metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(3-methyl­anilinium) tetra­chlorido­zincate chloride hemihydrate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 20 October 2011; accepted 24 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, (C7H10N)3[ZnCl4]Cl·0.5H2O, consists of three 3-methyl­anilinium cations, one tetrahedral tetra­chloridozincate anion and one chloride anion and a water mol­ecule, which lies on a twofold axis. The components are linked into chains parallel to the a axis by N—H⋯Cl hydrogen bonds.

Related literature

For background to ferroelectric metal-organic complexes, see: Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]); Ye et al. (2010[Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Appl. Cryst. 43, 1031-1035.]). For a related structure, see: Rademeyer et al. (2005[Rademeyer, M. (2005). Acta Cryst. E61, m304-m306.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)3[ZnCl4]Cl·0.5H2O

  • Mr = 576.13

  • Monoclinic, C 2/c

  • a = 26.844 (5) Å

  • b = 7.7071 (15) Å

  • c = 28.605 (6) Å

  • β = 114.52 (3)°

  • V = 5385 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.971

  • 21123 measured reflections

  • 4728 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.135

  • S = 0.99

  • 4728 reflections

  • 286 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl2i 0.89 2.34 3.176 (4) 157
N2—H2C⋯Cl4ii 0.89 2.40 3.257 (4) 160
N3—H3A⋯Cl6ii 0.89 2.34 3.231 (5) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to Metal–organic crystals containing organic ions and metal ions due to the tunability of their special structural features and their interesting physical properties (Zhang et al., 2009; Ye et al., 2010; Zhang et al., 2010.). In our laboratory, the title compound has been synthesized and its crystal structure is herein reported.

The molecule of the title compound, [(C7H10N)3(ZnCl4)Cl]0.5H2O has an asymmetric unit that consists of three C7H10N cations, one zinc tetrachloride anion and one chloride anion all in general positions and a half water molecule which lies on a twofold axis (Fig 1).The non-hydrgen atoms of C7H10N cations are nearly coplanar, the zinc tetrachloride anion is a distorted tetrahedron, the average Zn-Cl bond distances range from 2.2526 (14)Å to 2.2898 (16)Å, the Cl-Zn-Cl angles range from 112.49 (6)° to 114.39 (6)°. In the shructure there are some hydrogen bonds (N1-H1B···Cl2, N2-H2C···Cl4, N3-H3A···Cl6) linking the ions of the asymmetric unit. The asymmetric units are linked into chains parallel to a axis by N-H···Cl hydrogen bonds (Fig 2, Table 1).

Related literature top

For background to ferroelectric metal-organic complexes, see: Zhang et al. (2009, 2010); Ye et al. (2010). For a related structure, see: Rademeyer et al. (2005).

Experimental top

3.21 g (0.03 mol) of 3-methylbenzenamine was firstly dissolved in 30 ml methanol to which 1.1 g (0.03 mol) of hydrochloric acid was added to afford the solution. Then the 1.36 g (0.01 mol) zinc chloride was dissolved in 20 ml methanol and hydrochloric acid and the obtained solution was mixed the above under stirring at the ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 4 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride, The H1WA atom bonding with O was found with O—H bond distance of 0.9084Åin the difference electron density map.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
Tris(3-methylanilinium) tetrachloridozincate chloride hemihydrate top
Crystal data top
(C7H10N)3[ZnCl4]Cl·0.5H2OF(000) = 2376
Mr = 576.13Dx = 1.421 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21123 reflections
a = 26.844 (5) Åθ = 3.1–27.6°
b = 7.7071 (15) ŵ = 1.42 mm1
c = 28.605 (6) ÅT = 293 K
β = 114.52 (3)°Block, colorless
V = 5385 (2) Å30.36 × 0.32 × 0.28 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
4728 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 3.0°
CCD_Profile_fitting scansh = 3131
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.963, Tmax = 0.971l = 3434
21123 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0496P)2 + 6.8371P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4728 reflectionsΔρmax = 0.46 e Å3
286 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (5)
Crystal data top
(C7H10N)3[ZnCl4]Cl·0.5H2OV = 5385 (2) Å3
Mr = 576.13Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.844 (5) ŵ = 1.42 mm1
b = 7.7071 (15) ÅT = 293 K
c = 28.605 (6) Å0.36 × 0.32 × 0.28 mm
β = 114.52 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4728 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2941 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.114
21123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0601 restraint
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.46 e Å3
4728 reflectionsΔρmin = 0.34 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.05317 (2)0.72394 (8)0.18323 (2)0.0439 (2)
Cl20.18258 (5)0.19741 (18)0.24934 (5)0.0515 (4)
Cl30.12449 (6)0.69858 (19)0.15935 (5)0.0573 (4)
Cl40.09197 (6)0.67787 (17)0.27015 (5)0.0518 (4)
Cl50.00605 (6)0.50710 (18)0.14357 (5)0.0554 (4)
Cl60.01561 (6)0.99087 (17)0.16803 (5)0.0538 (4)
C60.24123 (19)0.6393 (7)0.3266 (2)0.0415 (13)
C130.12143 (19)0.1269 (7)0.34680 (18)0.0373 (12)
C200.0782 (2)0.2332 (7)0.08050 (19)0.0415 (13)
C190.0685 (2)0.3746 (7)0.0489 (2)0.0461 (14)
H190.06840.48630.06120.055*
N10.21390 (17)0.5968 (6)0.27185 (15)0.0522 (12)
H1A0.20610.48410.26820.078*
H1B0.23590.62260.25660.078*
H1C0.18310.65800.25740.078*
C140.1301 (2)0.2960 (7)0.3638 (2)0.0445 (13)
H140.11790.38630.34010.053*
N20.09265 (15)0.0929 (5)0.29173 (15)0.0441 (11)
H2A0.11390.12280.27610.066*
H2B0.06190.15480.27890.066*
H2C0.08460.01950.28670.066*
C40.2855 (2)0.5520 (8)0.4130 (2)0.0619 (17)
H40.29700.46520.43780.074*
C170.0593 (2)0.1800 (7)0.0192 (2)0.0509 (15)
H170.05290.16340.05350.061*
N30.08751 (19)0.2594 (6)0.13476 (16)0.0588 (13)
H3A0.06630.18710.14270.088*
H3B0.07930.36840.13920.088*
H3C0.12250.23860.15510.088*
C210.07792 (19)0.0668 (7)0.0634 (2)0.0455 (14)
H210.08390.02620.08580.055*
C70.2497 (2)0.8116 (7)0.3409 (2)0.0472 (14)
H70.23680.89790.31600.057*
C110.1671 (2)0.0271 (8)0.4321 (2)0.0580 (16)
H110.17980.06370.45550.070*
C120.1394 (2)0.0089 (7)0.3806 (2)0.0535 (15)
H120.13310.12300.36900.064*
C50.2591 (2)0.5088 (7)0.3621 (2)0.0536 (15)
H50.25330.39320.35200.064*
C160.0688 (2)0.0374 (7)0.0126 (2)0.0437 (13)
C100.1761 (2)0.1962 (8)0.4495 (2)0.0539 (15)
H100.19530.21790.48440.065*
C180.0590 (2)0.3457 (7)0.0016 (2)0.0525 (15)
H180.05240.43910.02400.063*
C20.2773 (2)0.8566 (7)0.3922 (2)0.0451 (13)
C30.2953 (2)0.7245 (7)0.4278 (2)0.0524 (15)
H30.31450.75160.46240.063*
C90.1570 (2)0.3331 (7)0.4158 (2)0.0474 (14)
C80.1640 (3)0.5198 (7)0.4342 (2)0.0713 (19)
H8A0.17150.59150.41040.107*
H8B0.19400.52730.46750.107*
H8C0.13100.55870.43630.107*
C10.2877 (2)1.0442 (7)0.4078 (2)0.0629 (17)
H1D0.30601.09900.38910.094*
H1E0.31031.05160.44400.094*
H1F0.25351.10160.40020.094*
C150.0684 (2)0.1441 (7)0.0068 (2)0.0661 (18)
H15A0.04150.21190.00100.099*
H15B0.10380.19550.01120.099*
H15C0.05960.14080.04290.099*
O1W0.00000.3163 (7)0.25000.0475 (13)
H1WA0.003 (3)0.389 (6)0.2295 (19)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0477 (4)0.0419 (4)0.0403 (4)0.0014 (3)0.0166 (3)0.0002 (3)
Cl20.0475 (8)0.0584 (9)0.0469 (8)0.0016 (7)0.0178 (7)0.0010 (7)
Cl30.0543 (9)0.0729 (10)0.0506 (9)0.0074 (8)0.0275 (8)0.0081 (7)
Cl40.0631 (9)0.0503 (9)0.0382 (8)0.0001 (7)0.0172 (7)0.0030 (6)
Cl50.0550 (9)0.0537 (9)0.0533 (9)0.0112 (7)0.0183 (8)0.0056 (7)
Cl60.0585 (9)0.0435 (8)0.0567 (9)0.0086 (7)0.0212 (8)0.0034 (7)
C60.029 (3)0.047 (3)0.044 (3)0.000 (2)0.012 (3)0.000 (3)
C130.034 (3)0.046 (3)0.031 (3)0.003 (2)0.013 (2)0.003 (3)
C200.041 (3)0.048 (3)0.032 (3)0.000 (3)0.012 (2)0.002 (3)
C190.050 (3)0.039 (3)0.048 (3)0.002 (3)0.019 (3)0.005 (3)
N10.050 (3)0.055 (3)0.044 (3)0.012 (2)0.012 (2)0.004 (2)
C140.045 (3)0.043 (3)0.045 (3)0.005 (3)0.018 (3)0.004 (3)
N20.042 (3)0.044 (3)0.044 (3)0.000 (2)0.014 (2)0.001 (2)
C40.066 (4)0.061 (4)0.047 (4)0.007 (3)0.011 (3)0.017 (3)
C170.052 (4)0.062 (4)0.042 (3)0.006 (3)0.023 (3)0.005 (3)
N30.060 (3)0.069 (3)0.041 (3)0.006 (3)0.014 (2)0.002 (2)
C210.039 (3)0.042 (3)0.056 (4)0.009 (3)0.020 (3)0.015 (3)
C70.053 (3)0.046 (4)0.044 (3)0.011 (3)0.022 (3)0.018 (3)
C110.064 (4)0.060 (4)0.046 (4)0.006 (3)0.019 (3)0.016 (3)
C120.069 (4)0.040 (3)0.052 (4)0.000 (3)0.026 (3)0.002 (3)
C50.058 (4)0.040 (3)0.055 (4)0.003 (3)0.016 (3)0.002 (3)
C160.037 (3)0.044 (3)0.053 (4)0.007 (2)0.021 (3)0.006 (3)
C100.049 (4)0.070 (4)0.041 (3)0.005 (3)0.017 (3)0.005 (3)
C180.050 (4)0.047 (4)0.051 (4)0.003 (3)0.011 (3)0.015 (3)
C20.039 (3)0.047 (3)0.055 (4)0.002 (3)0.025 (3)0.002 (3)
C30.054 (4)0.059 (4)0.034 (3)0.003 (3)0.008 (3)0.007 (3)
C90.042 (3)0.056 (4)0.044 (3)0.001 (3)0.017 (3)0.005 (3)
C80.083 (5)0.062 (4)0.067 (4)0.011 (3)0.029 (4)0.022 (3)
C10.075 (4)0.050 (4)0.067 (4)0.005 (3)0.032 (4)0.009 (3)
C150.066 (4)0.054 (4)0.090 (5)0.002 (3)0.044 (4)0.014 (3)
O1W0.051 (3)0.039 (3)0.055 (4)0.0000.024 (3)0.000
Geometric parameters (Å, º) top
Zn1—Cl62.2526 (14)N3—H3B0.8900
Zn1—Cl52.2607 (15)N3—H3C0.8900
Zn1—Cl42.2898 (16)C21—C161.387 (7)
Zn1—Cl32.2924 (16)C21—H210.9300
C6—C51.368 (7)C7—C21.385 (7)
C6—C71.380 (7)C7—H70.9300
C6—N11.464 (6)C11—C121.375 (7)
C13—C121.370 (7)C11—C101.380 (7)
C13—C141.376 (7)C11—H110.9300
C13—N21.462 (6)C12—H120.9300
C20—C191.370 (7)C5—H50.9300
C20—C211.372 (7)C16—C151.503 (7)
C20—N31.480 (6)C10—C91.376 (7)
C19—C181.379 (7)C10—H100.9300
C19—H190.9300C18—H180.9300
N1—H1A0.8900C2—C31.378 (7)
N1—H1B0.8900C2—C11.504 (7)
N1—H1C0.8900C3—H30.9300
C14—C91.389 (7)C9—C81.516 (7)
C14—H140.9300C8—H8A0.9600
N2—H2A0.8900C8—H8B0.9600
N2—H2B0.8900C8—H8C0.9600
N2—H2C0.8900C1—H1D0.9600
C4—C51.370 (7)C1—H1E0.9600
C4—C31.386 (7)C1—H1F0.9600
C4—H40.9300C15—H15A0.9600
C17—C181.373 (7)C15—H15B0.9600
C17—C161.383 (7)C15—H15C0.9600
C17—H170.9300O1W—H1WA0.843 (10)
N3—H3A0.8900
Cl6—Zn1—Cl5114.39 (6)C6—C7—C2120.4 (5)
Cl6—Zn1—Cl4108.46 (6)C6—C7—H7119.8
Cl5—Zn1—Cl4109.79 (6)C2—C7—H7119.8
Cl6—Zn1—Cl3112.49 (6)C12—C11—C10120.8 (5)
Cl5—Zn1—Cl3106.73 (6)C12—C11—H11119.6
Cl4—Zn1—Cl3104.52 (6)C10—C11—H11119.6
C5—C6—C7121.5 (5)C13—C12—C11118.5 (5)
C5—C6—N1119.7 (5)C13—C12—H12120.7
C7—C6—N1118.7 (5)C11—C12—H12120.7
C12—C13—C14121.1 (5)C6—C5—C4118.6 (5)
C12—C13—N2119.9 (5)C6—C5—H5120.7
C14—C13—N2119.0 (4)C4—C5—H5120.7
C19—C20—C21122.5 (5)C17—C16—C21117.7 (5)
C19—C20—N3119.1 (5)C17—C16—C15121.7 (5)
C21—C20—N3118.4 (5)C21—C16—C15120.6 (5)
C20—C19—C18117.7 (5)C9—C10—C11120.9 (5)
C20—C19—H19121.2C9—C10—H10119.6
C18—C19—H19121.2C11—C10—H10119.6
C6—N1—H1A109.5C17—C18—C19120.5 (5)
C6—N1—H1B109.5C17—C18—H18119.7
H1A—N1—H1B109.5C19—C18—H18119.7
C6—N1—H1C109.5C3—C2—C7117.8 (5)
H1A—N1—H1C109.5C3—C2—C1121.7 (5)
H1B—N1—H1C109.5C7—C2—C1120.4 (5)
C13—C14—C9120.6 (5)C2—C3—C4121.3 (5)
C13—C14—H14119.7C2—C3—H3119.3
C9—C14—H14119.7C4—C3—H3119.3
C13—N2—H2A109.5C10—C9—C14118.0 (5)
C13—N2—H2B109.5C10—C9—C8121.9 (5)
H2A—N2—H2B109.5C14—C9—C8120.1 (5)
C13—N2—H2C109.5C9—C8—H8A109.5
H2A—N2—H2C109.5C9—C8—H8B109.5
H2B—N2—H2C109.5H8A—C8—H8B109.5
C5—C4—C3120.4 (5)C9—C8—H8C109.5
C5—C4—H4119.8H8A—C8—H8C109.5
C3—C4—H4119.8H8B—C8—H8C109.5
C18—C17—C16121.7 (5)C2—C1—H1D109.5
C18—C17—H17119.2C2—C1—H1E109.5
C16—C17—H17119.2H1D—C1—H1E109.5
C20—N3—H3A109.5C2—C1—H1F109.5
C20—N3—H3B109.5H1D—C1—H1F109.5
H3A—N3—H3B109.5H1E—C1—H1F109.5
C20—N3—H3C109.5C16—C15—H15A109.5
H3A—N3—H3C109.5C16—C15—H15B109.5
H3B—N3—H3C109.5H15A—C15—H15B109.5
C20—C21—C16119.9 (5)C16—C15—H15C109.5
C20—C21—H21120.0H15A—C15—H15C109.5
C16—C21—H21120.0H15B—C15—H15C109.5
C21—C20—C19—C180.8 (8)C18—C17—C16—C15179.3 (5)
N3—C20—C19—C18178.9 (5)C20—C21—C16—C171.0 (8)
C12—C13—C14—C90.7 (8)C20—C21—C16—C15180.0 (5)
N2—C13—C14—C9179.6 (4)C12—C11—C10—C90.9 (9)
C19—C20—C21—C161.3 (8)C16—C17—C18—C190.2 (8)
N3—C20—C21—C16179.4 (4)C20—C19—C18—C170.1 (8)
C5—C6—C7—C20.8 (8)C6—C7—C2—C30.5 (8)
N1—C6—C7—C2177.4 (4)C6—C7—C2—C1178.6 (5)
C14—C13—C12—C110.7 (8)C7—C2—C3—C40.9 (8)
N2—C13—C12—C11179.1 (4)C1—C2—C3—C4180.0 (5)
C10—C11—C12—C130.5 (8)C5—C4—C3—C22.2 (9)
C7—C6—C5—C40.4 (8)C11—C10—C9—C142.2 (8)
N1—C6—C5—C4178.6 (5)C11—C10—C9—C8177.0 (5)
C3—C4—C5—C61.9 (9)C13—C14—C9—C102.1 (8)
C18—C17—C16—C210.3 (8)C13—C14—C9—C8177.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.892.343.176 (4)157
N2—H2C···Cl4ii0.892.403.257 (4)160
N3—H3A···Cl6ii0.892.343.231 (5)176
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C7H10N)3[ZnCl4]Cl·0.5H2O
Mr576.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.844 (5), 7.7071 (15), 28.605 (6)
β (°) 114.52 (3)
V3)5385 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
21123, 4728, 2941
Rint0.114
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.135, 0.99
No. of reflections4728
No. of parameters286
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.892.343.176 (4)157.4
N2—H2C···Cl4ii0.892.403.257 (4)160.4
N3—H3A···Cl6ii0.892.343.231 (5)176.4
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

The author thanks an anonymous advisor from the Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationRademeyer, M. (2005). Acta Cryst. E61, m304–m306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Appl. Cryst. 43, 1031–1035.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds