metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[1-(Pyridin-2-yl)ethyl­­idene]amino­meth­yl}pyridine-κ3N,N′,N′′)bis­­(thio­cyanato-κN)zinc

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 25 August 2011; accepted 23 October 2011; online 29 October 2011)

The complete mol­ecule of the title mononuclear zinc(II) complex, [Zn(NCS)2(C13H13N3)], is generated by crystallographic twofold symmetry, with the metal atom lying on the rotation axis. The pendant methyl group of the ligand is statistically disordered over two sites. The Zn2+ cation is coordinated by the N,N′,N′′-tridentate Schiff base ligand, and by two thio­cyanate N atoms, forming a distorted ZnN5 trigonal–bipyramidal geometry.

Related literature

For Schiff-base complexes reported by us, see: Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]); Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang et al. (2011[Wang, C.-Y., Wu, X., Hu, J.-J. & Han, Z.-P. (2011). Acta Cryst. E67, m1220.]). For similar zinc(II) complexes, see: Wang (2010[Wang, F.-M. (2010). Acta Cryst. E66, m778-m779.]); Huang (2011[Huang, H.-W. (2011). Acta Cryst. E67, m313.]); Ikmal Hisham et al. (2011[Ikmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.]); Wang (2011[Wang, C.-Y. (2011). Acta Cryst. E67, m1038-m1039.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C13H13N3)]

  • Mr = 392.79

  • Monoclinic, C 2/c

  • a = 14.272 (3) Å

  • b = 8.633 (3) Å

  • c = 15.338 (3) Å

  • β = 110.945 (2)°

  • V = 1764.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.769, Tmax = 0.828

  • 3113 measured reflections

  • 1838 independent reflections

  • 1395 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.07

  • 1838 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N3 1.970 (3)
Zn1—N2 2.076 (4)
Zn1—N1 2.156 (3)
N1i—Zn1—N1 152.16 (16)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their complexes have been widely studied for their synthesis, structures, and biological activities. As part of our investigations into Schiff base complexes (Wang & Ye, 2011; Wang, 2009; Wang et al., 2011), we have synthesized the title compound, a new mononuclear zinc(II) complex, Fig. 1. The Zn atom in the complex is five-coordinated by the three N atoms of the Schiff base ligand, and by two thiocyanate N atoms, forming a distorted square pyramidal geometry. The Zn–N bond lengths (Table 1) are typical and are comparable with those observed in other similar zinc(II) complexes (Wang, 2010; Huang, 2011; Ikmal Hisham et al., 2011; Wang, 2011).

Related literature top

For Schiff-base complexes reported by us, see: Wang & Ye (2011); Wang (2009); Wang et al. (2011). For similar zinc(II) complexes, see: Wang (2010); Huang (2011); Ikmal Hisham et al. (2011); Wang (2011).

Experimental top

2-Acetylpyridine (1.0 mmol, 0.121 g) and 2-aminomethylpyridine (1.0 mmol, 0.108 g) were dissolved in MeOH (30 ml), to the mixture was added with stirring an aqueous solution (5 ml) of ammonium thiocyanate (2.0 mmol, 0.152 g) and zinc acetate dihydrate (1.0 mmol, 0.220 g). The final mixture was stirred at room temperature for 10 min to give a clear colorless solution. After keeping the solution in air for a week, colorless block-shaped crystals were formed at the bottom of the vessel.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(C8). The methyl group is disordered over a twofold rotation axis symmetry.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1–x, y, 1/2–z.
(2-{[1-(Pyridin-2-yl)ethylidene]aminomethyl}pyridine- κ3N,N',N'')bis(thiocyanato-κN)zinc top
Crystal data top
[Zn(NCS)2(C13H13N3)]F(000) = 800
Mr = 392.79Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.272 (3) ÅCell parameters from 1062 reflections
b = 8.633 (3) Åθ = 2.6–24.5°
c = 15.338 (3) ŵ = 1.63 mm1
β = 110.945 (2)°T = 298 K
V = 1764.9 (8) Å3Block, colorless
Z = 40.17 × 0.13 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
1838 independent reflections
Radiation source: fine-focus sealed tube1395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scanθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1713
Tmin = 0.769, Tmax = 0.828k = 107
3113 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.5867P]
where P = (Fo2 + 2Fc2)/3
1838 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn(NCS)2(C13H13N3)]V = 1764.9 (8) Å3
Mr = 392.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.272 (3) ŵ = 1.63 mm1
b = 8.633 (3) ÅT = 298 K
c = 15.338 (3) Å0.17 × 0.13 × 0.12 mm
β = 110.945 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1838 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1395 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.828Rint = 0.023
3113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
1838 reflectionsΔρmin = 0.40 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.64025 (5)0.25000.0552 (2)
S10.28816 (12)0.97184 (15)0.33736 (10)0.1135 (5)
N10.42235 (19)0.5802 (3)0.10557 (18)0.0607 (6)
N20.50000.3998 (4)0.25000.0635 (10)
N30.3999 (2)0.7781 (3)0.2707 (2)0.0700 (7)
C10.3860 (3)0.6806 (4)0.0353 (3)0.0768 (10)
H10.39240.78620.04810.092*
C20.3395 (3)0.6326 (5)0.0556 (3)0.0885 (12)
H20.31370.70450.10340.106*
C30.3318 (3)0.4777 (6)0.0745 (3)0.0943 (13)
H30.30190.44250.13550.113*
C40.3682 (3)0.3755 (5)0.0031 (3)0.0822 (11)
H40.36240.26950.01470.099*
C50.4139 (2)0.4294 (4)0.0865 (2)0.0622 (8)
C60.4563 (3)0.3228 (4)0.1674 (3)0.0693 (9)0.50
C70.4455 (7)0.1605 (7)0.1517 (7)0.093 (3)0.50
H7A0.50400.10850.19310.140*0.50
H7B0.43820.13860.08820.140*0.50
H7C0.38730.12480.16310.140*0.50
C6'0.4563 (3)0.3228 (4)0.1674 (3)0.0693 (9)0.50
H6'10.40300.25730.17200.083*0.50
H6'20.50590.25640.15660.083*0.50
C80.3551 (3)0.8592 (4)0.2993 (2)0.0608 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0596 (3)0.0491 (3)0.0609 (3)0.0000.0265 (2)0.000
S10.1452 (12)0.1040 (9)0.1163 (9)0.0557 (8)0.0772 (9)0.0132 (7)
N10.0577 (16)0.0650 (15)0.0630 (16)0.0002 (13)0.0260 (12)0.0040 (12)
N20.064 (2)0.054 (2)0.074 (3)0.0000.0264 (19)0.000
N30.0687 (18)0.0654 (17)0.0806 (19)0.0099 (14)0.0323 (15)0.0043 (15)
C10.083 (3)0.076 (2)0.073 (2)0.0081 (19)0.029 (2)0.0052 (18)
C20.088 (3)0.112 (3)0.064 (2)0.011 (2)0.024 (2)0.007 (2)
C30.092 (3)0.123 (4)0.064 (2)0.008 (3)0.023 (2)0.018 (2)
C40.084 (3)0.084 (3)0.076 (2)0.003 (2)0.026 (2)0.021 (2)
C50.0584 (19)0.0672 (19)0.065 (2)0.0004 (16)0.0263 (16)0.0130 (16)
C60.068 (2)0.063 (2)0.079 (2)0.0014 (16)0.0287 (18)0.0115 (16)
C70.115 (7)0.052 (4)0.104 (6)0.001 (4)0.027 (5)0.003 (4)
C6'0.068 (2)0.063 (2)0.079 (2)0.0014 (16)0.0287 (18)0.0115 (16)
C80.064 (2)0.0590 (18)0.0593 (18)0.0067 (16)0.0224 (15)0.0074 (15)
Geometric parameters (Å, º) top
Zn1—N3i1.970 (3)C1—H10.9300
Zn1—N31.970 (3)C2—C31.364 (5)
Zn1—N22.076 (4)C2—H20.9300
Zn1—N1i2.156 (3)C3—C41.356 (6)
Zn1—N12.156 (3)C3—H30.9300
S1—C81.612 (3)C4—C51.374 (5)
N1—C51.330 (4)C4—H40.9300
N1—C11.336 (4)C5—C61.489 (5)
N2—C6'i1.368 (4)C6—C71.421 (7)
N2—C6i1.368 (4)C7—H7A0.9600
N2—C61.368 (4)C7—H7B0.9600
N3—C81.136 (4)C7—H7C0.9600
C1—C21.376 (5)
N3i—Zn1—N3105.66 (17)N1—C1—C2122.0 (4)
N3i—Zn1—N2127.17 (9)N1—C1—H1119.0
N3—Zn1—N2127.17 (9)C2—C1—H1119.0
N3i—Zn1—N1i100.08 (11)C3—C2—C1118.9 (4)
N3—Zn1—N1i96.64 (11)C3—C2—H2120.5
N2—Zn1—N1i76.08 (8)C1—C2—H2120.5
N3i—Zn1—N196.64 (11)C4—C3—C2119.2 (4)
N3—Zn1—N1100.08 (11)C4—C3—H3120.4
N2—Zn1—N176.08 (8)C2—C3—H3120.4
N1i—Zn1—N1152.16 (16)C3—C4—C5119.6 (4)
C5—N1—C1118.6 (3)C3—C4—H4120.2
C5—N1—Zn1115.8 (2)C5—C4—H4120.2
C1—N1—Zn1125.6 (3)N1—C5—C4121.7 (3)
C6'i—N2—C6i0.0 (3)N1—C5—C6116.3 (3)
C6'i—N2—C6121.8 (4)C4—C5—C6122.0 (3)
C6i—N2—C6121.8 (4)N2—C6—C7128.5 (5)
C6'i—N2—Zn1119.1 (2)N2—C6—C5112.8 (3)
C6i—N2—Zn1119.1 (2)C7—C6—C5118.7 (5)
C6—N2—Zn1119.1 (2)N3—C8—S1178.2 (3)
C8—N3—Zn1167.1 (3)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C13H13N3)]
Mr392.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.272 (3), 8.633 (3), 15.338 (3)
β (°) 110.945 (2)
V3)1764.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.769, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
3113, 1838, 1395
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.07
No. of reflections1838
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—N31.970 (3)Zn1—N12.156 (3)
Zn1—N22.076 (4)
N1i—Zn1—N1152.16 (16)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Technological Innovation Project (sinfonietta talent plan) of college students in Zhejiang Province (Nos. 2010R42525 and 2011R425027).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, H.-W. (2011). Acta Cryst. E67, m313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIkmal Hisham, N. A., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m55.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F.-M. (2010). Acta Cryst. E66, m778–m779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y. (2011). Acta Cryst. E67, m1038–m1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C.-Y., Wu, X., Hu, J.-J. & Han, Z.-P. (2011). Acta Cryst. E67, m1220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds