metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Di­chlorido{N-[2-(di­phenylphosphanyl)benzyl­idene]-2,6-diiso­propylaniline-κ2P,N}platinum(II)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 23 September 2011; accepted 29 September 2011; online 5 October 2011)

The title compound, [PtCl2(C31H32NP)], is a PtII complex with an NPCl2 coordination sphere in which the PtII atom is coordinated to the imino N and phosphane P atoms of the ligand and to two cis Cl ions, giving a slightly distorted square-planar geometry. The P—Pt—N angle is 89.80 (5)° and the corresponding angle between the Cl ions is 87.92 (2)°.

Related literature

For related structures, see: Chiririwa et al. (2011[Chiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608-m609.]); Ghilardi et al. (1992[Ghilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. 23, 3371-3376.]); Sanchez et al. (1998[Sanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165-169.], 2001[Sanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100-104.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C31H32NP)]

  • Mr = 715.54

  • Monoclinic, P 21 /n

  • a = 12.0686 (7) Å

  • b = 13.4007 (7) Å

  • c = 17.8182 (10) Å

  • β = 105.819 (1)°

  • V = 2772.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.33 mm−1

  • T = 173 K

  • 0.22 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.587, Tmax = 0.746

  • 40326 measured reflections

  • 7788 independent reflections

  • 7035 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.06

  • 7788 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.0421 (18)
Pt1—P1 2.2128 (6)
Pt1—Cl2 2.2901 (6)
Pt1—Cl1 2.3512 (6)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, platinum complexes with iminophosphane ligands of the N-[(2-diphenylphosphanyl)benzylidene]amine type have been used as catalysts (or catalyst precursors) in a variety organic reactions. To the best of our knowledge, no structures have been determined so far, concerning the free ligand -(2-(diphenylphosphanyl)benzylidene) -2,6-diisopropylbenzenamine, where the potentially bidentate ligand is chelated to the metal through the phosphorus and imino nitrogen atoms (Fig. 1). The platinum complex has a distorted square planar geometry with the P–Pt–N angle of 89.80 (5)° and the corresponding angle between the chloride ligands of 87.92 (2)°. Selected bond lengths are given in Table 1.

Related literature top

For related structures, see: Chiririwa et al. (2011); Ghilardi et al. (1992); Sanchez et al. (1998, 2001).

Experimental top

To a dry CH2Cl2 (10 ml) solution of the precursor [Pt(COD)Cl2] was added an equimolar amount of (2-(diphenylphosphanyl)benzylidene) -2,6-diisopropylbenzenamine in CH2Cl2 (10 ml) solution and the reaction was stirred at room temperature for 1 hr. The yellow solution was concentrated under reduced pressure to half volume and the addition of ca 10 ml hexane caused precipitation of the complex, which was filtered off, washed with Et2O and dried under vacuum for 4 hours. Yellow crystals used in the X-ray diffraction studies were grown by slow evaporation of a solution of the compound in a CH2Cl2-hexane solution at room temperature.

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for iPr CH, C—H = 0.95 Å for CH and C—H = 0.98 for Me groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (35% probability displacement ellipsoids).
Dichlorido{N-[2-(diphenylphosphanyl)benzylidene]-2,6- diisopropylaniline-κ2P,N}platinum(II) top
Crystal data top
[PtCl2(C31H32NP)]F(000) = 1408
Mr = 715.54Dx = 1.714 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40326 reflections
a = 12.0686 (7) Åθ = 1.8–29.6°
b = 13.4007 (7) ŵ = 5.33 mm1
c = 17.8182 (10) ÅT = 173 K
β = 105.819 (1)°Diamond, yellow
V = 2772.6 (3) Å30.22 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa DUO APEXII
diffractometer
7788 independent reflections
Radiation source: fine-focus sealed tube7035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
0.5° ϕ scans and ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1616
Tmin = 0.587, Tmax = 0.746k = 1818
40326 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0135P)2 + 1.4942P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.004
7788 reflectionsΔρmax = 0.96 e Å3
326 parametersΔρmin = 0.80 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00096 (7)
Crystal data top
[PtCl2(C31H32NP)]V = 2772.6 (3) Å3
Mr = 715.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0686 (7) ŵ = 5.33 mm1
b = 13.4007 (7) ÅT = 173 K
c = 17.8182 (10) Å0.22 × 0.11 × 0.09 mm
β = 105.819 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
7788 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7035 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.746Rint = 0.051
40326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.06Δρmax = 0.96 e Å3
7788 reflectionsΔρmin = 0.80 e Å3
326 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2007). Crystal to detector distance = 50mm; combination of ϕ and ω scans of 0.5°, 70s per °, 2 iterations.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.471492 (7)0.192010 (6)0.184668 (4)0.01548 (3)
Cl10.62398 (5)0.26159 (4)0.28210 (3)0.02483 (12)
Cl20.42312 (6)0.10259 (4)0.28063 (3)0.02814 (13)
P10.31657 (5)0.13788 (4)0.09630 (3)0.01714 (11)
N10.51653 (16)0.27364 (14)0.10076 (11)0.0182 (4)
C10.5937 (2)0.35990 (16)0.12390 (12)0.0191 (4)
C20.5466 (2)0.45114 (16)0.13757 (13)0.0216 (5)
C30.6216 (2)0.53261 (17)0.15398 (14)0.0267 (5)
H30.59300.59610.16340.032*
C40.7369 (2)0.52253 (18)0.15679 (14)0.0285 (5)
H40.78610.57910.16710.034*
C50.7805 (2)0.43054 (19)0.14464 (13)0.0261 (5)
H50.85980.42450.14710.031*
C60.7099 (2)0.34605 (17)0.12885 (13)0.0210 (4)
C70.4206 (2)0.46235 (18)0.13395 (14)0.0253 (5)
H70.39270.39530.14560.030*
C80.3995 (3)0.5340 (4)0.1941 (3)0.0731 (13)
H8A0.31670.53770.18920.110*
H8B0.42810.60040.18570.110*
H8C0.44000.51040.24650.110*
C90.3502 (3)0.4911 (4)0.0535 (2)0.0679 (13)
H9A0.26920.49770.05310.102*
H9B0.35760.43940.01630.102*
H9C0.37800.55480.03880.102*
C100.7599 (2)0.24529 (18)0.11751 (16)0.0278 (5)
H100.70020.19370.11820.033*
C110.7861 (3)0.2384 (2)0.03825 (18)0.0405 (7)
H11A0.81810.17240.03270.061*
H11B0.84200.29000.03480.061*
H11C0.71490.24820.00350.061*
C120.8663 (3)0.2210 (2)0.18381 (19)0.0381 (7)
H12A0.89640.15560.17460.057*
H12B0.84570.21980.23330.057*
H12C0.92530.27210.18620.057*
C130.4897 (2)0.25884 (16)0.02661 (13)0.0208 (4)
H130.51770.30780.00220.025*
C140.4229 (2)0.17853 (16)0.02034 (13)0.0197 (4)
C150.3459 (2)0.11545 (16)0.00345 (13)0.0186 (4)
C160.2884 (2)0.04182 (18)0.04764 (14)0.0256 (5)
H160.23660.00170.03210.031*
C170.3059 (2)0.03122 (18)0.12132 (14)0.0278 (5)
H170.26620.01950.15550.033*
C180.3803 (2)0.09354 (19)0.14480 (14)0.0279 (5)
H180.39240.08600.19500.033*
C190.4373 (2)0.16743 (19)0.09493 (14)0.0251 (5)
H190.48730.21150.11180.030*
C200.2426 (2)0.02665 (16)0.11437 (13)0.0206 (4)
C210.3064 (2)0.05910 (17)0.14187 (14)0.0257 (5)
H210.38800.05780.15320.031*
C220.2507 (3)0.14614 (19)0.15259 (15)0.0334 (6)
H220.29440.20460.17090.040*
C230.1333 (3)0.1486 (2)0.13708 (17)0.0422 (8)
H230.09560.20810.14550.051*
C240.0704 (3)0.0652 (2)0.10942 (19)0.0446 (8)
H240.01120.06760.09800.053*
C250.1236 (2)0.0233 (2)0.09763 (16)0.0333 (6)
H250.07890.08080.07830.040*
C260.2095 (2)0.23674 (16)0.07734 (13)0.0196 (4)
C270.1482 (2)0.26547 (18)0.00241 (14)0.0251 (5)
H270.16040.23240.04190.030*
C280.0687 (2)0.3433 (2)0.00702 (16)0.0327 (6)
H280.02590.36320.05780.039*
C290.0523 (2)0.39161 (18)0.05787 (16)0.0304 (6)
H290.00140.44490.05120.036*
C300.1133 (2)0.36307 (19)0.13237 (15)0.0278 (5)
H300.10110.39630.17650.033*
C310.1923 (2)0.28549 (19)0.14221 (15)0.0253 (5)
H310.23460.26570.19320.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01852 (5)0.01268 (5)0.01450 (5)0.00153 (3)0.00323 (3)0.00084 (3)
Cl10.0269 (3)0.0241 (3)0.0190 (2)0.0066 (2)0.0012 (2)0.0021 (2)
Cl20.0395 (4)0.0264 (3)0.0181 (2)0.0118 (2)0.0071 (2)0.0031 (2)
P10.0194 (3)0.0156 (2)0.0164 (2)0.0027 (2)0.0048 (2)0.00019 (19)
N10.0191 (10)0.0161 (8)0.0192 (9)0.0034 (7)0.0049 (7)0.0000 (7)
C10.0258 (12)0.0157 (10)0.0152 (9)0.0066 (8)0.0045 (9)0.0002 (7)
C20.0286 (13)0.0181 (10)0.0179 (10)0.0049 (9)0.0060 (9)0.0012 (8)
C30.0395 (15)0.0166 (10)0.0241 (11)0.0061 (10)0.0090 (11)0.0033 (9)
C40.0350 (15)0.0222 (12)0.0256 (12)0.0141 (10)0.0036 (11)0.0019 (9)
C50.0258 (13)0.0296 (12)0.0216 (11)0.0089 (10)0.0039 (9)0.0016 (9)
C60.0239 (12)0.0203 (11)0.0176 (10)0.0046 (9)0.0035 (9)0.0019 (8)
C70.0319 (14)0.0189 (11)0.0281 (12)0.0026 (9)0.0131 (10)0.0020 (9)
C80.050 (2)0.097 (3)0.080 (3)0.003 (2)0.031 (2)0.046 (3)
C90.0313 (19)0.123 (4)0.046 (2)0.002 (2)0.0044 (15)0.037 (2)
C100.0260 (13)0.0217 (11)0.0360 (13)0.0026 (9)0.0090 (11)0.0016 (10)
C110.0454 (18)0.0368 (16)0.0427 (16)0.0022 (13)0.0176 (14)0.0119 (13)
C120.0305 (15)0.0351 (14)0.0480 (17)0.0061 (12)0.0092 (13)0.0092 (13)
C130.0257 (12)0.0183 (10)0.0187 (10)0.0046 (9)0.0064 (9)0.0009 (8)
C140.0230 (12)0.0166 (10)0.0191 (10)0.0004 (8)0.0050 (9)0.0014 (8)
C150.0200 (11)0.0171 (10)0.0181 (10)0.0008 (8)0.0041 (8)0.0014 (8)
C160.0298 (13)0.0209 (11)0.0249 (11)0.0057 (9)0.0057 (10)0.0039 (9)
C170.0357 (15)0.0221 (12)0.0233 (11)0.0017 (10)0.0044 (10)0.0070 (9)
C180.0346 (14)0.0301 (13)0.0188 (11)0.0010 (10)0.0072 (10)0.0049 (9)
C190.0293 (14)0.0269 (11)0.0199 (11)0.0042 (10)0.0082 (10)0.0012 (9)
C200.0245 (12)0.0192 (10)0.0188 (10)0.0076 (9)0.0072 (9)0.0006 (8)
C210.0313 (14)0.0210 (11)0.0261 (12)0.0031 (9)0.0099 (10)0.0012 (9)
C220.0567 (19)0.0184 (12)0.0261 (12)0.0084 (11)0.0128 (12)0.0002 (9)
C230.059 (2)0.0322 (15)0.0345 (15)0.0241 (14)0.0123 (14)0.0024 (12)
C240.0329 (16)0.0485 (18)0.0491 (18)0.0213 (14)0.0059 (14)0.0085 (14)
C250.0273 (14)0.0326 (14)0.0374 (14)0.0091 (11)0.0043 (11)0.0067 (11)
C260.0181 (11)0.0195 (10)0.0207 (10)0.0029 (8)0.0043 (9)0.0007 (8)
C270.0307 (14)0.0231 (12)0.0194 (11)0.0001 (10)0.0036 (10)0.0004 (9)
C280.0356 (16)0.0285 (13)0.0296 (13)0.0064 (11)0.0015 (11)0.0069 (10)
C290.0320 (14)0.0214 (11)0.0389 (14)0.0068 (10)0.0115 (12)0.0057 (10)
C300.0291 (14)0.0256 (12)0.0310 (13)0.0026 (10)0.0120 (11)0.0023 (10)
C310.0256 (13)0.0262 (11)0.0234 (11)0.0014 (10)0.0055 (10)0.0017 (9)
Geometric parameters (Å, º) top
Pt1—N12.0421 (18)C12—H12B0.9800
Pt1—P12.2128 (6)C12—H12C0.9800
Pt1—Cl22.2901 (6)C13—C141.463 (3)
Pt1—Cl12.3512 (6)C13—H130.9500
P1—C151.809 (2)C14—C191.394 (3)
P1—C201.811 (2)C14—C151.405 (3)
P1—C261.816 (2)C15—C161.392 (3)
N1—C131.287 (3)C16—C171.393 (3)
N1—C11.471 (3)C16—H160.9500
C1—C61.393 (3)C17—C181.372 (4)
C1—C21.398 (3)C17—H170.9500
C2—C31.398 (3)C18—C191.382 (3)
C2—C71.511 (4)C18—H180.9500
C3—C41.385 (4)C19—H190.9500
C3—H30.9500C20—C251.385 (4)
C4—C51.381 (4)C20—C211.396 (3)
C4—H40.9500C21—C221.385 (3)
C5—C61.399 (3)C21—H210.9500
C5—H50.9500C22—C231.369 (4)
C6—C101.515 (3)C22—H220.9500
C7—C91.503 (4)C23—C241.366 (5)
C7—C81.512 (4)C23—H230.9500
C7—H71.0000C24—C251.392 (4)
C8—H8A0.9800C24—H240.9500
C8—H8B0.9800C25—H250.9500
C8—H8C0.9800C26—C311.392 (3)
C9—H9A0.9800C26—C271.393 (3)
C9—H9B0.9800C27—C281.396 (4)
C9—H9C0.9800C27—H270.9500
C10—C121.525 (4)C28—C291.385 (4)
C10—C111.532 (4)C28—H280.9500
C10—H101.0000C29—C301.385 (4)
C11—H11A0.9800C29—H290.9500
C11—H11B0.9800C30—C311.390 (3)
C11—H11C0.9800C30—H300.9500
C12—H12A0.9800C31—H310.9500
N1—Pt1—P189.80 (5)C10—C12—H12A109.5
N1—Pt1—Cl2178.85 (5)C10—C12—H12B109.5
P1—Pt1—Cl291.25 (2)H12A—C12—H12B109.5
N1—Pt1—Cl190.98 (5)C10—C12—H12C109.5
P1—Pt1—Cl1174.20 (2)H12A—C12—H12C109.5
Cl2—Pt1—Cl187.92 (2)H12B—C12—H12C109.5
C15—P1—C20104.75 (10)N1—C13—C14130.2 (2)
C15—P1—C26104.92 (10)N1—C13—H13114.9
C20—P1—C26105.85 (11)C14—C13—H13114.9
C15—P1—Pt1111.56 (8)C19—C14—C15119.2 (2)
C20—P1—Pt1120.35 (8)C19—C14—C13115.6 (2)
C26—P1—Pt1108.26 (7)C15—C14—C13125.2 (2)
C13—N1—C1111.82 (18)C16—C15—C14118.8 (2)
C13—N1—Pt1128.78 (16)C16—C15—P1121.94 (18)
C1—N1—Pt1119.35 (13)C14—C15—P1119.10 (16)
C6—C1—C2123.8 (2)C15—C16—C17120.8 (2)
C6—C1—N1117.5 (2)C15—C16—H16119.6
C2—C1—N1118.7 (2)C17—C16—H16119.6
C3—C2—C1116.6 (2)C18—C17—C16120.4 (2)
C3—C2—C7121.2 (2)C18—C17—H17119.8
C1—C2—C7122.1 (2)C16—C17—H17119.8
C4—C3—C2121.2 (2)C17—C18—C19119.5 (2)
C4—C3—H3119.4C17—C18—H18120.2
C2—C3—H3119.4C19—C18—H18120.2
C5—C4—C3120.2 (2)C18—C19—C14121.3 (2)
C5—C4—H4119.9C18—C19—H19119.3
C3—C4—H4119.9C14—C19—H19119.3
C4—C5—C6121.1 (2)C25—C20—C21119.3 (2)
C4—C5—H5119.4C25—C20—P1121.37 (19)
C6—C5—H5119.4C21—C20—P1119.20 (19)
C1—C6—C5116.9 (2)C22—C21—C20119.9 (3)
C1—C6—C10122.7 (2)C22—C21—H21120.0
C5—C6—C10120.3 (2)C20—C21—H21120.0
C9—C7—C2111.5 (2)C23—C22—C21120.5 (3)
C9—C7—C8110.7 (3)C23—C22—H22119.8
C2—C7—C8113.2 (2)C21—C22—H22119.8
C9—C7—H7107.0C24—C23—C22119.8 (3)
C2—C7—H7107.0C24—C23—H23120.1
C8—C7—H7107.0C22—C23—H23120.1
C7—C8—H8A109.5C23—C24—C25121.2 (3)
C7—C8—H8B109.5C23—C24—H24119.4
H8A—C8—H8B109.5C25—C24—H24119.4
C7—C8—H8C109.5C20—C25—C24119.3 (3)
H8A—C8—H8C109.5C20—C25—H25120.4
H8B—C8—H8C109.5C24—C25—H25120.4
C7—C9—H9A109.5C31—C26—C27120.4 (2)
C7—C9—H9B109.5C31—C26—P1116.58 (18)
H9A—C9—H9B109.5C27—C26—P1123.03 (18)
C7—C9—H9C109.5C26—C27—C28119.3 (2)
H9A—C9—H9C109.5C26—C27—H27120.3
H9B—C9—H9C109.5C28—C27—H27120.3
C6—C10—C12111.6 (2)C29—C28—C27119.9 (2)
C6—C10—C11111.5 (2)C29—C28—H28120.1
C12—C10—C11111.0 (2)C27—C28—H28120.1
C6—C10—H10107.5C30—C29—C28120.8 (2)
C12—C10—H10107.5C30—C29—H29119.6
C11—C10—H10107.5C28—C29—H29119.6
C10—C11—H11A109.5C29—C30—C31119.6 (2)
C10—C11—H11B109.5C29—C30—H30120.2
H11A—C11—H11B109.5C31—C30—H30120.2
C10—C11—H11C109.5C30—C31—C26120.0 (2)
H11A—C11—H11C109.5C30—C31—H31120.0
H11B—C11—H11C109.5C26—C31—H31120.0
N1—Pt1—P1—C1537.61 (9)C13—C14—C15—P14.6 (3)
Cl2—Pt1—P1—C15142.85 (8)C20—P1—C15—C1617.3 (2)
N1—Pt1—P1—C20160.88 (11)C26—P1—C15—C1694.0 (2)
Cl2—Pt1—P1—C2019.57 (9)Pt1—P1—C15—C16149.04 (18)
N1—Pt1—P1—C2677.35 (10)C20—P1—C15—C14167.23 (18)
Cl2—Pt1—P1—C26102.20 (8)C26—P1—C15—C1481.5 (2)
P1—Pt1—N1—C1325.1 (2)Pt1—P1—C15—C1435.5 (2)
P1—Pt1—N1—C1157.67 (16)C14—C15—C16—C170.6 (4)
Cl1—Pt1—N1—C116.58 (16)P1—C15—C16—C17174.92 (19)
C13—N1—C1—C678.8 (3)C15—C16—C17—C180.1 (4)
Pt1—N1—C1—C698.9 (2)C16—C17—C18—C190.3 (4)
C13—N1—C1—C299.5 (2)C17—C18—C19—C141.5 (4)
Pt1—N1—C1—C282.8 (2)C15—C14—C19—C182.2 (4)
C6—C1—C2—C32.6 (3)C13—C14—C19—C18179.2 (2)
N1—C1—C2—C3175.59 (19)C15—P1—C20—C2598.0 (2)
C6—C1—C2—C7178.1 (2)C26—P1—C20—C2512.6 (2)
N1—C1—C2—C73.7 (3)Pt1—P1—C20—C25135.53 (19)
C1—C2—C3—C40.3 (3)C15—P1—C20—C2178.6 (2)
C7—C2—C3—C4179.6 (2)C26—P1—C20—C21170.82 (18)
C2—C3—C4—C51.1 (4)Pt1—P1—C20—C2147.9 (2)
C3—C4—C5—C60.4 (4)C25—C20—C21—C220.4 (4)
C2—C1—C6—C53.3 (3)P1—C20—C21—C22177.04 (19)
N1—C1—C6—C5174.91 (19)C20—C21—C22—C230.6 (4)
C2—C1—C6—C10177.0 (2)C21—C22—C23—C241.2 (4)
N1—C1—C6—C104.8 (3)C22—C23—C24—C250.9 (5)
C4—C5—C6—C11.7 (3)C21—C20—C25—C240.7 (4)
C4—C5—C6—C10178.6 (2)P1—C20—C25—C24177.3 (2)
C3—C2—C7—C988.2 (3)C23—C24—C25—C200.1 (5)
C1—C2—C7—C991.0 (3)C15—P1—C26—C31164.60 (19)
C3—C2—C7—C837.4 (4)C20—P1—C26—C3184.9 (2)
C1—C2—C7—C8143.4 (3)Pt1—P1—C26—C3145.4 (2)
C1—C6—C10—C12129.7 (2)C15—P1—C26—C2714.0 (2)
C5—C6—C10—C1250.7 (3)C20—P1—C26—C2796.4 (2)
C1—C6—C10—C11105.5 (3)Pt1—P1—C26—C27133.28 (19)
C5—C6—C10—C1174.2 (3)C31—C26—C27—C280.4 (4)
C1—N1—C13—C14175.1 (2)P1—C26—C27—C28179.0 (2)
Pt1—N1—C13—C142.3 (4)C26—C27—C28—C290.6 (4)
N1—C13—C14—C19161.8 (3)C27—C28—C29—C300.6 (4)
N1—C13—C14—C1519.7 (4)C28—C29—C30—C310.4 (4)
C19—C14—C15—C161.7 (3)C29—C30—C31—C260.2 (4)
C13—C14—C15—C16179.8 (2)C27—C26—C31—C300.2 (4)
C19—C14—C15—P1173.92 (18)P1—C26—C31—C30178.9 (2)

Experimental details

Crystal data
Chemical formula[PtCl2(C31H32NP)]
Mr715.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.0686 (7), 13.4007 (7), 17.8182 (10)
β (°) 105.819 (1)
V3)2772.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.33
Crystal size (mm)0.22 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.587, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
40326, 7788, 7035
Rint0.051
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.06
No. of reflections7788
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.80

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005) and ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Pt1—N12.0421 (18)Pt1—Cl22.2901 (6)
Pt1—P12.2128 (6)Pt1—Cl12.3512 (6)
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m608–m609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhilardi, C. A., Midollini, S., Moneti, S., Orlandini, A. & Scapacci, G. (1992). J. Chem. Soc. Dalton Trans. 23, 3371–3376.  CSD CrossRef Web of Science Google Scholar
First citationSanchez, G., Momblona, F., Perez, J. & Lopez, G. (2001). Transition Met. Chem. 26, 100–104.  CAS Google Scholar
First citationSanchez, G., Serrano, J. L., Ruiz, F. & Lopez, G. (1998). J. Fluorine Chem. 91, 165–169.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds