organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pentyl (E)-3-(3,4-dihy­dr­oxy­phen­yl)acrylate

aSchool of Biological and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bSericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, People's Republic of China
*Correspondence e-mail: jimwang_js@hotmail.com

(Received 31 August 2011; accepted 2 October 2011; online 8 October 2011)

In the mol­ecule of the title compound, C14H18O4, the C=C double bond is in an E configuration. The mol­ecule is almost planar (r.m.s. deviation of all non-H atoms = 0.04 Å). An intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, inter­molecular O—H⋯O inter­actions link the mol­ecules into ribbons extending in [110].

Related literature

For general background to the biological activity of caffeic acid and its esters, see: Uwai et al. (2008[Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795-7803.]); Buzzi et al. (2009[Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596-4602.]); For the preparation, see: Xia et al. (2006[Xia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900-o3901.]); Son et al. (2011[Son, S. M., Kimura, H. & Kusakabe, K. (2011). Bioresour. Technol. 102, 2130-2132.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18O4

  • Mr = 250.28

  • Triclinic, [P \overline 1]

  • a = 5.3070 (11) Å

  • b = 10.567 (2) Å

  • c = 11.816 (2) Å

  • α = 90.96 (3)°

  • β = 91.84 (3)°

  • γ = 98.60 (3)°

  • V = 654.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 2703 measured reflections

  • 2419 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.00

  • 2419 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2 0.82 2.30 2.738 (2) 114
O1—H1B⋯O2i 0.82 2.15 2.840 (2) 142
O2—H2A⋯O3ii 0.82 1.98 2.800 (2) 173
C5—H5A⋯O3ii 0.93 2.52 3.230 (3) 133
Symmetry codes: (i) -x, -y+3, -z; (ii) -x+1, -y+2, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Caffeic acid and its esters have been a research hot spot for a long time. These compounds are known to show a variety of biological effects such as anti-tumor, anti-oxidant, and anti-inflammatory activities (Uwai et al., 2008; Buzzi et al., 2009). As a part of our studies into the synthesis of caffeic acid derivatives, the title compound (1) pentyl (E)-3-(3,4-dihydroxyphenyl)acrylate was synthesized (Xia et al. (2006); Son et al. (2011)). We report herein the crystal structure of the title compound.

The molecule of (I) has an E configuration (Fig. 1); All non-H atoms of (I) are almost coplanar, with a root mean square deviating from the least-squares plane of 0.04 A°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure, hydroxy groups contribute to intermolecular O—H···O interactions (Table 1) link the molecules into ribbons extended in the [110] direction (Fig. 2), in which they may be effective in the stabilization of thestructure. On the other hand, the intramolecular O—H···O H-bond also contribute to the stability of the molecular configuration (Fig. 1 and Table 1).

Related literature top

For general background to the biological activity of caffeic acid and its esters, see: Uwai et al. (2008); Buzzi et al. (2009); For the preparation, see: Xia et al. (2006); Son et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

Esterification of caffeic acid with amyl alcohol was performed in a column (inner diameter= 15 mm, length = 200 mm). Caffeic acid (8.95 g, 0.05 mol) was dissolved in amyl alcohol (100 ml). The mixture was stirred at 80°C for 60 minutes and fed from the top of the reactor with syringe pumps. The feed rate of the mixture was fixed at 10.0 ml/h. Cation exchange resin CD-552 particles(5 g) and molecular sieve(5 g) were packed into the middle of the reactor and glass beads of 2 mm in diameter were loaded into the rest of the column. The reaction temperature continued at 90°C for 20 h. The mixture was evaporated to dryness and followed by the addition of ethanol and extracted with chloroform three times. The chloroform extract was dried over evaporated to give a solid residue, and dissolved in ethanol/petroleum ether (1:1) to crystal. The solution was filtered and concentrated to yield a brown crystalline product (5.3 g, 59.2%). Recrystallization from ethanol gave colourless crystal.

Refinement top

The H atoms were placed in calculated positions (O—H = 0.82 A ° and C—H = 0.93–0.97 A °) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(O,C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
Pentyl (E)-3-(3,4-dihydroxyphenyl)acrylate top
Crystal data top
C14H18O4Z = 2
Mr = 250.28F(000) = 268
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3070 (11) ÅCell parameters from 25 reflections
b = 10.567 (2) Åθ = 9–13°
c = 11.816 (2) ŵ = 0.09 mm1
α = 90.96 (3)°T = 293 K
β = 91.84 (3)°Block, colourless
γ = 98.60 (3)°0.30 × 0.20 × 0.10 mm
V = 654.7 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.973, Tmax = 0.991l = 1414
2703 measured reflections3 standard reflections every 200 reflections
2419 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.040P]
where P = (Fo2 + 2Fc2)/3
2419 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H18O4γ = 98.60 (3)°
Mr = 250.28V = 654.7 (2) Å3
Triclinic, P1Z = 2
a = 5.3070 (11) ÅMo Kα radiation
b = 10.567 (2) ŵ = 0.09 mm1
c = 11.816 (2) ÅT = 293 K
α = 90.96 (3)°0.30 × 0.20 × 0.10 mm
β = 91.84 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1627 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
2703 measured reflections intensity decay: 1%
2419 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2419 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2441 (3)1.39149 (14)0.11914 (14)0.0617 (5)
H1B0.17431.44100.07310.093*
C10.1068 (4)1.08131 (19)0.20524 (17)0.0469 (5)
H1A0.17121.01790.25470.056*
O20.1576 (3)1.36636 (13)0.01491 (12)0.0535 (4)
H2A0.26561.34410.05590.080*
C20.2175 (4)1.1903 (2)0.19717 (18)0.0506 (6)
H2B0.35491.20020.24160.061*
C30.1266 (4)1.28540 (18)0.12364 (17)0.0435 (5)
O30.4807 (3)0.73067 (15)0.14536 (14)0.0699 (6)
O40.2176 (3)0.65259 (13)0.27822 (13)0.0578 (5)
C40.0776 (4)1.26997 (18)0.05777 (16)0.0408 (5)
C50.1902 (4)1.16118 (18)0.06704 (16)0.0408 (5)
H5A0.32931.15210.02330.049*
C60.0999 (4)1.06446 (18)0.14062 (16)0.0396 (5)
C70.2247 (4)0.95104 (18)0.14637 (17)0.0453 (5)
H7A0.35890.94870.09800.054*
C80.1716 (4)0.85117 (19)0.21148 (17)0.0493 (6)
H8A0.04150.85060.26240.059*
C90.3082 (4)0.74206 (19)0.20677 (17)0.0457 (5)
C100.3335 (4)0.53739 (19)0.28150 (19)0.0519 (6)
H10A0.51530.55820.29820.062*
H10B0.30790.49190.20910.062*
C110.2072 (5)0.4569 (2)0.37279 (18)0.0525 (6)
H11A0.02610.43640.35420.063*
H11B0.22700.50570.44370.063*
C120.3173 (4)0.3342 (2)0.38791 (18)0.0512 (6)
H12A0.29670.28580.31690.061*
H12B0.49870.35530.40550.061*
C130.1962 (5)0.2508 (2)0.4799 (2)0.0664 (7)
H13A0.01620.22620.46090.080*
H13B0.21090.29980.55060.080*
C140.3177 (7)0.1313 (3)0.4962 (3)0.0930 (10)
H14A0.23360.08130.55490.140*
H14B0.49490.15510.51720.140*
H14C0.30160.08180.42680.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (10)0.0488 (9)0.0805 (11)0.0307 (8)0.0265 (8)0.0173 (8)
C10.0505 (13)0.0405 (11)0.0512 (12)0.0086 (9)0.0125 (10)0.0095 (9)
O20.0618 (10)0.0405 (8)0.0644 (9)0.0217 (7)0.0251 (8)0.0162 (7)
C20.0468 (12)0.0504 (13)0.0587 (13)0.0164 (10)0.0180 (10)0.0057 (10)
C30.0438 (12)0.0371 (11)0.0522 (12)0.0139 (9)0.0048 (9)0.0010 (9)
O30.0806 (12)0.0553 (10)0.0841 (12)0.0321 (8)0.0460 (10)0.0256 (8)
O40.0741 (11)0.0403 (8)0.0658 (10)0.0227 (7)0.0301 (8)0.0172 (7)
C40.0456 (11)0.0339 (10)0.0439 (11)0.0081 (9)0.0059 (9)0.0039 (8)
C50.0408 (11)0.0383 (11)0.0456 (11)0.0116 (9)0.0091 (9)0.0025 (9)
C60.0427 (11)0.0342 (10)0.0430 (10)0.0089 (8)0.0040 (9)0.0008 (8)
C70.0488 (12)0.0400 (11)0.0492 (11)0.0114 (9)0.0116 (10)0.0039 (9)
C80.0573 (13)0.0371 (11)0.0569 (13)0.0147 (10)0.0189 (11)0.0065 (10)
C90.0515 (13)0.0392 (11)0.0482 (11)0.0099 (9)0.0112 (10)0.0048 (9)
C100.0640 (14)0.0362 (11)0.0601 (13)0.0190 (10)0.0157 (11)0.0082 (10)
C110.0644 (15)0.0430 (12)0.0534 (12)0.0151 (10)0.0181 (11)0.0072 (10)
C120.0580 (14)0.0430 (12)0.0555 (13)0.0142 (10)0.0090 (11)0.0084 (10)
C130.0863 (19)0.0551 (14)0.0610 (14)0.0161 (13)0.0184 (13)0.0158 (11)
C140.126 (3)0.0666 (17)0.095 (2)0.0349 (17)0.0191 (19)0.0386 (15)
Geometric parameters (Å, º) top
O1—C31.363 (2)C7—H7A0.9300
O1—H1B0.8200C8—C91.452 (3)
C1—C21.372 (3)C8—H8A0.9300
C1—C61.388 (3)C10—C111.498 (3)
C1—H1A0.9300C10—H10A0.9700
O2—C41.371 (2)C10—H10B0.9700
O2—H2A0.8200C11—C121.512 (3)
C2—C31.382 (3)C11—H11A0.9700
C2—H2B0.9300C11—H11B0.9700
C3—C41.382 (3)C12—C131.509 (3)
O3—C91.205 (2)C12—H12A0.9700
O4—C91.324 (2)C12—H12B0.9700
O4—C101.444 (2)C13—C141.513 (3)
C4—C51.377 (3)C13—H13A0.9700
C5—C61.393 (3)C13—H13B0.9700
C5—H5A0.9300C14—H14A0.9600
C6—C71.455 (3)C14—H14B0.9600
C7—C81.318 (3)C14—H14C0.9600
C3—O1—H1B109.5O4—C10—C11106.74 (16)
C2—C1—C6120.89 (18)O4—C10—H10A110.4
C2—C1—H1A119.6C11—C10—H10A110.4
C6—C1—H1A119.6O4—C10—H10B110.4
C4—O2—H2A109.5C11—C10—H10B110.4
C1—C2—C3120.64 (18)H10A—C10—H10B108.6
C1—C2—H2B119.7C10—C11—C12112.26 (17)
C3—C2—H2B119.7C10—C11—H11A109.2
O1—C3—C2118.08 (17)C12—C11—H11A109.2
O1—C3—C4122.54 (18)C10—C11—H11B109.2
C2—C3—C4119.38 (18)C12—C11—H11B109.2
C9—O4—C10117.71 (15)H11A—C11—H11B107.9
O2—C4—C5123.18 (17)C13—C12—C11113.87 (18)
O2—C4—C3116.98 (17)C13—C12—H12A108.8
C5—C4—C3119.85 (18)C11—C12—H12A108.8
C4—C5—C6121.30 (17)C13—C12—H12B108.8
C4—C5—H5A119.4C11—C12—H12B108.8
C6—C5—H5A119.4H12A—C12—H12B107.7
C1—C6—C5117.94 (18)C12—C13—C14112.6 (2)
C1—C6—C7123.06 (18)C12—C13—H13A109.1
C5—C6—C7119.01 (17)C14—C13—H13A109.1
C8—C7—C6128.16 (19)C12—C13—H13B109.1
C8—C7—H7A115.9C14—C13—H13B109.1
C6—C7—H7A115.9H13A—C13—H13B107.8
C7—C8—C9122.58 (19)C13—C14—H14A109.5
C7—C8—H8A118.7C13—C14—H14B109.5
C9—C8—H8A118.7H14A—C14—H14B109.5
O3—C9—O4122.77 (19)C13—C14—H14C109.5
O3—C9—C8125.58 (19)H14A—C14—H14C109.5
O4—C9—C8111.64 (17)H14B—C14—H14C109.5
C6—C1—C2—C30.5 (3)C4—C5—C6—C7179.50 (18)
C1—C2—C3—O1179.97 (19)C1—C6—C7—C81.5 (4)
C1—C2—C3—C40.1 (3)C5—C6—C7—C8178.6 (2)
O1—C3—C4—O20.8 (3)C6—C7—C8—C9178.43 (19)
C2—C3—C4—O2179.06 (18)C10—O4—C9—O30.1 (3)
O1—C3—C4—C5179.26 (18)C10—O4—C9—C8179.17 (18)
C2—C3—C4—C50.8 (3)C7—C8—C9—O30.3 (4)
O2—C4—C5—C6178.85 (17)C7—C8—C9—O4178.7 (2)
C3—C4—C5—C61.0 (3)C9—O4—C10—C11176.82 (18)
C2—C1—C6—C50.4 (3)O4—C10—C11—C12178.17 (18)
C2—C1—C6—C7179.72 (19)C10—C11—C12—C13179.56 (19)
C4—C5—C6—C10.4 (3)C11—C12—C13—C14177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.822.302.738 (2)114
O1—H1B···O2i0.822.152.840 (2)142
O2—H2A···O3ii0.821.982.800 (2)173
C5—H5A···O3ii0.932.523.230 (3)133
Symmetry codes: (i) x, y+3, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H18O4
Mr250.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.3070 (11), 10.567 (2), 11.816 (2)
α, β, γ (°)90.96 (3), 91.84 (3), 98.60 (3)
V3)654.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2703, 2419, 1627
Rint0.023
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.00
No. of reflections2419
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.822.302.738 (2)114
O1—H1B···O2i0.822.152.840 (2)142
O2—H2A···O3ii0.821.982.800 (2)173
C5—H5A···O3ii0.932.523.230 (3)133
Symmetry codes: (i) x, y+3, z; (ii) x+1, y+2, z.
 

Acknowledgements

This work was sponsored by the Qing Lan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province (BK2009213), the College Natural Science Research Project of Jiangsu Province (08KJB530002), the Science and Technology Support Program of Jiangsu Province (BE2010419), the Start Project for Introducing Talent of Jiangsu University of Science and Technology (35211002), the Pre-research for NSFC Project of Jiangsu University of Science and Technology (33201002) and the earmarked fund for Modern Agro-industry Technology Research Systems.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBuzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602.  PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, S. M., Kimura, H. & Kusakabe, K. (2011). Bioresour. Technol. 102, 2130–2132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, C.-N., Hu, W.-X. & Zhou, W. (2006). Acta Cryst. E62, o3900–o3901.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds