organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-1-phenyl-1H-indole-3-carbo­nitrile

aTeaching & Research Center, Tianjin Medical University, Tianjin 300070, People's Republic of China, and bPharmacy Department, Tianjin Medical College, Tianjin 300222, People's Republic of China
*Correspondence e-mail: tijmu@tijmu.edu.cn

(Received 21 September 2011; accepted 24 September 2011; online 8 October 2011)

In the title compound, C16H12N2, the dihedral angle between the indole ring system and the pendant phenyl ring is 64.92 (5)°. The crystal packing features aromatic ππ stacking [centroid–centroid separation = 3.9504 (9) Å] and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Du et al. (2006[Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919-5922.]). For its precursor, see: Jin et al. (2009[Jin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.]). For related structures, see: Yang et al. (2011[Yang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.]); Yan & Qi (2011a[Yan, Q. & Qi, X. (2011a). Acta Cryst. E67, o2312.],b[Yan, Q. & Qi, X. (2011b). Acta Cryst. E67, o2509.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2

  • Mr = 232.28

  • Triclinic, [P \overline 1]

  • a = 6.3610 (5) Å

  • b = 9.497 (1) Å

  • c = 11.0210 (12) Å

  • α = 65.97 (2)°

  • β = 80.52 (2)°

  • γ = 88.13 (2)°

  • V = 599.34 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.26 × 0.24 × 0.06 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.980, Tmax = 0.995

  • 11425 measured reflections

  • 3494 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 0.98

  • 3494 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C3–C8 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg3i 0.95 2.85 3.719 (1) 152
C9—H9ACg2ii 0.98 2.94 3.799 (2) 147
C13—H13⋯Cg2iii 0.95 2.77 3.537 (2) 139
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear-SM Expert (Rigaku 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Indoles are an important compound possessing pharmaceutical properties. Extensive investigation on the crystal structures of indoles helps disclose their structure-activity relationship. For continuing our reseach, herein, we reported the crystal structure of the title indole derivative, (I).

In the molecular structure (Fig. 1), the components of the indole ring system are almost coplanar with a dihedral angle of 0.89 (7)° between its pyrrole part and benzene part. The indole ring forms an angle of 64.92 (5)° with the benzene ring.

In the molecular packing, π-π stacking and C—H···π interactions were observed, helping solidify the packing.

Related literature top

For the synthesis of the title compound, see: Du et al. (2006). For its precursor, see: Jin et al. (2009). For related structures, see: Yang et al. (2011); Yan & Qi (2011a,b).

Experimental top

The title compound was prepared according to the method of the literature (Du et al., 2006). Colourless prisms of (I) were grown from a mixture of ethyl actate and petroleum ether.

Refinement top

All H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å)and refined as riding with Uiso(H) = 1.2Ueq(CH) or 1.5Ueq(CH3).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku 2009); cell refinement: CrystalClear-SM Expert (Rigaku 2009); data reduction: CrystalClear-SM Expert (Rigaku 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.
2-Methyl-1-phenyl-1H-indole-3-carbonitrile top
Crystal data top
C16H12N2Z = 2
Mr = 232.28F(000) = 244
Triclinic, P1Dx = 1.287 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 6.3610 (5) ÅCell parameters from 2709 reflections
b = 9.497 (1) Åθ = 2.1–33.5°
c = 11.0210 (12) ŵ = 0.08 mm1
α = 65.97 (2)°T = 113 K
β = 80.52 (2)°Prism, colorless
γ = 88.13 (2)°0.26 × 0.24 × 0.06 mm
V = 599.34 (14) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
3494 independent reflections
Radiation source: rotating anode2309 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.040
Detector resolution: 14.222 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2009)
k = 1313
Tmin = 0.980, Tmax = 0.995l = 1515
11425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
3494 reflections(Δ/σ)max = 0.002
164 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H12N2γ = 88.13 (2)°
Mr = 232.28V = 599.34 (14) Å3
Triclinic, P1Z = 2
a = 6.3610 (5) ÅMo Kα radiation
b = 9.497 (1) ŵ = 0.08 mm1
c = 11.0210 (12) ÅT = 113 K
α = 65.97 (2)°0.26 × 0.24 × 0.06 mm
β = 80.52 (2)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3494 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2009)
2309 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.040
11425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.98Δρmax = 0.45 e Å3
3494 reflectionsΔρmin = 0.29 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44315 (14)0.77239 (10)0.77878 (9)0.0185 (2)
N20.81470 (18)0.84332 (13)0.34779 (11)0.0345 (3)
C10.60803 (17)0.82767 (13)0.67167 (11)0.0194 (2)
C20.56979 (18)0.77831 (13)0.57514 (11)0.0209 (2)
C30.37200 (18)0.68851 (13)0.62387 (11)0.0202 (2)
C40.29646 (17)0.68823 (12)0.75088 (11)0.0187 (2)
C50.10695 (18)0.61245 (13)0.82939 (11)0.0216 (2)
H50.05820.61420.91500.026*
C60.00823 (18)0.53441 (14)0.77872 (12)0.0249 (3)
H60.13910.48200.82990.030*
C70.06551 (19)0.53158 (14)0.65265 (12)0.0275 (3)
H70.01580.47630.62020.033*
C80.2539 (2)0.60756 (14)0.57463 (12)0.0257 (3)
H80.30240.60490.48930.031*
C90.78658 (18)0.92844 (14)0.66577 (12)0.0246 (3)
H9A0.92270.88510.64490.030*
H9B0.77770.93480.75300.030*
H9C0.77721.03190.59550.030*
C100.70487 (19)0.81451 (14)0.44957 (12)0.0240 (3)
C110.42676 (17)0.78451 (12)0.90546 (11)0.0192 (2)
C120.57306 (19)0.71355 (14)0.98980 (12)0.0248 (3)
H120.68570.65880.96290.030*
C130.5548 (2)0.72252 (14)1.11344 (12)0.0285 (3)
H130.65780.67731.17010.034*
C140.3862 (2)0.79746 (14)1.15407 (12)0.0293 (3)
H140.37230.80271.23930.035*
C150.2379 (2)0.86476 (15)1.07108 (12)0.0313 (3)
H150.12070.91441.10020.038*
C160.25896 (19)0.86032 (14)0.94531 (12)0.0261 (3)
H160.15890.90900.88730.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (5)0.0208 (5)0.0170 (5)0.0005 (4)0.0012 (3)0.0085 (4)
N20.0369 (6)0.0412 (7)0.0228 (5)0.0072 (5)0.0039 (4)0.0131 (5)
C10.0185 (5)0.0204 (5)0.0174 (5)0.0010 (4)0.0014 (4)0.0064 (4)
C20.0217 (6)0.0224 (5)0.0162 (5)0.0005 (4)0.0008 (4)0.0063 (4)
C30.0207 (6)0.0209 (5)0.0168 (5)0.0004 (4)0.0029 (4)0.0054 (4)
C40.0187 (5)0.0191 (5)0.0177 (5)0.0016 (4)0.0038 (4)0.0066 (4)
C50.0198 (6)0.0236 (6)0.0190 (5)0.0003 (4)0.0006 (4)0.0071 (4)
C60.0198 (6)0.0270 (6)0.0247 (6)0.0036 (5)0.0030 (5)0.0072 (5)
C70.0279 (6)0.0304 (6)0.0253 (6)0.0051 (5)0.0080 (5)0.0108 (5)
C80.0306 (7)0.0289 (6)0.0178 (6)0.0019 (5)0.0056 (5)0.0089 (5)
C90.0235 (6)0.0259 (6)0.0228 (6)0.0043 (5)0.0005 (4)0.0096 (5)
C100.0253 (6)0.0261 (6)0.0191 (6)0.0029 (5)0.0018 (4)0.0082 (5)
C110.0211 (5)0.0191 (5)0.0167 (5)0.0013 (4)0.0007 (4)0.0072 (4)
C120.0223 (6)0.0291 (6)0.0244 (6)0.0048 (5)0.0032 (5)0.0127 (5)
C130.0323 (7)0.0331 (7)0.0220 (6)0.0037 (5)0.0097 (5)0.0116 (5)
C140.0408 (8)0.0278 (6)0.0209 (6)0.0001 (5)0.0030 (5)0.0121 (5)
C150.0363 (7)0.0327 (7)0.0267 (7)0.0101 (6)0.0012 (5)0.0162 (5)
C160.0274 (6)0.0287 (6)0.0240 (6)0.0086 (5)0.0059 (5)0.0123 (5)
Geometric parameters (Å, º) top
N1—C11.3757 (14)C7—H70.9500
N1—C41.3955 (14)C8—H80.9500
N1—C111.4337 (13)C9—H9A0.9800
N2—C101.1514 (15)C9—H9B0.9800
C1—C21.3819 (16)C9—H9C0.9800
C1—C91.4853 (16)C11—C161.3797 (16)
C2—C101.4183 (16)C11—C121.3849 (16)
C2—C31.4398 (17)C12—C131.3854 (16)
C3—C81.4006 (16)C12—H120.9500
C3—C41.4020 (15)C13—C141.3815 (17)
C4—C51.3877 (16)C13—H130.9500
C5—C61.3804 (16)C14—C151.3797 (17)
C5—H50.9500C14—H140.9500
C6—C71.4021 (17)C15—C161.3881 (16)
C6—H60.9500C15—H150.9500
C7—C81.3813 (17)C16—H160.9500
C1—N1—C4109.22 (9)C3—C8—H8120.7
C1—N1—C11127.12 (9)C1—C9—H9A109.5
C4—N1—C11123.45 (9)C1—C9—H9B109.5
N1—C1—C2108.27 (10)H9A—C9—H9B109.5
N1—C1—C9123.13 (10)C1—C9—H9C109.5
C2—C1—C9128.56 (10)H9A—C9—H9C109.5
C1—C2—C10124.37 (11)H9B—C9—H9C109.5
C1—C2—C3108.35 (10)N2—C10—C2179.74 (14)
C10—C2—C3127.28 (11)C16—C11—C12120.47 (10)
C8—C3—C4119.01 (11)C16—C11—N1119.62 (10)
C8—C3—C2135.08 (11)C12—C11—N1119.82 (10)
C4—C3—C2105.90 (10)C11—C12—C13119.86 (11)
C5—C4—N1129.20 (10)C11—C12—H12120.1
C5—C4—C3122.53 (10)C13—C12—H12120.1
N1—C4—C3108.27 (10)C14—C13—C12119.80 (11)
C6—C5—C4117.64 (11)C14—C13—H13120.1
C6—C5—H5121.2C12—C13—H13120.1
C4—C5—H5121.2C15—C14—C13120.11 (11)
C5—C6—C7120.81 (11)C15—C14—H14119.9
C5—C6—H6119.6C13—C14—H14119.9
C7—C6—H6119.6C14—C15—C16120.38 (11)
C8—C7—C6121.36 (11)C14—C15—H15119.8
C8—C7—H7119.3C16—C15—H15119.8
C6—C7—H7119.3C11—C16—C15119.33 (11)
C7—C8—C3118.63 (11)C11—C16—H16120.3
C7—C8—H8120.7C15—C16—H16120.3
C4—N1—C1—C20.61 (12)C3—C4—C5—C60.38 (17)
C11—N1—C1—C2174.22 (9)C4—C5—C6—C70.39 (17)
C4—N1—C1—C9177.02 (10)C5—C6—C7—C80.60 (18)
C11—N1—C1—C98.15 (16)C6—C7—C8—C30.03 (18)
N1—C1—C2—C10179.25 (10)C4—C3—C8—C70.71 (17)
C9—C1—C2—C101.79 (19)C2—C3—C8—C7179.55 (12)
N1—C1—C2—C30.15 (12)C1—C2—C10—N2113 (37)
C9—C1—C2—C3177.31 (11)C3—C2—C10—N268 (37)
C1—C2—C3—C8178.58 (13)C1—N1—C11—C16119.92 (13)
C10—C2—C3—C82.4 (2)C4—N1—C11—C1665.94 (14)
C1—C2—C3—C40.36 (12)C1—N1—C11—C1263.31 (15)
C10—C2—C3—C4178.71 (11)C4—N1—C11—C12110.84 (13)
C1—N1—C4—C5179.85 (11)C16—C11—C12—C131.93 (18)
C11—N1—C4—C55.09 (17)N1—C11—C12—C13178.67 (10)
C1—N1—C4—C30.85 (12)C11—C12—C13—C142.34 (19)
C11—N1—C4—C3174.22 (9)C12—C13—C14—C150.77 (19)
C8—C3—C4—C50.94 (16)C13—C14—C15—C161.2 (2)
C2—C3—C4—C5179.91 (10)C12—C11—C16—C150.06 (18)
C8—C3—C4—N1178.42 (10)N1—C11—C16—C15176.69 (10)
C2—C3—C4—N10.73 (12)C14—C15—C16—C111.64 (19)
N1—C4—C5—C6178.84 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg3i0.952.853.719 (1)152
C9—H9A···Cg2ii0.982.943.799 (2)147
C13—H13···Cg2iii0.952.773.537 (2)139
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H12N2
Mr232.28
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.3610 (5), 9.497 (1), 11.0210 (12)
α, β, γ (°)65.97 (2), 80.52 (2), 88.13 (2)
V3)599.34 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.24 × 0.06
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2009)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
11425, 3494, 2309
Rint0.040
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 0.98
No. of reflections3494
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.29

Computer programs: CrystalClear-SM Expert (Rigaku 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C3–C8 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg3i0.952.853.719 (1)152
C9—H9A···Cg2ii0.982.943.799 (2)147
C13—H13···Cg2iii0.952.773.537 (2)139
Symmetry codes: (i) x+2, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z.
 

References

First citationDu, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919–5922.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Q. & Qi, X. (2011a). Acta Cryst. E67, o2312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, Q. & Qi, X. (2011b). Acta Cryst. E67, o2509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, K., Li, P.-F., Liu, Y. & Fang, Z.-Z. (2011). Acta Cryst. E67, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds