organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(4H-1,2,4-triazol-4-yl)pyridine dihydrate

aTianjin Key Laboratory of Structure and Performances of Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: wangying790601@163.com

(Received 8 September 2011; accepted 10 October 2011; online 12 October 2011)

The asymmetric unit of the title compound, C9H7N7·2H2O, comprises three formula units. The dihedral angles between the triazole rings and the respective central pyridine rings are 4.87 (16)/1.39 (17), 6.46 (16)/7.61 (16) and 7.00 (16)/3.77 (17)°. The water mol­ecules form O—H⋯O hydrogen bonds between themselves and O—H⋯N hydrogen bonds with the N-atom acceptors of the triazole rings, producing a three-dimensional framework.

Related literature

For the synthesis of the title compound, see: Wiley & Hart (1953[Wiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368-1371.]). For properties of related compounds, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131-185.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N7·2H2O

  • Mr = 249.25

  • Monoclinic, P 21 /c

  • a = 9.7211 (17) Å

  • b = 17.921 (3) Å

  • c = 19.603 (4) Å

  • β = 91.333 (3)°

  • V = 3414.2 (10) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 566 K

  • 0.32 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.991

  • 19614 measured reflections

  • 6030 independent reflections

  • 3151 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.133

  • S = 1.00

  • 6030 reflections

  • 523 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯N21i 0.86 (1) 1.95 (1) 2.801 (3) 172 (3)
O6—H6B⋯N1ii 0.86 (1) 2.04 (1) 2.878 (3) 166 (3)
O5—H5A⋯O6 0.87 (1) 1.86 (2) 2.707 (3) 166 (4)
O5—H5B⋯O1iii 0.86 (1) 2.01 (1) 2.864 (4) 171 (4)
O4—H4A⋯N14iv 0.86 (1) 1.95 (1) 2.808 (3) 173 (4)
O4—H4B⋯N8v 0.86 (1) 2.09 (2) 2.907 (3) 160 (3)
O3—H3B⋯O5 0.86 (1) 2.03 (2) 2.868 (4) 166 (4)
O3—H3A⋯O4 0.85 (1) 2.01 (1) 2.855 (3) 173 (3)
O2—H2B⋯O4 0.86 (1) 2.00 (1) 2.851 (4) 172 (4)
O2—H2A⋯O1 0.87 (1) 2.03 (1) 2.886 (3) 171 (3)
O1—H1B⋯N15vi 0.86 (1) 2.05 (2) 2.861 (3) 158 (3)
O1—H1A⋯N7 0.86 (1) 1.97 (1) 2.820 (3) 171 (3)
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x+1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many molecular-based compounds exhibit interesting magnetic and luminescent properties, (Haasnoot, 2000). One of the requirements for producing such macroscopic properties is to create interactions between the molecular units and the active sites within the crystal lattices. 1,2,4-triazole and, in particular, its derivatives are interesting bridging ligands.

The asymmetric unit of (I) comprises three C9H7N7.2H2O components of those ilustrated in Figure 1. The dihedral angles between the triazole rings and the respective central pyridine rings are (atoms named indicate the relevant rings) N3/N4 4.87 (16)°, N4/N5 1.39 (17)°, N10/N11 6.46 (16)°, N11/N12 7.61 (16)°, N17/N18 7.00 (16)° and N18/N19 3.77 (17)°. The water molecules form O—H···O hydrogen bonds between themselves and O—H···N bonds with the N-atom acceptors of the triazole rings, producing a three-dimensional framework. (Table 1, Figure 2).

Related literature top

For the synthesis of the title compound, see: Wiley & Hart (1953). For properties of related compounds, see: Haasnoot (2000).

Experimental top

A mixture of 1.3 g (0.012 mol) of 2,6-diaminopyridine and 2.0 g (0.023 mol) of diformylhydrazine was heated slowly to 160–170 °C for 30 min. The crystals, which separated on cooling, were collected and recrystallized form water and acetonitrile to give 0.8 g of (I) (yield 20%). After several recrystallizations from water, the air-dried product was obtained as white needles, m.p. 325–327 K (placed in hot bolck at 320 K). The analysis was obtained on the air-dried sample. Anal. Calc. for C9H11N7O2 (%): C, 46.75; H, 3.92. Found (%): C, 46.89; H, 4.00.

Refinement top

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C or O atoms with C—H = 0.93 Å and O—H = 0.85 Å and Uiso(H) = 1.2 or 1.5 times Ueq (C or O). The hydrogen atoms of the water molecules were located from difference maps and refined with isotropic temperature factors.In the case of atoms O2 and O3 the angle between the H atoms was restained to be a value close to 104°.

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing for (I), with the H bond interactions shown as dashed lines.
2,6-Bis(4H-1,2,4-triazol-4-yl)pyridine dihydrate top
Crystal data top
C9H7N7·2H2OF(000) = 1560
Mr = 249.25Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7211 (17) ÅCell parameters from 1505 reflections
b = 17.921 (3) Åθ = 2.4–21.4°
c = 19.603 (4) ŵ = 0.11 mm1
β = 91.333 (3)°T = 566 K
V = 3414.2 (10) Å3PLATE, colorless
Z = 120.32 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6030 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.966, Tmax = 0.991k = 2121
19614 measured reflectionsl = 2318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.9562P]
where P = (Fo2 + 2Fc2)/3
6030 reflections(Δ/σ)max < 0.001
523 parametersΔρmax = 0.17 e Å3
18 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H7N7·2H2OV = 3414.2 (10) Å3
Mr = 249.25Z = 12
Monoclinic, P21/cMo Kα radiation
a = 9.7211 (17) ŵ = 0.11 mm1
b = 17.921 (3) ÅT = 566 K
c = 19.603 (4) Å0.32 × 0.16 × 0.08 mm
β = 91.333 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6030 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3151 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.057
19614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05118 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
6030 reflectionsΔρmin = 0.25 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7154 (2)0.78220 (11)0.96334 (15)0.0661 (7)
H1A0.654 (3)0.7512 (12)0.9490 (19)0.099*
H1B0.694 (3)0.8260 (8)0.9486 (19)0.099*
O20.9471 (3)0.69444 (15)0.92087 (15)0.0823 (8)
H2A0.879 (3)0.719 (2)0.9382 (16)0.123*
H2B0.943 (4)0.701 (2)0.8775 (6)0.123*
O30.7061 (3)0.61811 (12)0.72477 (16)0.0778 (8)
H3A0.777 (3)0.6395 (18)0.7419 (18)0.117*
H3B0.673 (4)0.6445 (18)0.6918 (15)0.117*
O40.9378 (2)0.70073 (12)0.77552 (15)0.0677 (7)
H4A1.004 (2)0.6707 (13)0.7666 (19)0.102*
H4B0.960 (3)0.7445 (8)0.762 (2)0.102*
O50.6322 (3)0.69516 (15)0.60102 (15)0.0821 (8)
H5A0.558 (3)0.719 (2)0.6101 (18)0.123*
H5B0.648 (4)0.701 (2)0.5583 (8)0.123*
O60.4062 (2)0.78247 (12)0.60995 (15)0.0728 (8)
H6A0.341 (3)0.7504 (13)0.606 (2)0.109*
H6B0.375 (3)0.8260 (8)0.600 (2)0.109*
N10.2572 (2)0.41842 (13)0.91734 (13)0.0467 (7)
N20.2565 (2)0.49602 (13)0.91358 (13)0.0471 (7)
N30.0433 (2)0.45570 (11)0.91796 (12)0.0364 (6)
N40.1588 (2)0.52262 (11)0.91983 (11)0.0339 (6)
N50.3497 (2)0.59867 (12)0.92021 (12)0.0386 (6)
N60.3602 (3)0.72068 (13)0.92221 (15)0.0541 (8)
N70.4924 (2)0.69199 (13)0.91984 (15)0.0578 (8)
N80.0804 (2)0.83897 (12)0.74510 (14)0.0474 (7)
N90.0826 (2)0.91653 (12)0.74574 (13)0.0448 (7)
N100.2947 (2)0.87465 (11)0.75369 (12)0.0352 (6)
N110.4984 (2)0.94024 (11)0.75457 (12)0.0337 (6)
N120.6900 (2)1.01533 (11)0.75413 (12)0.0362 (6)
N130.7018 (2)1.13674 (13)0.74646 (13)0.0490 (7)
N140.8339 (2)1.10798 (13)0.74444 (13)0.0477 (7)
N150.4265 (2)0.41749 (12)0.57083 (13)0.0453 (7)
N160.4285 (2)0.49419 (12)0.58098 (13)0.0444 (7)
N170.6411 (2)0.45391 (11)0.57956 (12)0.0339 (6)
N180.8443 (2)0.52004 (12)0.58430 (12)0.0355 (6)
N191.0366 (2)0.59472 (12)0.58859 (12)0.0391 (6)
N201.0484 (3)0.71698 (13)0.58745 (16)0.0625 (8)
N211.1808 (3)0.68779 (14)0.58657 (14)0.0560 (8)
C10.1310 (3)0.39664 (15)0.92001 (16)0.0433 (8)
H10.10340.34700.92300.052*
C20.1282 (3)0.51609 (15)0.91468 (15)0.0419 (8)
H20.09810.56530.91340.050*
C30.1020 (3)0.45514 (14)0.91807 (15)0.0352 (7)
C40.1745 (3)0.38948 (15)0.91611 (16)0.0484 (9)
H40.13040.34340.91500.058*
C50.3165 (3)0.39510 (16)0.91587 (18)0.0543 (9)
H50.36980.35210.91450.065*
C60.3790 (3)0.46336 (14)0.91766 (16)0.0470 (9)
H60.47430.46790.91780.056*
C70.2948 (3)0.52521 (14)0.91926 (14)0.0344 (7)
C80.2778 (3)0.66368 (15)0.92221 (16)0.0462 (8)
H80.18240.66690.92340.055*
C90.4838 (3)0.61994 (16)0.91853 (16)0.0486 (9)
H90.55830.58750.91670.058*
C100.2067 (3)0.81618 (15)0.74954 (16)0.0457 (8)
H100.23340.76630.74980.055*
C110.2113 (3)0.93586 (15)0.75085 (14)0.0398 (7)
H110.24240.98490.75240.048*
C120.4406 (2)0.87350 (14)0.75887 (14)0.0334 (7)
C130.5117 (3)0.80762 (15)0.76775 (16)0.0452 (8)
H130.46660.76200.77050.054*
C140.6524 (3)0.81262 (15)0.77231 (17)0.0488 (9)
H140.70460.76960.77870.059*
C150.7168 (3)0.88044 (15)0.76760 (16)0.0430 (8)
H150.81220.88450.76980.052*
C160.6338 (3)0.94236 (14)0.75953 (14)0.0347 (7)
C170.6190 (3)1.08051 (15)0.75224 (16)0.0437 (8)
H170.52381.08430.75480.052*
C180.8236 (3)1.03616 (15)0.74905 (15)0.0426 (8)
H180.89761.00330.74890.051*
C190.5535 (3)0.39572 (15)0.57048 (16)0.0436 (8)
H190.58100.34650.56470.052*
C200.5561 (3)0.51389 (15)0.58591 (15)0.0408 (8)
H200.58610.56260.59290.049*
C210.7878 (3)0.45277 (14)0.58206 (14)0.0326 (7)
C220.8581 (3)0.38678 (15)0.58217 (15)0.0401 (8)
H220.81290.34110.58040.048*
C230.9995 (3)0.39140 (15)0.58510 (16)0.0443 (8)
H231.05200.34800.58540.053*
C241.0638 (3)0.45981 (15)0.58760 (15)0.0413 (8)
H241.15920.46390.58960.050*
C250.9809 (3)0.52181 (14)0.58709 (15)0.0358 (7)
C260.9662 (3)0.66025 (16)0.58895 (18)0.0559 (10)
H260.87090.66390.59010.067*
C271.1704 (3)0.61615 (16)0.58718 (16)0.0482 (8)
H271.24460.58350.58670.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0398 (13)0.0492 (13)0.109 (2)0.0011 (10)0.0098 (13)0.0046 (14)
O20.0740 (18)0.0638 (16)0.109 (2)0.0206 (13)0.0131 (17)0.0014 (18)
O30.0645 (17)0.0626 (16)0.106 (3)0.0161 (13)0.0046 (15)0.0018 (15)
O40.0360 (13)0.0498 (13)0.118 (2)0.0005 (10)0.0105 (13)0.0040 (15)
O50.0698 (18)0.0691 (17)0.107 (2)0.0234 (14)0.0024 (16)0.0062 (18)
O60.0393 (13)0.0498 (13)0.129 (2)0.0028 (10)0.0090 (14)0.0066 (16)
N10.0353 (15)0.0441 (15)0.061 (2)0.0023 (12)0.0029 (13)0.0056 (13)
N20.0373 (15)0.0420 (15)0.062 (2)0.0040 (11)0.0004 (13)0.0034 (13)
N30.0310 (13)0.0298 (12)0.0484 (18)0.0015 (11)0.0026 (11)0.0044 (11)
N40.0298 (13)0.0309 (12)0.0412 (17)0.0004 (10)0.0012 (11)0.0022 (11)
N50.0317 (13)0.0319 (13)0.0520 (18)0.0016 (10)0.0013 (12)0.0042 (11)
N60.0444 (16)0.0377 (14)0.080 (2)0.0068 (12)0.0027 (14)0.0004 (14)
N70.0389 (16)0.0442 (16)0.090 (2)0.0045 (12)0.0004 (15)0.0004 (15)
N80.0336 (14)0.0402 (14)0.068 (2)0.0001 (11)0.0041 (13)0.0020 (13)
N90.0315 (14)0.0442 (15)0.0587 (19)0.0024 (11)0.0030 (12)0.0008 (13)
N100.0274 (12)0.0296 (12)0.0487 (17)0.0001 (10)0.0022 (11)0.0013 (11)
N110.0267 (12)0.0322 (12)0.0421 (16)0.0026 (10)0.0008 (10)0.0003 (11)
N120.0276 (12)0.0301 (12)0.0509 (18)0.0025 (10)0.0005 (11)0.0002 (12)
N130.0429 (15)0.0376 (14)0.067 (2)0.0027 (12)0.0027 (13)0.0070 (13)
N140.0407 (15)0.0441 (15)0.058 (2)0.0089 (12)0.0003 (13)0.0015 (13)
N150.0320 (14)0.0385 (14)0.065 (2)0.0043 (11)0.0005 (13)0.0064 (13)
N160.0321 (14)0.0437 (15)0.058 (2)0.0009 (11)0.0023 (12)0.0012 (13)
N170.0287 (12)0.0302 (12)0.0429 (17)0.0002 (10)0.0000 (11)0.0018 (11)
N180.0299 (13)0.0345 (13)0.0423 (17)0.0015 (10)0.0019 (11)0.0015 (11)
N190.0303 (13)0.0348 (13)0.0522 (18)0.0024 (11)0.0019 (12)0.0010 (12)
N200.0495 (17)0.0432 (16)0.095 (3)0.0043 (14)0.0004 (16)0.0010 (15)
N210.0435 (16)0.0473 (16)0.077 (2)0.0086 (13)0.0016 (14)0.0052 (15)
C10.0402 (17)0.0327 (16)0.057 (2)0.0018 (14)0.0015 (15)0.0022 (15)
C20.0384 (17)0.0344 (16)0.053 (2)0.0030 (14)0.0020 (15)0.0015 (15)
C30.0323 (16)0.0302 (15)0.043 (2)0.0007 (12)0.0024 (14)0.0019 (13)
C40.0411 (18)0.0290 (16)0.075 (3)0.0002 (13)0.0042 (17)0.0064 (15)
C50.0389 (18)0.0368 (17)0.087 (3)0.0104 (14)0.0042 (17)0.0047 (17)
C60.0314 (16)0.0366 (17)0.073 (3)0.0040 (13)0.0050 (16)0.0012 (16)
C70.0360 (16)0.0276 (14)0.039 (2)0.0016 (12)0.0019 (14)0.0005 (13)
C80.0403 (18)0.0357 (17)0.063 (2)0.0020 (14)0.0007 (16)0.0036 (16)
C90.0364 (17)0.0409 (18)0.068 (3)0.0007 (14)0.0032 (16)0.0034 (16)
C100.0327 (17)0.0329 (16)0.072 (3)0.0004 (13)0.0010 (16)0.0039 (15)
C110.0348 (17)0.0376 (16)0.047 (2)0.0049 (13)0.0031 (14)0.0011 (14)
C120.0251 (14)0.0335 (15)0.041 (2)0.0015 (12)0.0003 (13)0.0058 (13)
C130.0380 (17)0.0311 (15)0.066 (2)0.0011 (13)0.0020 (16)0.0004 (15)
C140.0388 (18)0.0360 (17)0.071 (3)0.0123 (13)0.0063 (16)0.0029 (16)
C150.0273 (15)0.0428 (17)0.059 (2)0.0034 (13)0.0029 (14)0.0045 (16)
C160.0302 (16)0.0332 (15)0.041 (2)0.0008 (12)0.0011 (13)0.0064 (14)
C170.0350 (16)0.0382 (17)0.058 (2)0.0014 (14)0.0019 (15)0.0013 (15)
C180.0334 (17)0.0452 (18)0.049 (2)0.0012 (14)0.0000 (15)0.0014 (16)
C190.0383 (17)0.0314 (15)0.061 (2)0.0043 (13)0.0044 (15)0.0010 (15)
C200.0377 (17)0.0342 (16)0.051 (2)0.0031 (14)0.0024 (15)0.0023 (15)
C210.0273 (15)0.0339 (15)0.0368 (19)0.0003 (12)0.0017 (13)0.0016 (13)
C220.0384 (17)0.0305 (15)0.051 (2)0.0015 (13)0.0012 (15)0.0026 (14)
C230.0401 (18)0.0321 (16)0.061 (2)0.0073 (13)0.0020 (16)0.0006 (15)
C240.0238 (15)0.0435 (17)0.057 (2)0.0048 (13)0.0017 (14)0.0008 (15)
C250.0342 (16)0.0325 (15)0.041 (2)0.0018 (13)0.0011 (14)0.0011 (14)
C260.0396 (18)0.0373 (18)0.091 (3)0.0021 (15)0.0006 (18)0.0027 (18)
C270.0360 (18)0.0460 (19)0.062 (2)0.0037 (14)0.0041 (16)0.0043 (16)
Geometric parameters (Å, º) top
O1—H1A0.857 (10)N17—C201.363 (3)
O1—H1B0.859 (10)N17—C211.425 (3)
O2—H2A0.868 (10)N18—C211.325 (3)
O2—H2B0.858 (10)N18—C251.329 (3)
O3—H3A0.854 (10)N19—C271.357 (3)
O3—H3B0.856 (10)N19—C261.359 (3)
O4—H4A0.861 (10)N19—C251.414 (3)
O4—H4B0.856 (10)N20—C261.294 (3)
O5—H5A0.868 (10)N20—N211.390 (3)
O5—H5B0.861 (10)N21—C271.288 (3)
O6—H6A0.861 (10)C1—H10.9300
O6—H6B0.858 (10)C2—H20.9300
N1—C11.288 (3)C3—C41.373 (3)
N1—N21.393 (3)C4—C51.384 (4)
N2—C21.298 (3)C4—H40.9300
N3—C11.360 (3)C5—C61.366 (4)
N3—C21.361 (3)C5—H50.9300
N3—C31.413 (3)C6—C71.379 (3)
N4—C71.323 (3)C6—H60.9300
N4—C31.329 (3)C8—H80.9300
N5—C91.359 (3)C9—H90.9300
N5—C81.359 (3)C10—H100.9300
N5—C71.421 (3)C11—H110.9300
N6—C81.298 (3)C12—C131.377 (3)
N6—N71.386 (3)C13—C141.371 (4)
N7—C91.294 (3)C13—H130.9300
N8—C101.295 (3)C14—C151.371 (4)
N8—N91.390 (3)C14—H140.9300
N9—C111.300 (3)C15—C161.379 (3)
N10—C101.354 (3)C15—H150.9300
N10—C111.364 (3)C17—H170.9300
N10—C121.420 (3)C18—H180.9300
N11—C161.318 (3)C19—H190.9300
N11—C121.325 (3)C20—H200.9300
N12—C181.357 (3)C21—C221.366 (3)
N12—C171.357 (3)C22—C231.377 (4)
N12—C161.422 (3)C22—H220.9300
N13—C171.296 (3)C23—C241.376 (4)
N13—N141.385 (3)C23—H230.9300
N14—C181.294 (3)C24—C251.373 (3)
N15—C191.295 (3)C24—H240.9300
N15—N161.389 (3)C26—H260.9300
N16—C201.291 (3)C27—H270.9300
N17—C191.356 (3)
H1A—O1—H1B108.9 (16)N6—C8—N5110.9 (3)
H2A—O2—H2B107.5 (16)N6—C8—H8124.5
H3A—O3—H3B109.4 (16)N5—C8—H8124.5
H4A—O4—H4B108.5 (16)N7—C9—N5109.9 (2)
H5A—O5—H5B107.8 (16)N7—C9—H9125.0
H6A—O6—H6B109.3 (16)N5—C9—H9125.0
C1—N1—N2107.4 (2)N8—C10—N10110.9 (2)
C2—N2—N1106.4 (2)N8—C10—H10124.6
C1—N3—C2103.9 (2)N10—C10—H10124.6
C1—N3—C3128.4 (2)N9—C11—N10111.0 (2)
C2—N3—C3127.6 (2)N9—C11—H11124.5
C7—N4—C3116.5 (2)N10—C11—H11124.5
C9—N5—C8104.7 (2)N11—C12—C13124.7 (2)
C9—N5—C7128.3 (2)N11—C12—N10114.0 (2)
C8—N5—C7127.0 (2)C13—C12—N10121.3 (2)
C8—N6—N7106.3 (2)C14—C13—C12116.7 (3)
C9—N7—N6108.1 (2)C14—C13—H13121.7
C10—N8—N9107.5 (2)C12—C13—H13121.7
C11—N9—N8106.4 (2)C13—C14—C15120.7 (3)
C10—N10—C11104.2 (2)C13—C14—H14119.7
C10—N10—C12128.4 (2)C15—C14—H14119.7
C11—N10—C12127.3 (2)C14—C15—C16117.0 (3)
C16—N11—C12116.5 (2)C14—C15—H15121.5
C18—N12—C17104.4 (2)C16—C15—H15121.5
C18—N12—C16128.9 (2)N11—C16—C15124.5 (2)
C17—N12—C16126.7 (2)N11—C16—N12113.9 (2)
C17—N13—N14106.9 (2)C15—C16—N12121.6 (2)
C18—N14—N13107.2 (2)N13—C17—N12110.8 (2)
C19—N15—N16106.8 (2)N13—C17—H17124.6
C20—N16—N15107.0 (2)N12—C17—H17124.6
C19—N17—C20103.8 (2)N14—C18—N12110.7 (2)
C19—N17—C21128.2 (2)N14—C18—H18124.6
C20—N17—C21128.0 (2)N12—C18—H18124.6
C21—N18—C25115.9 (2)N15—C19—N17111.4 (2)
C27—N19—C26103.8 (2)N15—C19—H19124.3
C27—N19—C25128.9 (2)N17—C19—H19124.3
C26—N19—C25127.3 (2)N16—C20—N17111.2 (2)
C26—N20—N21106.1 (2)N16—C20—H20124.4
C27—N21—N20107.6 (2)N17—C20—H20124.4
N1—C1—N3111.1 (2)N18—C21—C22125.5 (2)
N1—C1—H1124.4N18—C21—N17113.7 (2)
N3—C1—H1124.4C22—C21—N17120.9 (2)
N2—C2—N3111.2 (2)C21—C22—C23116.6 (3)
N2—C2—H2124.4C21—C22—H22121.7
N3—C2—H2124.4C23—C22—H22121.7
N4—C3—C4124.6 (2)C24—C23—C22120.5 (3)
N4—C3—N3114.1 (2)C24—C23—H23119.8
C4—C3—N3121.3 (2)C22—C23—H23119.8
C3—C4—C5116.8 (3)C25—C24—C23117.0 (2)
C3—C4—H4121.6C25—C24—H24121.5
C5—C4—H4121.6C23—C24—H24121.5
C6—C5—C4120.6 (3)N18—C25—C24124.6 (2)
C6—C5—H5119.7N18—C25—N19113.9 (2)
C4—C5—H5119.7C24—C25—N19121.6 (2)
C5—C6—C7117.1 (3)N20—C26—N19111.6 (3)
C5—C6—H6121.4N20—C26—H26124.2
C7—C6—H6121.4N19—C26—H26124.2
N4—C7—C6124.5 (2)N21—C27—N19111.0 (3)
N4—C7—N5114.0 (2)N21—C27—H27124.5
C6—C7—N5121.5 (2)N19—C27—H27124.5
C1—N1—N2—C20.4 (3)N11—C12—C13—C140.0 (5)
C8—N6—N7—C90.0 (4)N10—C12—C13—C14179.9 (3)
C10—N8—N9—C110.2 (3)C12—C13—C14—C150.5 (5)
C17—N13—N14—C180.0 (3)C13—C14—C15—C161.2 (5)
C19—N15—N16—C200.2 (3)C12—N11—C16—C151.1 (4)
C26—N20—N21—C270.4 (4)C12—N11—C16—N12179.6 (2)
N2—N1—C1—N30.3 (3)C14—C15—C16—N111.6 (5)
C2—N3—C1—N10.8 (3)C14—C15—C16—N12180.0 (3)
C3—N3—C1—N1178.3 (3)C18—N12—C16—N11171.5 (3)
N1—N2—C2—N30.9 (3)C17—N12—C16—N117.8 (4)
C1—N3—C2—N21.1 (3)C18—N12—C16—C157.1 (5)
C3—N3—C2—N2178.1 (3)C17—N12—C16—C15173.7 (3)
C7—N4—C3—C40.4 (4)N14—N13—C17—N120.0 (3)
C7—N4—C3—N3179.3 (2)C18—N12—C17—N130.0 (3)
C1—N3—C3—N4176.2 (3)C16—N12—C17—N13179.4 (3)
C2—N3—C3—N44.9 (4)N13—N14—C18—N120.0 (3)
C1—N3—C3—C44.2 (5)C17—N12—C18—N140.0 (3)
C2—N3—C3—C4174.7 (3)C16—N12—C18—N14179.4 (3)
N4—C3—C4—C50.1 (5)N16—N15—C19—N170.3 (3)
N3—C3—C4—C5179.5 (3)C20—N17—C19—N150.3 (3)
C3—C4—C5—C60.1 (5)C21—N17—C19—N15179.8 (3)
C4—C5—C6—C70.4 (5)N15—N16—C20—N170.0 (3)
C3—N4—C7—C60.7 (4)C19—N17—C20—N160.2 (3)
C3—N4—C7—N5179.1 (2)C21—N17—C20—N16180.0 (3)
C5—C6—C7—N40.7 (5)C25—N18—C21—C220.2 (4)
C5—C6—C7—N5179.1 (3)C25—N18—C21—N17179.6 (2)
C9—N5—C7—N4178.5 (3)C19—N17—C21—N18173.2 (3)
C8—N5—C7—N40.6 (4)C20—N17—C21—N187.0 (4)
C9—N5—C7—C61.3 (5)C19—N17—C21—C227.0 (5)
C8—N5—C7—C6179.6 (3)C20—N17—C21—C22172.9 (3)
N7—N6—C8—N50.2 (4)N18—C21—C22—C230.2 (5)
C9—N5—C8—N60.4 (4)N17—C21—C22—C23179.6 (3)
C7—N5—C8—N6179.7 (3)C21—C22—C23—C240.1 (5)
N6—N7—C9—N50.2 (4)C22—C23—C24—C250.0 (5)
C8—N5—C9—N70.4 (4)C21—N18—C25—C240.1 (4)
C7—N5—C9—N7179.7 (3)C21—N18—C25—N19179.3 (2)
N9—N8—C10—N100.5 (4)C23—C24—C25—N180.1 (5)
C11—N10—C10—N80.5 (3)C23—C24—C25—N19179.1 (3)
C12—N10—C10—N8179.7 (3)C27—N19—C25—N18175.5 (3)
N8—N9—C11—N100.0 (3)C26—N19—C25—N181.5 (4)
C10—N10—C11—N90.3 (3)C27—N19—C25—C243.7 (5)
C12—N10—C11—N9179.5 (3)C26—N19—C25—C24179.3 (3)
C16—N11—C12—C130.3 (4)N21—N20—C26—N190.5 (4)
C16—N11—C12—N10179.6 (2)C27—N19—C26—N200.4 (4)
C10—N10—C12—N11173.0 (3)C25—N19—C26—N20177.2 (3)
C11—N10—C12—N116.0 (4)N20—N21—C27—N190.1 (4)
C10—N10—C12—C137.1 (5)C26—N19—C27—N210.1 (4)
C11—N10—C12—C13173.8 (3)C25—N19—C27—N21177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N21i0.86 (1)1.95 (1)2.801 (3)172 (3)
O6—H6B···N1ii0.86 (1)2.04 (1)2.878 (3)166 (3)
O5—H5A···O60.87 (1)1.86 (2)2.707 (3)166 (4)
O5—H5B···O1iii0.86 (1)2.01 (1)2.864 (4)171 (4)
O4—H4A···N14iv0.86 (1)1.95 (1)2.808 (3)173 (4)
O4—H4B···N8v0.86 (1)2.09 (2)2.907 (3)160 (3)
O3—H3B···O50.86 (1)2.03 (2)2.868 (4)166 (4)
O3—H3A···O40.85 (1)2.01 (1)2.855 (3)173 (3)
O2—H2B···O40.86 (1)2.00 (1)2.851 (4)172 (4)
O2—H2A···O10.87 (1)2.03 (1)2.886 (3)171 (3)
O1—H1B···N15vi0.86 (1)2.05 (2)2.861 (3)158 (3)
O1—H1A···N70.86 (1)1.97 (1)2.820 (3)171 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+1, y, z; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H7N7·2H2O
Mr249.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)566
a, b, c (Å)9.7211 (17), 17.921 (3), 19.603 (4)
β (°) 91.333 (3)
V3)3414.2 (10)
Z12
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19614, 6030, 3151
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.00
No. of reflections6030
No. of parameters523
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N21i0.861 (10)1.946 (12)2.801 (3)172 (3)
O6—H6B···N1ii0.858 (10)2.038 (14)2.878 (3)166 (3)
O5—H5A···O60.868 (10)1.856 (15)2.707 (3)166 (4)
O5—H5B···O1iii0.861 (10)2.011 (12)2.864 (4)171 (4)
O4—H4A···N14iv0.861 (10)1.951 (11)2.808 (3)173 (4)
O4—H4B···N8v0.856 (10)2.089 (16)2.907 (3)160 (3)
O3—H3B···O50.856 (10)2.029 (15)2.868 (4)166 (4)
O3—H3A···O40.854 (10)2.006 (12)2.855 (3)173 (3)
O2—H2B···O40.858 (10)1.999 (12)2.851 (4)172 (4)
O2—H2A···O10.868 (10)2.026 (13)2.886 (3)171 (3)
O1—H1B···N15vi0.859 (10)2.048 (17)2.861 (3)158 (3)
O1—H1A···N70.857 (10)1.970 (12)2.820 (3)171 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+3/2; (iii) x, y+3/2, z1/2; (iv) x+2, y1/2, z+3/2; (v) x+1, y, z; (vi) x+1, y+1/2, z+3/2.
 

Acknowledgements

This work was supported financially by Tianjin Normal University (grant No. 5RL090), the Natural Science Foundation of Tianjin (grant No. 11JCYBJC03600) and the Young Scientist Fund (grant No. 52 G10005).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131–185.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiley, R. H. & Hart, A. J. (1953). J. Org. Chem. 18, 1368–1371.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds