organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Tri­fluoro­methyl-1H-benzimidazol-3-ium perchlorate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 14 September 2011; accepted 25 September 2011; online 5 October 2011)

In the title salt, C8H6F3N2+·ClO4, the atoms of the benzimidazole ring (including H atoms) are nearly coplanar (r.m.s. deviation of the fitted atoms = 0.0122 Å) and the triflouromethyl group lies out of this plane. The perchlorate anion adopts a distorted tetra­hedral conformation with the Cl—O bond distances ranging from 1.412 (3) to 1.439 (2) Å. The benzimidazolium cations are linked to adjacent anions by inter­molecular N—H⋯O hydrogen bonds, forming chains.

Related literature

For background to mol­ecular–ionic compounds, see: Yu et al. (2004[Yu, W. Y., Zhou, Z. M., Zhou, X. Q. & Yu, C. X. (2004). J. Chem. Crystallogr. pp. 597-601.]); Chen et al. (2009[Chen, M. W., Zhang, X. G., Zhong, X. G. & Hu, M. L. (2009). Synthesis, pp. 1431-1436.]); Ge et al. (2007[Ge, F. L., Wang, Z. X., Wan, W., Liu, W. C. & Hao, L. (2007). Tetrahedron Lett. 48, 3251-3254.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6F3N2+·ClO4

  • Mr = 286.60

  • Triclinic, [P \overline 1]

  • a = 7.6274 (15) Å

  • b = 9.0614 (18) Å

  • c = 9.3838 (19) Å

  • α = 61.80 (3)°

  • β = 81.98 (3)°

  • γ = 75.85 (3)°

  • V = 554.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.971

  • 5756 measured reflections

  • 2535 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.04

  • 2535 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.05 2.891 (3) 164
N1—H1A⋯O3 0.86 2.59 3.254 (4) 135
N2—H2A⋯O1i 0.86 1.98 2.822 (3) 167
Symmetry code: (i) x, y-1, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some interesting physical properties of simple molecular–ionic crystals containing organic cations and anions have been discussed by several authors (Yu et al., 2004; Chen et al., 2009; Ge et al., 2007).

The asymmetric unit of the present compound , C8H6N2H6F3+ ClO4- consists of one 2-trifluoromethyl-1H-benzimidazole cation and one perchlorate anion, Figure 1.

The atoms of the benzimidazole ring (including the H atoms) are nearly co-planar with a rms deviation of the fitted atoms of 0.0122Å. Atom C8 lies out of this plane. The perchlorate anion is a distorted tetrahedron, the average C—O bond distances range from 1.412 (3)Å to 1.439 (2)Å, the O—C—O angles range from 107.71 (17)° to 110.65 (15)°.

The 2-trifluoromethyl-1H-benzimidazole cations are linked to adjacent anions by intermolecular N-H···O hydrogen bonds to form chains, Table 1, Figure 2. The hydrogen bond involving N2-H2A is a three-centre contact to atoms O2 and O3 in which the H2A···O2, 2.05Å, is shorter than the H2A···O3, 2.59Å with the angles at H2A being 164° and 137° respectively. Centrosymmetrically related chains run through each unit cell and these are linked into ribbons by a ππ interaction between the phenyl rings, Cg1···Cg1(-x,1-y,1-z), 4.039 (2)Å, perpendicular distance between rings, 3.5948 (14)Å and slippage, 1.841Å. These ribbons run perpendicular to the a-axis.

.

Related literature top

For background to molecular–ionic compounds, see: Yu et al. (2004); Chen et al. (2009); Ge et al. (2007).

Experimental top

0.144 g(1 mmol) of 2-trifluoromethyl-1H-benzimidazole was firstly dissolved in 30 ml methanol, to which 0.1 g (1 mmol) of perchloric acid was added to give a solution without any precipitate while stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 2 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

The asymmetric unit was selected to form a hydrogen-bonded unit. H atoms attached to C atoms were placed in calculated positions with C—H = 0.93Å with Uiso = 1.2Ueq and allowed to ride. The H atoms attached to the N atoms were located on a difference map. The N—H distances were restrained to 0.86Å and refined as riding atoms with Uiso = 1.2Ueq in the final cycles of refinement. The 2 0 0 reflection was omitted from the refinement because of extinction.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound showing the ππ linked cation-anion hydrogen-bonded ribbons. Hydrogen atoms not involved in the motifs are not included.
2-Trifluoromethyl-1H-benzimidazol-3-ium perchlorate top
Crystal data top
C8H6F3N2+·ClO4V = 554.0 (3) Å3
Mr = 286.60Z = 2
Triclinic, P1F(000) = 288
Hall symbol: -P 1Dx = 1.718 Mg m3
a = 7.6274 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0614 (18) Åθ = 3.4–26°
c = 9.3838 (19) ŵ = 0.40 mm1
α = 61.80 (3)°T = 293 K
β = 81.98 (3)°Block, colourless
γ = 75.85 (3)°0.36 × 0.32 × 0.28 mm
Data collection top
Rigaku Mercury2
diffractometer
2535 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 99
Tmin = 0.963, Tmax = 0.971k = 1111
5756 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.384P]
where P = (Fo2 + 2Fc2)/3
2535 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C8H6F3N2+·ClO4γ = 75.85 (3)°
Mr = 286.60V = 554.0 (3) Å3
Triclinic, P1Z = 2
a = 7.6274 (15) ÅMo Kα radiation
b = 9.0614 (18) ŵ = 0.40 mm1
c = 9.3838 (19) ÅT = 293 K
α = 61.80 (3)°0.36 × 0.32 × 0.28 mm
β = 81.98 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2535 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1980 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.026
5756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
2535 reflectionsΔρmin = 0.34 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3287 (4)0.0295 (2)0.1487 (2)0.0793 (7)
F20.4027 (3)0.2471 (3)0.0564 (2)0.0697 (6)
F30.1269 (3)0.2305 (3)0.0094 (3)0.0791 (7)
N10.2447 (3)0.4517 (3)0.1052 (3)0.0430 (5)
H1A0.23750.52490.00450.052*
N20.2695 (3)0.2099 (3)0.3226 (2)0.0379 (5)
H2A0.28020.10200.38520.046*
C10.2548 (3)0.3343 (3)0.3721 (3)0.0374 (5)
C20.2378 (4)0.4892 (3)0.2328 (3)0.0395 (6)
C30.2214 (4)0.6432 (4)0.2384 (4)0.0534 (7)
H30.20900.74760.14530.064*
C40.2248 (5)0.6313 (4)0.3883 (4)0.0603 (8)
H40.21480.73080.39760.072*
C50.2429 (5)0.4748 (4)0.5284 (4)0.0593 (8)
H50.24480.47370.62770.071*
C60.2577 (4)0.3237 (4)0.5248 (3)0.0510 (7)
H60.26910.21990.61850.061*
C70.2639 (3)0.2848 (3)0.1636 (3)0.0376 (5)
C80.2812 (4)0.1957 (4)0.0614 (3)0.0483 (7)
Cl10.21788 (9)0.83165 (8)0.28977 (7)0.0426 (2)
O10.3244 (3)0.8661 (3)0.4364 (2)0.0571 (6)
O20.1589 (4)0.6730 (3)0.2310 (3)0.0692 (7)
O30.3197 (4)0.8220 (5)0.1699 (3)0.0965 (10)
O40.0612 (4)0.9641 (3)0.3218 (3)0.0806 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.131 (2)0.0469 (11)0.0617 (12)0.0124 (11)0.0017 (12)0.0287 (9)
F20.0740 (13)0.0940 (15)0.0507 (10)0.0281 (11)0.0205 (9)0.0414 (10)
F30.0649 (12)0.1233 (19)0.0777 (14)0.0174 (12)0.0104 (10)0.0676 (14)
N10.0551 (13)0.0378 (11)0.0265 (10)0.0127 (10)0.0002 (9)0.0058 (9)
N20.0466 (12)0.0319 (10)0.0273 (10)0.0068 (9)0.0029 (9)0.0071 (8)
C10.0396 (13)0.0364 (13)0.0318 (12)0.0081 (10)0.0015 (10)0.0118 (10)
C20.0442 (14)0.0383 (13)0.0316 (12)0.0115 (11)0.0005 (10)0.0112 (10)
C30.068 (2)0.0385 (14)0.0502 (17)0.0166 (14)0.0008 (14)0.0149 (13)
C40.076 (2)0.0521 (18)0.065 (2)0.0212 (16)0.0012 (17)0.0337 (16)
C50.076 (2)0.068 (2)0.0453 (16)0.0156 (17)0.0024 (15)0.0339 (16)
C60.0646 (18)0.0515 (16)0.0323 (13)0.0109 (14)0.0049 (12)0.0149 (12)
C70.0389 (13)0.0394 (13)0.0291 (12)0.0098 (10)0.0010 (10)0.0111 (10)
C80.0560 (17)0.0536 (16)0.0374 (14)0.0143 (13)0.0025 (12)0.0219 (13)
Cl10.0500 (4)0.0392 (3)0.0302 (3)0.0106 (3)0.0028 (2)0.0079 (2)
O10.0636 (13)0.0512 (12)0.0351 (10)0.0059 (10)0.0047 (9)0.0067 (9)
O20.0965 (18)0.0503 (13)0.0569 (14)0.0310 (12)0.0130 (13)0.0178 (11)
O30.091 (2)0.158 (3)0.0524 (14)0.057 (2)0.0063 (14)0.0410 (17)
O40.0728 (16)0.0586 (15)0.0820 (18)0.0036 (12)0.0105 (14)0.0207 (13)
Geometric parameters (Å, º) top
F1—C81.312 (4)C3—C41.363 (4)
F2—C81.317 (3)C3—H30.9300
F3—C81.328 (4)C4—C51.397 (5)
N1—C71.318 (3)C4—H40.9300
N1—C21.382 (3)C5—C61.362 (4)
N1—H1A0.86C5—H50.9300
N2—C71.318 (3)C6—H60.9300
N2—C11.385 (3)C7—C81.495 (4)
N2—H2A0.86Cl1—O31.412 (3)
C1—C21.385 (3)Cl1—O41.420 (3)
C1—C61.393 (4)Cl1—O11.434 (2)
C2—C31.395 (4)Cl1—O21.439 (2)
C7—N1—C2108.6 (2)C4—C5—H5118.8
C7—N1—H1A125.7C5—C6—C1115.8 (3)
C2—N1—H1A125.8C5—C6—H6122.1
C7—N2—C1108.5 (2)C1—C6—H6122.1
C7—N2—H2A125.8N2—C7—N1110.3 (2)
C1—N2—H2A125.7N2—C7—C8125.6 (2)
N2—C1—C2106.3 (2)N1—C7—C8124.1 (2)
N2—C1—C6131.7 (2)F1—C8—F2108.7 (3)
C2—C1—C6121.9 (3)F1—C8—F3108.6 (3)
N1—C2—C1106.3 (2)F2—C8—F3106.2 (2)
N1—C2—C3132.0 (2)F1—C8—C7110.7 (2)
C1—C2—C3121.6 (3)F2—C8—C7111.0 (2)
C4—C3—C2116.0 (3)F3—C8—C7111.4 (2)
C4—C3—H3122.0O3—Cl1—O4110.0 (2)
C2—C3—H3122.0O3—Cl1—O1110.25 (16)
C3—C4—C5122.2 (3)O4—Cl1—O1109.06 (15)
C3—C4—H4118.9O3—Cl1—O2109.08 (18)
C5—C4—H4118.9O4—Cl1—O2107.71 (17)
C6—C5—C4122.4 (3)O1—Cl1—O2110.65 (15)
C6—C5—H5118.8
C7—N2—C1—C20.7 (3)N2—C1—C6—C5178.7 (3)
C7—N2—C1—C6178.2 (3)C2—C1—C6—C50.0 (4)
C7—N1—C2—C10.2 (3)C1—N2—C7—N10.6 (3)
C7—N1—C2—C3179.0 (3)C1—N2—C7—C8178.0 (2)
N2—C1—C2—N10.5 (3)C2—N1—C7—N20.2 (3)
C6—C1—C2—N1178.5 (3)C2—N1—C7—C8178.4 (2)
N2—C1—C2—C3179.4 (2)N2—C7—C8—F19.0 (4)
C6—C1—C2—C30.5 (4)N1—C7—C8—F1169.4 (3)
N1—C2—C3—C4178.0 (3)N2—C7—C8—F2129.8 (3)
C1—C2—C3—C40.6 (4)N1—C7—C8—F248.6 (4)
C2—C3—C4—C50.2 (5)N2—C7—C8—F3112.1 (3)
C3—C4—C5—C60.2 (6)N1—C7—C8—F369.5 (3)
C4—C5—C6—C10.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.052.891 (3)164
N1—H1A···O30.862.593.254 (4)135
N2—H2A···O1i0.861.982.822 (3)167
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC8H6F3N2+·ClO4
Mr286.60
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6274 (15), 9.0614 (18), 9.3838 (19)
α, β, γ (°)61.80 (3), 81.98 (3), 75.85 (3)
V3)554.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5756, 2535, 1980
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.04
No. of reflections2535
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.052.891 (3)164
N1—H1A···O30.862.593.254 (4)135
N2—H2A···O1i0.861.982.822 (3)167
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

The author thanks an anonymous referee from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationChen, M. W., Zhang, X. G., Zhong, X. G. & Hu, M. L. (2009). Synthesis, pp. 1431-1436.  Google Scholar
First citationGe, F. L., Wang, Z. X., Wan, W., Liu, W. C. & Hao, L. (2007). Tetrahedron Lett. 48, 3251–3254.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, W. Y., Zhou, Z. M., Zhou, X. Q. & Yu, C. X. (2004). J. Chem. Crystallogr. pp. 597-601.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds