metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromidotris(tri­phenyl­phosphane)silver aceto­nitrile monosolvate monohydrate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and bSection of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 27 September 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, [AgBr(C18H15P)3]·C2H3N·H2O, the coordination of the Ag atom is close to ideal tetra­hedral, with the three Ag—P bond lengths almost equal [2.5441 (10), 2.5523 (9) and 2.5647 (10) ° A] and the Ag—Br bond slightly longer [2.7242 (5) Å]. The coordination tetra­hedron is slightly flattened, the Ag atom is closer to the PPP plane; the P—Ag—P angles are wider than the Br—Ag—P angles. The voids in the crystal structure are filled with ordered acetonitrile solvent mol­ecules. The remaining electron density was inter­preted as a water mol­ecule, disordered over three alternative positions. Neither of the solvent mol­ecules is connected by any directional specific inter­actions with the complex.

Related literature

For general background to silver complexes and their biological activity, see: Blower & Dilworth (1987[Blower, P. G. & Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121-185.]); Zartilas et al. (2009[Zartilas, S., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kyros, L., Kubicki, M., Baril, M., Butler, I. S., Karkabounas, S. & Balzarini, J. (2009). Inorg. Chim. Acta, 362, 1003-1010.]). For a similar complex without the solvent mol­ecules, see: Engelhardt et al. (1987[Engelhardt, L. M., Healy, P. C., Patrick, V. A. & White, A. H. (1987). Aust. J. Chem. 40, 1873-1880.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [AgBr(C18H15P)3]·C2H3N·H2O

  • Mr = 1033.66

  • Triclinic, [P \overline 1]

  • a = 13.1894 (4) Å

  • b = 13.7384 (5) Å

  • c = 13.8299 (5) Å

  • α = 84.103 (3)°

  • β = 87.161 (3)°

  • γ = 77.398 (3)°

  • V = 2431.73 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 100 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Agilent Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, USA.]) Tmin = 0.956, Tmax = 1.000

  • 17990 measured reflections

  • 9347 independent reflections

  • 7605 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 1.04

  • 9347 reflections

  • 591 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 1.27 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Silver(I) complexes adopt geometries with variable nuclearities and structural diversity (e.g. Blower & Dilworth, 1987), which exhibit a wide range of applications in medicine, in analytical chemistry or in industry of polymers. Recently, Ag(I) complexes have also been studied for their antitumor activity (e.g. Zartilas et al., 2009 and references therein). This makes the study of silver(I) chemistry very attractive, since the molecular design and structural characterization of silver(I) complexes with particular properties is therefore an intriguing aspect. In this context, our research has been focused for some time on coordination compounds of silver(I) with a large range of heterocyclic thiones containing triarylphosphines as bulky p-acceptor co-ligands such as triphenylphosphine, whereby particular emphasis has been placed on the determination of the factors causing variations of silver(I) geometry.

In the crystal structure of the titled compound the coordination of silver atom is tetrahedral. All Ag—P bond lengths are almost equal, mean value is 2.554 (10) Å, while Ag—Br is slightly longer, of 2.7242 (5) Å. These values are on the long-bond end of the values found in the Cambridge Crystallographic Database (Allen, 2002; Version 5.32 of Nov. 2010, last update Aug. 2011); the mean values are 2.45Å for Ag—P and 2.65Å for Ag—Br (Br not bridging). The coordination tetrahedron is slightly flattened, the Ag atom is closer to the PPP plane. It might be seen also from the X—Ag—X angle pattern: all P—Ag—P angles are larger than the Br—Ag—P angles.

In the crystal structure the voids are filled with the ordered acetonitrile molecule and with a remaining electron density which was interpreted as a water molecule, disordered over three alternative positions. Due to the lack of the directional interactions the crystal packing are probably determined by Weak π···π interactions (the separation between parallel C13···C18 phenyl rings related by the center of symmetry is 3.46 Å) and some van der Waals-type dispersion interaction. The presence of the solvent - acetonitrile and the residual electron density which fills the voids (and was interpreted as the disorder water molecules causes that the complex looses its C3 symmetry which was reported for the unsolvated structure (Engelhardt et al., 1987).

Related literature top

For general background to silver complexes and their biological activity, see: Blower & Dilworth (1987); Zartilas et al. (2009). For a similar complex without the solvent molecules, see: Engelhardt et al. (1987). For a description of the Cambridge Structural Database, see:: Allen (2002).

Experimental top

All solvents used were of reagent grade, while silver bromide, triphneylphosphine and 5-chloro-2-mercaptobenzothiazole (Aldrich, Merck) were used with no further purification. The IR spectra of the ligands and the complexes were recorded on the Perkin-Elmer spectrum GX FT—IR spectrophotometer in the range, 4000–370 cm-1 (using KBr pellets).

Synthesis and crystallization of {[Ag(tpp)3Br] MeCN H2O} complex: 0.094 g, AgBr (0.5 mmol),, 0.131 g triphenylphosphine (0.5 mmol), and 0.101 g 5-cloro-2-methylobenzimidazole (0.5 mmol) were suspended in 20 ml of toluene. The reaction mixture was refluxed for 3 h. The clear solution was filter off and concentrated. Yellow powder was collected and re-crystallized with 20 ml of hot CH3OH/CH3CN (1:1) solution. After slow evaporation of the clear solution derived at room temperature, yellow colored crystals were formed. Yield: 55%; m.p. 136–142 oC. Main IR peaks: (KBr, cm-1), 3066–2910 (C–H), 1582 (C–C), 1092 (P–CPh), 500–505 (P–CPh),.

Refinement top

Hydrogen atoms were located geometrically (C(methyl)-H 0.98 Å, C(ar)—H 0.95 Å) and refined as a riding model; the Uiso values of H atoms were set at 1.2 (1.5 for methyl groups) times Ueq of their carrier atom. The significant residual electron density observed in the voids was interpreted as the disordered water molecule which might come from the not dried solvent. The site occupation factors of disordered water molecule were constrained to sum up to unity; weak constraints were applied to the ADP's of these partially occupied atoms. The 12 reflections were probably obscured by the beamstop, and therefore the SQUEEZE procedure was not used.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of molecule 1 together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are omitted for clarity.
Bromidotris(triphenylphosphane)silver acetonitrile monosolvate monohydrate top
Crystal data top
[AgBr(C18H15P)3]·C2H3N·H2OZ = 2
Mr = 1033.66F(000) = 1056
Triclinic, P1Dx = 1.412 Mg m3
a = 13.1894 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7384 (5) ÅCell parameters from 3472 reflections
c = 13.8299 (5) Åθ = 3–22°
α = 84.103 (3)°µ = 1.38 mm1
β = 87.161 (3)°T = 100 K
γ = 77.398 (3)°Block, colourless
V = 2431.73 (14) Å30.3 × 0.3 × 0.2 mm
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
9347 independent reflections
Radiation source: Enhance (Mo) X-ray Source7605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.1929 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1216
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1616
Tmin = 0.956, Tmax = 1.000l = 1316
17990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0356P)2 + 3.8816P]
where P = (Fo2 + 2Fc2)/3
9347 reflections(Δ/σ)max = 0.002
591 parametersΔρmax = 1.27 e Å3
19 restraintsΔρmin = 0.91 e Å3
Crystal data top
[AgBr(C18H15P)3]·C2H3N·H2Oγ = 77.398 (3)°
Mr = 1033.66V = 2431.73 (14) Å3
Triclinic, P1Z = 2
a = 13.1894 (4) ÅMo Kα radiation
b = 13.7384 (5) ŵ = 1.38 mm1
c = 13.8299 (5) ÅT = 100 K
α = 84.103 (3)°0.3 × 0.3 × 0.2 mm
β = 87.161 (3)°
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
9347 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
7605 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 1.000Rint = 0.029
17990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04319 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 1.27 e Å3
9347 reflectionsΔρmin = 0.91 e Å3
591 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.08140 (3)0.25613 (3)0.28539 (3)0.03089 (12)
Ag10.26631 (2)0.31500 (2)0.26939 (2)0.01625 (9)
P10.24106 (7)0.49430 (7)0.19144 (7)0.0164 (2)
C10.1628 (3)0.5978 (3)0.2541 (3)0.0179 (8)
P20.32797 (8)0.29379 (7)0.44479 (7)0.0165 (2)
C20.0579 (3)0.5961 (3)0.2728 (3)0.0228 (9)
H2A0.03100.54170.25550.027*
P30.35979 (7)0.18064 (7)0.16218 (7)0.0158 (2)
C30.0067 (3)0.6739 (3)0.3166 (3)0.0272 (10)
H3A0.07800.67320.32880.033*
C40.0323 (3)0.7519 (3)0.3423 (4)0.0370 (12)
H4A0.01220.80510.37230.044*
C50.1364 (3)0.7534 (3)0.3247 (4)0.0386 (12)
H5A0.16320.80750.34280.046*
C60.2010 (3)0.6760 (3)0.2808 (3)0.0272 (10)
H6A0.27240.67700.26900.033*
C70.3675 (3)0.5277 (3)0.1747 (3)0.0170 (8)
C80.4364 (3)0.4996 (3)0.2509 (3)0.0194 (8)
H8A0.41520.46620.30940.023*
C90.5353 (3)0.5195 (3)0.2428 (3)0.0231 (9)
H9A0.58140.49920.29530.028*
C100.5667 (3)0.5691 (3)0.1581 (3)0.0258 (9)
H10A0.63410.58350.15230.031*
C110.4989 (3)0.5974 (3)0.0822 (3)0.0304 (10)
H11A0.52030.63090.02370.036*
C120.4004 (3)0.5775 (3)0.0903 (3)0.0240 (9)
H12A0.35460.59800.03760.029*
C130.1817 (3)0.5224 (3)0.0723 (3)0.0171 (8)
C140.1443 (3)0.6208 (3)0.0329 (3)0.0210 (9)
H14A0.15220.67540.06660.025*
C150.0955 (3)0.6384 (3)0.0558 (3)0.0228 (9)
H15A0.06980.70510.08280.027*
C160.0844 (3)0.5586 (3)0.1051 (3)0.0253 (9)
H16A0.05050.57100.16560.030*
C170.1221 (3)0.4612 (3)0.0670 (3)0.0258 (10)
H17A0.11510.40680.10160.031*
C180.1705 (3)0.4428 (3)0.0221 (3)0.0206 (9)
H18A0.19590.37590.04880.025*
C190.3179 (3)0.1806 (3)0.5236 (3)0.0183 (8)
C200.2246 (3)0.1492 (3)0.5265 (3)0.0246 (9)
H20A0.17100.18310.48400.030*
C210.2085 (3)0.0692 (3)0.5903 (3)0.0289 (10)
H21A0.14430.04830.59130.035*
C220.2862 (4)0.0198 (3)0.6526 (3)0.0296 (10)
H22A0.27500.03380.69800.036*
C230.3795 (4)0.0489 (3)0.6481 (3)0.0341 (11)
H23A0.43340.01390.68960.041*
C240.3965 (3)0.1285 (3)0.5839 (3)0.0283 (10)
H24A0.46180.14730.58130.034*
C250.2550 (3)0.3887 (3)0.5198 (3)0.0182 (8)
C260.2735 (3)0.3885 (3)0.6183 (3)0.0222 (9)
H26A0.32590.33760.64880.027*
C270.2154 (3)0.4622 (3)0.6717 (3)0.0250 (9)
H27A0.22850.46160.73880.030*
C280.1388 (3)0.5366 (3)0.6286 (3)0.0246 (9)
H28A0.10060.58790.66530.030*
C290.1180 (3)0.5361 (3)0.5320 (3)0.0264 (10)
H29A0.06420.58630.50240.032*
C300.1754 (3)0.4624 (3)0.4781 (3)0.0234 (9)
H30A0.16010.46210.41180.028*
C310.4636 (3)0.3000 (3)0.4545 (3)0.0185 (8)
C320.4987 (3)0.3671 (3)0.5063 (3)0.0221 (9)
H32A0.45010.41260.54190.027*
C330.6032 (3)0.3689 (3)0.5069 (3)0.0261 (9)
H33A0.62530.41570.54260.031*
C340.6755 (3)0.3032 (3)0.4560 (3)0.0264 (9)
H34A0.74720.30410.45690.032*
C350.6420 (3)0.2364 (3)0.4038 (3)0.0305 (10)
H35A0.69110.19110.36840.037*
C360.5380 (3)0.2350 (3)0.4027 (3)0.0261 (9)
H36A0.51630.18890.36580.031*
C370.3544 (3)0.0542 (3)0.2132 (3)0.0166 (8)
C380.3362 (3)0.0379 (3)0.3137 (3)0.0220 (9)
H38A0.32250.09290.35220.026*
C390.3378 (3)0.0573 (3)0.3569 (3)0.0261 (9)
H39A0.32560.06710.42510.031*
C400.3570 (3)0.1386 (3)0.3027 (3)0.0247 (9)
H40A0.36030.20420.33340.030*
C410.3716 (3)0.1230 (3)0.2026 (3)0.0256 (9)
H41A0.38310.17820.16440.031*
C420.3694 (3)0.0279 (3)0.1581 (3)0.0225 (9)
H42A0.37800.01820.08950.027*
C430.3122 (3)0.1823 (3)0.0400 (3)0.0178 (8)
C440.2073 (3)0.1817 (3)0.0314 (3)0.0256 (9)
H44A0.16400.17930.08820.031*
C450.1657 (3)0.1845 (3)0.0597 (3)0.0325 (11)
H45A0.09420.18440.06500.039*
C460.2291 (4)0.1875 (3)0.1427 (3)0.0334 (11)
H46A0.20110.18810.20480.040*
C470.3321 (4)0.1895 (3)0.1351 (3)0.0295 (10)
H47A0.37470.19280.19230.035*
C480.3746 (3)0.1868 (3)0.0439 (3)0.0218 (9)
H48A0.44590.18790.03930.026*
C490.4984 (3)0.1765 (3)0.1417 (2)0.0161 (8)
C500.5350 (3)0.2611 (3)0.1562 (3)0.0200 (8)
H50A0.48770.31770.17810.024*
C510.6382 (3)0.2656 (3)0.1398 (3)0.0247 (9)
H51A0.66120.32450.15020.030*
C520.7076 (3)0.1834 (3)0.1080 (3)0.0247 (9)
H52A0.77850.18610.09560.030*
C530.6742 (3)0.0973 (3)0.0943 (3)0.0243 (9)
H53A0.72230.04100.07300.029*
C540.5703 (3)0.0927 (3)0.1115 (3)0.0217 (9)
H54A0.54790.03310.10280.026*
C2S0.0734 (4)0.9380 (4)0.1057 (5)0.0554 (15)
C3S0.0522 (6)1.0083 (5)0.1777 (5)0.088 (2)
H56A0.01301.07280.14860.132*
H56B0.11791.01730.20180.132*
H56C0.01130.98300.23170.132*
N1S0.0872 (4)0.8816 (4)0.0475 (4)0.0598 (13)
O58R0.9214 (6)0.1285 (6)0.4412 (7)0.040 (2)0.404 (4)
O68A0.9014 (9)0.1377 (10)0.3565 (10)0.045 (4)0.279 (9)
O68B1.0064 (10)0.0597 (10)0.4154 (9)0.065 (5)0.317 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0208 (2)0.0314 (2)0.0393 (3)0.00299 (18)0.00427 (18)0.0019 (2)
Ag10.02006 (16)0.01514 (15)0.01274 (15)0.00167 (11)0.00147 (11)0.00159 (11)
P10.0193 (5)0.0153 (5)0.0137 (5)0.0020 (4)0.0037 (4)0.0004 (4)
C10.023 (2)0.0165 (19)0.0130 (19)0.0017 (16)0.0028 (15)0.0029 (15)
P20.0221 (5)0.0155 (5)0.0113 (5)0.0025 (4)0.0024 (4)0.0008 (4)
C20.025 (2)0.023 (2)0.019 (2)0.0037 (17)0.0062 (16)0.0015 (17)
P30.0201 (5)0.0144 (5)0.0119 (5)0.0012 (4)0.0005 (4)0.0016 (4)
C30.018 (2)0.029 (2)0.032 (2)0.0004 (18)0.0012 (17)0.0020 (19)
C40.030 (3)0.025 (2)0.054 (3)0.001 (2)0.012 (2)0.013 (2)
C50.026 (2)0.027 (2)0.065 (3)0.007 (2)0.013 (2)0.021 (2)
C60.022 (2)0.024 (2)0.037 (3)0.0069 (18)0.0041 (18)0.0095 (19)
C70.020 (2)0.0133 (18)0.018 (2)0.0030 (15)0.0021 (15)0.0018 (15)
C80.028 (2)0.0146 (19)0.015 (2)0.0030 (16)0.0025 (16)0.0005 (15)
C90.021 (2)0.027 (2)0.021 (2)0.0029 (17)0.0055 (16)0.0040 (17)
C100.023 (2)0.032 (2)0.024 (2)0.0083 (18)0.0012 (17)0.0002 (18)
C110.028 (2)0.040 (3)0.022 (2)0.010 (2)0.0001 (18)0.0071 (19)
C120.024 (2)0.027 (2)0.018 (2)0.0037 (18)0.0039 (16)0.0054 (17)
C130.0165 (19)0.022 (2)0.0125 (19)0.0034 (16)0.0029 (14)0.0013 (15)
C140.026 (2)0.019 (2)0.018 (2)0.0040 (17)0.0041 (16)0.0019 (16)
C150.021 (2)0.025 (2)0.020 (2)0.0030 (17)0.0024 (16)0.0040 (17)
C160.023 (2)0.038 (2)0.013 (2)0.0037 (19)0.0024 (16)0.0014 (18)
C170.030 (2)0.030 (2)0.017 (2)0.0026 (19)0.0012 (17)0.0079 (18)
C180.021 (2)0.020 (2)0.018 (2)0.0006 (16)0.0000 (15)0.0002 (16)
C190.030 (2)0.0160 (19)0.0085 (18)0.0028 (17)0.0011 (15)0.0027 (15)
C200.025 (2)0.023 (2)0.023 (2)0.0004 (18)0.0013 (17)0.0002 (17)
C210.032 (2)0.020 (2)0.034 (3)0.0057 (19)0.0101 (19)0.0040 (19)
C220.048 (3)0.017 (2)0.022 (2)0.004 (2)0.0076 (19)0.0008 (17)
C230.044 (3)0.028 (2)0.025 (2)0.001 (2)0.010 (2)0.0062 (19)
C240.033 (2)0.026 (2)0.025 (2)0.0066 (19)0.0093 (18)0.0041 (18)
C250.022 (2)0.019 (2)0.015 (2)0.0055 (16)0.0005 (15)0.0033 (16)
C260.022 (2)0.027 (2)0.017 (2)0.0047 (17)0.0030 (16)0.0031 (17)
C270.026 (2)0.038 (2)0.015 (2)0.0125 (19)0.0029 (16)0.0095 (18)
C280.024 (2)0.022 (2)0.029 (2)0.0067 (18)0.0065 (17)0.0083 (18)
C290.026 (2)0.023 (2)0.027 (2)0.0004 (18)0.0018 (17)0.0005 (18)
C300.027 (2)0.022 (2)0.021 (2)0.0048 (18)0.0026 (16)0.0017 (17)
C310.026 (2)0.0169 (19)0.0117 (19)0.0041 (16)0.0021 (15)0.0034 (15)
C320.026 (2)0.018 (2)0.021 (2)0.0013 (17)0.0006 (16)0.0037 (16)
C330.029 (2)0.024 (2)0.027 (2)0.0078 (19)0.0010 (18)0.0049 (18)
C340.023 (2)0.029 (2)0.026 (2)0.0055 (18)0.0022 (17)0.0050 (18)
C350.030 (2)0.030 (2)0.028 (2)0.002 (2)0.0060 (18)0.0058 (19)
C360.031 (2)0.028 (2)0.020 (2)0.0050 (19)0.0024 (17)0.0082 (18)
C370.0150 (19)0.0179 (19)0.016 (2)0.0011 (15)0.0005 (14)0.0007 (15)
C380.027 (2)0.021 (2)0.018 (2)0.0038 (17)0.0011 (16)0.0053 (17)
C390.033 (2)0.025 (2)0.019 (2)0.0053 (19)0.0015 (17)0.0040 (17)
C400.025 (2)0.017 (2)0.033 (2)0.0080 (17)0.0021 (17)0.0042 (18)
C410.029 (2)0.020 (2)0.030 (2)0.0077 (18)0.0012 (18)0.0086 (18)
C420.027 (2)0.020 (2)0.020 (2)0.0047 (17)0.0022 (16)0.0032 (17)
C430.026 (2)0.0122 (18)0.015 (2)0.0016 (16)0.0041 (15)0.0014 (15)
C440.026 (2)0.025 (2)0.025 (2)0.0022 (18)0.0002 (17)0.0044 (18)
C450.033 (2)0.028 (2)0.034 (3)0.005 (2)0.015 (2)0.011 (2)
C460.048 (3)0.025 (2)0.025 (2)0.007 (2)0.017 (2)0.0104 (19)
C470.045 (3)0.024 (2)0.015 (2)0.001 (2)0.0027 (18)0.0007 (17)
C480.028 (2)0.017 (2)0.017 (2)0.0029 (17)0.0007 (16)0.0019 (16)
C490.0197 (19)0.0189 (19)0.0083 (18)0.0017 (16)0.0012 (14)0.0005 (15)
C500.026 (2)0.019 (2)0.014 (2)0.0034 (17)0.0013 (15)0.0010 (16)
C510.030 (2)0.026 (2)0.019 (2)0.0105 (18)0.0012 (17)0.0001 (17)
C520.020 (2)0.033 (2)0.021 (2)0.0053 (18)0.0001 (16)0.0026 (18)
C530.021 (2)0.026 (2)0.022 (2)0.0009 (18)0.0019 (16)0.0020 (17)
C540.028 (2)0.016 (2)0.021 (2)0.0027 (17)0.0007 (16)0.0028 (16)
C2S0.052 (3)0.041 (3)0.075 (4)0.017 (3)0.007 (3)0.003 (3)
C3S0.133 (7)0.056 (4)0.084 (5)0.037 (4)0.021 (5)0.021 (4)
N1S0.057 (3)0.047 (3)0.073 (4)0.004 (2)0.014 (3)0.014 (3)
O58R0.026 (4)0.040 (4)0.057 (5)0.015 (3)0.016 (4)0.003 (4)
O68A0.034 (6)0.066 (8)0.050 (8)0.036 (5)0.014 (5)0.025 (6)
O68B0.078 (8)0.071 (8)0.063 (7)0.052 (6)0.008 (6)0.009 (6)
Geometric parameters (Å, º) top
Br1—Ag12.7242 (5)C26—C271.384 (5)
Ag1—P12.5441 (10)C26—H26A0.9500
Ag1—P32.5523 (9)C27—C281.380 (5)
Ag1—P22.5647 (10)C27—H27A0.9500
P1—C71.822 (4)C28—C291.378 (6)
P1—C131.828 (4)C28—H28A0.9500
P1—C11.833 (4)C29—C301.385 (5)
C1—C61.371 (5)C29—H29A0.9500
C1—C21.400 (5)C30—H30A0.9500
P2—C311.822 (4)C31—C321.389 (5)
P2—C251.826 (4)C31—C361.398 (5)
P2—C191.831 (4)C32—C331.384 (6)
C2—C31.386 (5)C32—H32A0.9500
C2—H2A0.9500C33—C341.381 (5)
P3—C371.821 (4)C33—H33A0.9500
P3—C491.826 (4)C34—C351.379 (6)
P3—C431.828 (4)C34—H34A0.9500
C3—C41.368 (6)C35—C361.378 (6)
C3—H3A0.9500C35—H35A0.9500
C4—C51.386 (6)C36—H36A0.9500
C4—H4A0.9500C37—C421.399 (5)
C5—C61.384 (5)C37—C381.402 (5)
C5—H5A0.9500C38—C391.377 (6)
C6—H6A0.9500C38—H38A0.9500
C7—C121.390 (5)C39—C401.379 (6)
C7—C81.394 (5)C39—H39A0.9500
C8—C91.387 (6)C40—C411.390 (6)
C8—H8A0.9500C40—H40A0.9500
C9—C101.385 (6)C41—C421.380 (6)
C9—H9A0.9500C41—H41A0.9500
C10—C111.383 (5)C42—H42A0.9500
C10—H10A0.9500C43—C481.393 (5)
C11—C121.382 (6)C43—C441.397 (5)
C11—H11A0.9500C44—C451.393 (6)
C12—H12A0.9500C44—H44A0.9500
C13—C181.391 (5)C45—C461.388 (6)
C13—C141.398 (5)C45—H45A0.9500
C14—C151.388 (5)C46—C471.375 (6)
C14—H14A0.9500C46—H46A0.9500
C15—C161.386 (6)C47—C481.399 (5)
C15—H15A0.9500C47—H47A0.9500
C16—C171.381 (6)C48—H48A0.9500
C16—H16A0.9500C49—C501.388 (5)
C17—C181.391 (5)C49—C541.408 (5)
C17—H17A0.9500C50—C511.382 (6)
C18—H18A0.9500C50—H50A0.9500
C19—C241.386 (5)C51—C521.385 (5)
C19—C201.388 (6)C51—H51A0.9500
C20—C211.384 (6)C52—C531.382 (6)
C20—H20A0.9500C52—H52A0.9500
C21—C221.385 (6)C53—C541.393 (6)
C21—H21A0.9500C53—H53A0.9500
C22—C231.371 (7)C54—H54A0.9500
C22—H22A0.9500C2S—N1S1.155 (7)
C23—C241.385 (6)C2S—C3S1.433 (8)
C23—H23A0.9500C3S—H56A0.9800
C24—H24A0.9500C3S—H56B0.9800
C25—C301.392 (5)C3S—H56C0.9800
C25—C261.395 (5)
P1—Ag1—P3115.30 (3)C30—C25—P2118.8 (3)
P1—Ag1—P2113.32 (3)C26—C25—P2122.7 (3)
P3—Ag1—P2115.22 (3)C27—C26—C25120.2 (4)
P1—Ag1—Br1110.24 (3)C27—C26—H26A119.9
P3—Ag1—Br196.64 (3)C25—C26—H26A119.9
P2—Ag1—Br1104.01 (3)C28—C27—C26120.7 (4)
C7—P1—C13105.64 (17)C28—C27—H27A119.7
C7—P1—C1103.23 (17)C26—C27—H27A119.7
C13—P1—C199.59 (16)C29—C28—C27119.7 (4)
C7—P1—Ag1108.81 (12)C29—C28—H28A120.1
C13—P1—Ag1117.50 (13)C27—C28—H28A120.1
C1—P1—Ag1120.33 (12)C28—C29—C30119.9 (4)
C6—C1—C2119.5 (3)C28—C29—H29A120.0
C6—C1—P1123.7 (3)C30—C29—H29A120.0
C2—C1—P1116.8 (3)C29—C30—C25121.0 (4)
C31—P2—C25105.08 (17)C29—C30—H30A119.5
C31—P2—C19102.96 (17)C25—C30—H30A119.5
C25—P2—C1999.63 (17)C32—C31—C36117.3 (4)
C31—P2—Ag1113.94 (12)C32—C31—P2125.2 (3)
C25—P2—Ag1113.50 (12)C36—C31—P2117.5 (3)
C19—P2—Ag1119.76 (12)C33—C32—C31121.3 (4)
C3—C2—C1119.9 (4)C33—C32—H32A119.4
C3—C2—H2A120.1C31—C32—H32A119.4
C1—C2—H2A120.1C34—C33—C32120.5 (4)
C37—P3—C49104.13 (16)C34—C33—H33A119.8
C37—P3—C43101.50 (17)C32—C33—H33A119.8
C49—P3—C43103.68 (17)C35—C34—C33119.1 (4)
C37—P3—Ag1112.95 (12)C35—C34—H34A120.5
C49—P3—Ag1114.55 (12)C33—C34—H34A120.5
C43—P3—Ag1118.25 (11)C36—C35—C34120.5 (4)
C4—C3—C2120.1 (4)C36—C35—H35A119.7
C4—C3—H3A120.0C34—C35—H35A119.7
C2—C3—H3A120.0C35—C36—C31121.4 (4)
C3—C4—C5120.3 (4)C35—C36—H36A119.3
C3—C4—H4A119.8C31—C36—H36A119.3
C5—C4—H4A119.8C42—C37—C38118.1 (4)
C6—C5—C4119.8 (4)C42—C37—P3123.7 (3)
C6—C5—H5A120.1C38—C37—P3118.2 (3)
C4—C5—H5A120.1C39—C38—C37120.5 (4)
C1—C6—C5120.5 (4)C39—C38—H38A119.7
C1—C6—H6A119.8C37—C38—H38A119.7
C5—C6—H6A119.8C38—C39—C40121.0 (4)
C12—C7—C8118.0 (4)C38—C39—H39A119.5
C12—C7—P1124.3 (3)C40—C39—H39A119.5
C8—C7—P1117.7 (3)C39—C40—C41119.0 (4)
C9—C8—C7121.3 (4)C39—C40—H40A120.5
C9—C8—H8A119.3C41—C40—H40A120.5
C7—C8—H8A119.3C42—C41—C40120.6 (4)
C10—C9—C8119.9 (4)C42—C41—H41A119.7
C10—C9—H9A120.1C40—C41—H41A119.7
C8—C9—H9A120.1C41—C42—C37120.6 (4)
C11—C10—C9119.3 (4)C41—C42—H42A119.7
C11—C10—H10A120.4C37—C42—H42A119.7
C9—C10—H10A120.4C48—C43—C44119.1 (3)
C12—C11—C10120.8 (4)C48—C43—P3123.2 (3)
C12—C11—H11A119.6C44—C43—P3117.6 (3)
C10—C11—H11A119.6C45—C44—C43120.5 (4)
C11—C12—C7120.8 (4)C45—C44—H44A119.8
C11—C12—H12A119.6C43—C44—H44A119.8
C7—C12—H12A119.6C46—C45—C44119.8 (4)
C18—C13—C14119.8 (3)C46—C45—H45A120.1
C18—C13—P1118.4 (3)C44—C45—H45A120.1
C14—C13—P1121.7 (3)C47—C46—C45120.1 (4)
C15—C14—C13119.6 (4)C47—C46—H46A119.9
C15—C14—H14A120.2C45—C46—H46A119.9
C13—C14—H14A120.2C46—C47—C48120.5 (4)
C16—C15—C14120.1 (4)C46—C47—H47A119.8
C16—C15—H15A120.0C48—C47—H47A119.8
C14—C15—H15A120.0C43—C48—C47119.9 (4)
C17—C16—C15120.5 (4)C43—C48—H48A120.0
C17—C16—H16A119.7C47—C48—H48A120.0
C15—C16—H16A119.7C50—C49—C54118.1 (3)
C16—C17—C18119.8 (4)C50—C49—P3118.1 (3)
C16—C17—H17A120.1C54—C49—P3123.8 (3)
C18—C17—H17A120.1C51—C50—C49122.0 (4)
C13—C18—C17120.1 (4)C51—C50—H50A119.0
C13—C18—H18A120.0C49—C50—H50A119.0
C17—C18—H18A120.0C50—C51—C52119.3 (4)
C24—C19—C20118.9 (4)C50—C51—H51A120.4
C24—C19—P2123.3 (3)C52—C51—H51A120.4
C20—C19—P2117.8 (3)C53—C52—C51120.2 (4)
C21—C20—C19120.9 (4)C53—C52—H52A119.9
C21—C20—H20A119.5C51—C52—H52A119.9
C19—C20—H20A119.5C52—C53—C54120.4 (4)
C20—C21—C22119.7 (4)C52—C53—H53A119.8
C20—C21—H21A120.1C54—C53—H53A119.8
C22—C21—H21A120.1C53—C54—C49120.0 (4)
C23—C22—C21119.4 (4)C53—C54—H54A120.0
C23—C22—H22A120.3C49—C54—H54A120.0
C21—C22—H22A120.3N1S—C2S—C3S177.9 (7)
C22—C23—C24121.2 (4)C2S—C3S—H56A109.5
C22—C23—H23A119.4C2S—C3S—H56B109.5
C24—C23—H23A119.4H56A—C3S—H56B109.5
C23—C24—C19119.8 (4)C2S—C3S—H56C109.5
C23—C24—H24A120.1H56A—C3S—H56C109.5
C19—C24—H24A120.1H56B—C3S—H56C109.5
C30—C25—C26118.5 (3)
P3—Ag1—P1—C768.14 (13)C19—C20—C21—C220.2 (6)
P2—Ag1—P1—C767.66 (13)C20—C21—C22—C232.0 (6)
Br1—Ag1—P1—C7176.23 (12)C21—C22—C23—C241.6 (6)
P3—Ag1—P1—C1351.75 (14)C22—C23—C24—C190.6 (7)
P2—Ag1—P1—C13172.45 (13)C20—C19—C24—C232.4 (6)
Br1—Ag1—P1—C1356.34 (14)P2—C19—C24—C23174.0 (3)
P3—Ag1—P1—C1173.22 (14)C31—P2—C25—C30124.9 (3)
P2—Ag1—P1—C150.98 (15)C19—P2—C25—C30128.8 (3)
Br1—Ag1—P1—C165.13 (15)Ag1—P2—C25—C300.2 (4)
C7—P1—C1—C61.8 (4)C31—P2—C25—C2657.4 (4)
C13—P1—C1—C6110.5 (4)C19—P2—C25—C2648.9 (4)
Ag1—P1—C1—C6119.6 (3)Ag1—P2—C25—C26177.5 (3)
C7—P1—C1—C2176.6 (3)C30—C25—C26—C272.1 (6)
C13—P1—C1—C267.9 (3)P2—C25—C26—C27179.8 (3)
Ag1—P1—C1—C261.9 (3)C25—C26—C27—C280.1 (6)
P1—Ag1—P2—C3173.63 (14)C26—C27—C28—C291.7 (6)
P3—Ag1—P2—C3162.20 (14)C27—C28—C29—C301.4 (6)
Br1—Ag1—P2—C31166.63 (13)C28—C29—C30—C250.6 (7)
P1—Ag1—P2—C2546.60 (15)C26—C25—C30—C292.3 (6)
P3—Ag1—P2—C25177.56 (14)P2—C25—C30—C29179.9 (3)
Br1—Ag1—P2—C2573.13 (14)C25—P2—C31—C322.2 (4)
P1—Ag1—P2—C19163.91 (14)C19—P2—C31—C32106.0 (3)
P3—Ag1—P2—C1960.25 (15)Ag1—P2—C31—C32122.7 (3)
Br1—Ag1—P2—C1944.18 (14)C25—P2—C31—C36179.4 (3)
C6—C1—C2—C30.9 (6)C19—P2—C31—C3676.8 (3)
P1—C1—C2—C3177.5 (3)Ag1—P2—C31—C3654.5 (3)
P1—Ag1—P3—C37169.47 (13)C36—C31—C32—C330.4 (6)
P2—Ag1—P3—C3755.58 (13)P2—C31—C32—C33177.6 (3)
Br1—Ag1—P3—C3753.34 (13)C31—C32—C33—C340.3 (6)
P1—Ag1—P3—C4971.52 (13)C32—C33—C34—C350.6 (6)
P2—Ag1—P3—C4963.44 (13)C33—C34—C35—C360.2 (6)
Br1—Ag1—P3—C49172.36 (12)C34—C35—C36—C310.6 (6)
P1—Ag1—P3—C4351.21 (16)C32—C31—C36—C350.9 (6)
P2—Ag1—P3—C43173.84 (15)P2—C31—C36—C35178.3 (3)
Br1—Ag1—P3—C4364.92 (15)C49—P3—C37—C4276.0 (3)
C1—C2—C3—C40.5 (6)C43—P3—C37—C4231.4 (4)
C2—C3—C4—C50.0 (7)Ag1—P3—C37—C42159.1 (3)
C3—C4—C5—C60.2 (8)C49—P3—C37—C38102.8 (3)
C2—C1—C6—C50.8 (6)C43—P3—C37—C38149.7 (3)
P1—C1—C6—C5177.6 (3)Ag1—P3—C37—C3822.1 (3)
C4—C5—C6—C10.2 (7)C42—C37—C38—C393.0 (6)
C13—P1—C7—C128.2 (4)P3—C37—C38—C39175.9 (3)
C1—P1—C7—C1295.9 (3)C37—C38—C39—C400.3 (6)
Ag1—P1—C7—C12135.2 (3)C38—C39—C40—C412.0 (6)
C13—P1—C7—C8170.4 (3)C39—C40—C41—C421.6 (6)
C1—P1—C7—C885.5 (3)C40—C41—C42—C371.2 (6)
Ag1—P1—C7—C843.4 (3)C38—C37—C42—C413.5 (6)
C12—C7—C8—C90.6 (5)P3—C37—C42—C41175.4 (3)
P1—C7—C8—C9178.0 (3)C37—P3—C43—C48111.9 (3)
C7—C8—C9—C100.6 (6)C49—P3—C43—C484.1 (4)
C8—C9—C10—C110.6 (6)Ag1—P3—C43—C48124.0 (3)
C9—C10—C11—C120.5 (7)C37—P3—C43—C4469.8 (3)
C10—C11—C12—C70.6 (7)C49—P3—C43—C44177.7 (3)
C8—C7—C12—C110.6 (6)Ag1—P3—C43—C4454.3 (3)
P1—C7—C12—C11178.0 (3)C48—C43—C44—C450.6 (6)
C7—P1—C13—C18110.1 (3)P3—C43—C44—C45179.0 (3)
C1—P1—C13—C18143.1 (3)C43—C44—C45—C460.3 (6)
Ag1—P1—C13—C1811.4 (4)C44—C45—C46—C471.2 (6)
C7—P1—C13—C1472.4 (3)C45—C46—C47—C481.2 (6)
C1—P1—C13—C1434.4 (4)C44—C43—C48—C470.6 (6)
Ag1—P1—C13—C14166.1 (3)P3—C43—C48—C47178.9 (3)
C18—C13—C14—C150.4 (6)C46—C47—C48—C430.3 (6)
P1—C13—C14—C15177.1 (3)C37—P3—C49—C50144.3 (3)
C13—C14—C15—C160.2 (6)C43—P3—C49—C50109.8 (3)
C14—C15—C16—C170.5 (6)Ag1—P3—C49—C5020.5 (3)
C15—C16—C17—C180.9 (6)C37—P3—C49—C5436.1 (3)
C14—C13—C18—C170.0 (6)C43—P3—C49—C5469.8 (3)
P1—C13—C18—C17177.5 (3)Ag1—P3—C49—C54159.9 (3)
C16—C17—C18—C130.6 (6)C54—C49—C50—C511.5 (5)
C31—P2—C19—C248.7 (4)P3—C49—C50—C51178.1 (3)
C25—P2—C19—C2499.3 (3)C49—C50—C51—C520.1 (6)
Ag1—P2—C19—C24136.4 (3)C50—C51—C52—C530.9 (6)
C31—P2—C19—C20174.9 (3)C51—C52—C53—C540.5 (6)
C25—P2—C19—C2077.1 (3)C52—C53—C54—C490.9 (6)
Ag1—P2—C19—C2047.2 (3)C50—C49—C54—C531.8 (5)
C24—C19—C20—C212.0 (6)P3—C49—C54—C53177.7 (3)
P2—C19—C20—C21174.6 (3)

Experimental details

Crystal data
Chemical formula[AgBr(C18H15P)3]·C2H3N·H2O
Mr1033.66
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)13.1894 (4), 13.7384 (5), 13.8299 (5)
α, β, γ (°)84.103 (3), 87.161 (3), 77.398 (3)
V3)2431.73 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerAgilent Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.956, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17990, 9347, 7605
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.102, 1.04
No. of reflections9347
No. of parameters591
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 0.91

Computer programs: CrysAlis PRO (Agilent, 2010), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, USA.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlower, P. G. & Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121–185.  CrossRef CAS Web of Science Google Scholar
First citationEngelhardt, L. M., Healy, P. C., Patrick, V. A. & White, A. H. (1987). Aust. J. Chem. 40, 1873–1880.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZartilas, S., Hadjikakou, S. K., Hadjiliadis, N., Kourkoumelis, N., Kyros, L., Kubicki, M., Baril, M., Butler, I. S., Karkabounas, S. & Balzarini, J. (2009). Inorg. Chim. Acta, 362, 1003–1010.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds