, 5, 227–239.  Web of Science CrossRef CAS Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. I. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o2518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.  Google Scholar
First citationNayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011). Acta Cryst. E67, o1559–o1560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3069-o3070
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds