organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2877-o2878

5-[(E)-Benzyl­­idene]-2-hy­dr­oxy-8,9-di­phenyl-3,10-di­aza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(19),12(20),13,15,17-pentaen-6-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 September 2011; accepted 3 October 2011; online 8 October 2011)

In the title compound, C38H30N2O2, the acenaphthyl­ene ring is close to being planar [maximum deviation = 0.1047 (11) Å]. The dihedral angles between the three benzene rings and the acenaphthyl­ene system are 39.47 (3), 37.65 (3) and 44.47 (3)°. An intra­molecular O—H⋯N inter­action forms an S(5) hydrogen-bond ring motif. In the crystal, mol­ecules are linked into [101] chains by a set of C—H⋯O inter­actions.

Related literature

For background to synthetic routes to pyrrolidines, see: Lown (1984[Lown, J. W. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, p. 653. New York: Wiley.]); Tsuge & Kanemasa (1989[Tsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, Vol. 45, edited by A. R. Katritzky, p. 231. San Diego: Academic Press.]); Monlineux (1987[Monlineux, R. J. (1987). Alkaloids: Chemical and Biological Perspective, edited by S. W. Pelletier, ch. 1. New York: Wiley.]); Hensler et al. (2006[Hensler, M. E., Bernstein, G., Nizet, V. & Nefzi, A. (2006). Bioorg. Med. Chem. Lett. 16, 5073-5079.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C38H30N2O2

  • Mr = 546.64

  • Triclinic, [P \overline 1]

  • a = 9.0811 (1) Å

  • b = 11.7300 (1) Å

  • c = 14.0859 (2) Å

  • α = 75.828 (1)°

  • β = 75.470 (1)°

  • γ = 77.635 (1)°

  • V = 1389.49 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.38 × 0.34 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.970, Tmax = 0.978

  • 29369 measured reflections

  • 7966 independent reflections

  • 6687 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.04

  • 7966 reflections

  • 387 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N1 0.93 (2) 1.91 (2) 2.6348 (14) 133.7 (18)
C1—H1A⋯O1i 0.95 2.48 3.3874 (17) 160
C11—H11A⋯O2ii 0.99 2.57 3.5621 (13) 175
C19—H19A⋯O2ii 0.95 2.46 3.4044 (14) 176
C20—H20A⋯O2ii 1.00 2.42 3.4090 (15) 172
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular 1,3-dipolar cycloadditions are considered as one of the most useful processes for the construction of five-membered rings containing the pyrrolidine structural unit (Lown et al., 1984; Tsuge et al., 1989). Functionalized pyrrolidine ring systems have acquired a prominent place among various heterocyclic compounds as it is the key structural motif in many pharmacologically relevant alkaloids (Monlineux, 1987). Recent drug developments incorporating the pyrrolidine motif have been identified as candidates with promising anti-HIV and antimicrobial activities (Hensler et al., 2006). Due to the biological significance of the aforesaid heterocycle, the crystal structure determination of the title compound was carried out and the results are presented in this paper.

All parameters in (I) within normal ranges. The acenaphthylene ring (C27–C38) is almost planar with the maximum deviation of 0.1047 (11)Å for atom C27. It makes dihedral angles of 39.47 (3), 37.65 (3) and 44.47 (3)°, respectively, with the C1–C9, C14–C19 and C21–C26 benzene rings.

In the molecular structure, an intramolcular interaction was observed and form an S(5) hydrogen ring motif (Bernstein et al., 1995). The crystal structure was arranged in the form of infinite chains along [101] by intermolecular C1—H1A···O1i, C11—H11A···O2ii, C19—H19A···O2ii and C20—H20A···O2ii interactions (Table 1).

Related literature top

For background to synthetic routes to pyrrolidines, see: Lown et al. (1984); Tsuge et al. (1989); Monlineux (1987); Hensler et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenylglycine (1 mmol) were dissolved in methanol (5 ml) and refluxed in a water bath for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallization from ethyl acetate to yield colourless blocks.

Refinement top

O and N bound H atoms were located from a difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009)0; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
5-[(E)-Benzylidene]-2-hydroxy-8,9-diphenyl-3,10- diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(19),12 (20),13,15,17-pentaen-6-one top
Crystal data top
C38H30N2O2Z = 2
Mr = 546.64F(000) = 576
Triclinic, P1Dx = 1.307 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0811 (1) ÅCell parameters from 9941 reflections
b = 11.7300 (1) Åθ = 2.4–29.9°
c = 14.0859 (2) ŵ = 0.08 mm1
α = 75.828 (1)°T = 100 K
β = 75.470 (1)°Block, colourless
γ = 77.635 (1)°0.38 × 0.34 × 0.28 mm
V = 1389.49 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
7966 independent reflections
Radiation source: fine-focus sealed tube6687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 29.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.970, Tmax = 0.978k = 1616
29369 measured reflectionsl = 1913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.5264P]
where P = (Fo2 + 2Fc2)/3
7966 reflections(Δ/σ)max < 0.001
387 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C38H30N2O2γ = 77.635 (1)°
Mr = 546.64V = 1389.49 (3) Å3
Triclinic, P1Z = 2
a = 9.0811 (1) ÅMo Kα radiation
b = 11.7300 (1) ŵ = 0.08 mm1
c = 14.0859 (2) ÅT = 100 K
α = 75.828 (1)°0.38 × 0.34 × 0.28 mm
β = 75.470 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7966 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6687 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.022
29369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
7966 reflectionsΔρmin = 0.22 e Å3
387 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32025 (10)0.62737 (7)0.08287 (6)0.02053 (17)
O20.09201 (10)0.37202 (7)0.46035 (6)0.01980 (17)
N10.32443 (12)0.49196 (8)0.39689 (7)0.01640 (18)
N20.02522 (11)0.43249 (8)0.30384 (7)0.01590 (18)
C10.35063 (15)0.26503 (13)0.05556 (10)0.0295 (3)
H1A0.45320.27450.05880.035*
C20.32456 (17)0.18284 (14)0.10330 (11)0.0353 (3)
H2A0.40970.13570.13800.042*
C30.17561 (17)0.16893 (12)0.10080 (10)0.0288 (3)
H3A0.15870.11340.13450.035*
C40.05189 (15)0.23645 (11)0.04897 (9)0.0239 (2)
H4A0.05040.22690.04650.029*
C50.07717 (14)0.31847 (10)0.00041 (9)0.0203 (2)
H5A0.00840.36470.03480.024*
C60.22671 (13)0.33376 (10)0.00282 (8)0.0187 (2)
C70.25859 (13)0.42463 (10)0.04118 (8)0.0174 (2)
H7A0.34640.46050.00570.021*
C80.18105 (12)0.46436 (9)0.12463 (8)0.0155 (2)
C90.24085 (12)0.56247 (9)0.14710 (8)0.01496 (19)
C100.20008 (12)0.57123 (9)0.25602 (8)0.01411 (19)
C110.02732 (12)0.55944 (9)0.29624 (8)0.0160 (2)
H11A0.01120.58190.36250.019*
H11B0.03640.61030.24930.019*
C120.04794 (13)0.41191 (10)0.20116 (8)0.0169 (2)
H12A0.04850.44600.17670.020*
H12B0.06570.32490.20440.020*
C130.25497 (12)0.67230 (9)0.28182 (8)0.01462 (19)
H13A0.36140.67800.24100.018*
C140.15851 (13)0.79502 (9)0.26271 (8)0.0161 (2)
C150.20500 (14)0.87610 (10)0.17463 (9)0.0213 (2)
H15A0.29320.85210.12670.026*
C160.12390 (16)0.99138 (11)0.15618 (10)0.0270 (3)
H16A0.15771.04560.09620.032*
C170.00561 (15)1.02738 (11)0.22473 (11)0.0274 (3)
H17A0.06041.10630.21230.033*
C180.05505 (14)0.94748 (11)0.31188 (11)0.0254 (3)
H18A0.14500.97150.35860.031*
C190.02673 (13)0.83210 (10)0.33122 (9)0.0205 (2)
H19A0.00740.77830.39140.025*
C200.26890 (13)0.62139 (9)0.39205 (8)0.0152 (2)
H20A0.16310.63140.43520.018*
C210.36922 (13)0.68215 (10)0.42803 (8)0.0176 (2)
C220.51712 (14)0.69861 (11)0.37386 (9)0.0235 (2)
H22A0.55990.66540.31580.028*
C230.60243 (16)0.76334 (12)0.40433 (10)0.0295 (3)
H23A0.70290.77450.36700.035*
C240.54059 (18)0.81159 (12)0.48937 (11)0.0322 (3)
H24A0.59740.85780.50900.039*
C250.39640 (18)0.79237 (12)0.54545 (10)0.0305 (3)
H25A0.35570.82330.60470.037*
C260.31045 (15)0.72756 (11)0.51517 (9)0.0232 (2)
H26A0.21150.71430.55410.028*
C270.28286 (12)0.45467 (9)0.31644 (8)0.01400 (19)
C280.15025 (12)0.37294 (9)0.35756 (8)0.0156 (2)
C290.22707 (13)0.25205 (10)0.33599 (8)0.0173 (2)
C300.17969 (15)0.14266 (10)0.36601 (9)0.0221 (2)
H30A0.08040.13390.40650.027*
C310.28329 (16)0.04309 (11)0.33475 (10)0.0257 (3)
H31A0.25270.03330.35650.031*
C320.42586 (15)0.05332 (11)0.27435 (10)0.0254 (3)
H32A0.49100.01520.25400.031*
C330.47710 (14)0.16566 (10)0.24194 (9)0.0208 (2)
C340.62171 (14)0.19104 (12)0.18143 (10)0.0253 (3)
H34A0.69330.13030.15290.030*
C350.65831 (14)0.30327 (12)0.16402 (9)0.0249 (2)
H35A0.75530.31830.12290.030*
C360.55669 (13)0.39747 (11)0.20515 (9)0.0205 (2)
H36A0.58660.47320.19430.025*
C370.41441 (12)0.37650 (10)0.26087 (8)0.0158 (2)
C380.37522 (13)0.26199 (10)0.27718 (8)0.0167 (2)
H1O20.167 (2)0.4027 (18)0.4756 (16)0.055 (6)*
H1N10.426 (2)0.4719 (15)0.3950 (12)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (4)0.0209 (4)0.0165 (4)0.0088 (3)0.0018 (3)0.0029 (3)
O20.0228 (4)0.0228 (4)0.0138 (4)0.0077 (3)0.0000 (3)0.0043 (3)
N10.0206 (5)0.0133 (4)0.0171 (4)0.0025 (3)0.0067 (4)0.0040 (3)
N20.0166 (4)0.0161 (4)0.0155 (4)0.0037 (3)0.0019 (3)0.0048 (3)
C10.0239 (6)0.0365 (7)0.0318 (7)0.0111 (5)0.0045 (5)0.0193 (6)
C20.0338 (7)0.0395 (8)0.0362 (7)0.0106 (6)0.0068 (6)0.0250 (6)
C30.0404 (7)0.0280 (6)0.0232 (6)0.0129 (6)0.0062 (5)0.0092 (5)
C40.0293 (6)0.0231 (6)0.0232 (5)0.0078 (5)0.0129 (5)0.0014 (4)
C50.0224 (5)0.0198 (5)0.0199 (5)0.0027 (4)0.0079 (4)0.0035 (4)
C60.0220 (5)0.0204 (5)0.0147 (5)0.0060 (4)0.0024 (4)0.0047 (4)
C70.0187 (5)0.0183 (5)0.0162 (5)0.0051 (4)0.0037 (4)0.0034 (4)
C80.0160 (5)0.0160 (5)0.0151 (4)0.0032 (4)0.0043 (4)0.0025 (4)
C90.0146 (5)0.0149 (5)0.0155 (4)0.0016 (4)0.0037 (4)0.0035 (4)
C100.0156 (5)0.0129 (4)0.0141 (4)0.0027 (4)0.0024 (4)0.0035 (4)
C110.0152 (5)0.0152 (5)0.0178 (5)0.0022 (4)0.0024 (4)0.0050 (4)
C120.0164 (5)0.0188 (5)0.0173 (5)0.0051 (4)0.0033 (4)0.0053 (4)
C130.0158 (5)0.0134 (5)0.0148 (4)0.0030 (4)0.0031 (4)0.0028 (4)
C140.0184 (5)0.0133 (5)0.0191 (5)0.0037 (4)0.0066 (4)0.0040 (4)
C150.0265 (6)0.0183 (5)0.0202 (5)0.0049 (4)0.0076 (4)0.0020 (4)
C160.0353 (7)0.0185 (6)0.0286 (6)0.0060 (5)0.0148 (5)0.0024 (5)
C170.0276 (6)0.0155 (5)0.0430 (7)0.0002 (4)0.0184 (6)0.0048 (5)
C180.0192 (5)0.0192 (6)0.0402 (7)0.0006 (4)0.0076 (5)0.0109 (5)
C190.0197 (5)0.0164 (5)0.0264 (6)0.0044 (4)0.0042 (4)0.0053 (4)
C200.0184 (5)0.0130 (5)0.0152 (4)0.0031 (4)0.0039 (4)0.0037 (4)
C210.0217 (5)0.0148 (5)0.0182 (5)0.0030 (4)0.0080 (4)0.0026 (4)
C220.0244 (6)0.0255 (6)0.0230 (5)0.0081 (5)0.0075 (5)0.0029 (4)
C230.0311 (7)0.0291 (6)0.0327 (7)0.0148 (5)0.0165 (5)0.0045 (5)
C240.0472 (8)0.0214 (6)0.0378 (7)0.0119 (6)0.0280 (6)0.0008 (5)
C250.0457 (8)0.0241 (6)0.0296 (6)0.0003 (6)0.0210 (6)0.0110 (5)
C260.0286 (6)0.0222 (6)0.0216 (5)0.0015 (5)0.0096 (5)0.0074 (4)
C270.0155 (5)0.0130 (4)0.0138 (4)0.0028 (4)0.0025 (4)0.0034 (3)
C280.0174 (5)0.0149 (5)0.0143 (4)0.0040 (4)0.0016 (4)0.0035 (4)
C290.0205 (5)0.0152 (5)0.0179 (5)0.0029 (4)0.0058 (4)0.0045 (4)
C300.0263 (6)0.0176 (5)0.0250 (6)0.0067 (4)0.0086 (5)0.0031 (4)
C310.0343 (7)0.0153 (5)0.0326 (6)0.0048 (5)0.0149 (5)0.0058 (5)
C320.0316 (6)0.0174 (5)0.0318 (6)0.0031 (5)0.0143 (5)0.0115 (5)
C330.0234 (6)0.0199 (5)0.0217 (5)0.0013 (4)0.0091 (4)0.0088 (4)
C340.0217 (6)0.0282 (6)0.0259 (6)0.0051 (5)0.0050 (5)0.0131 (5)
C350.0170 (5)0.0299 (6)0.0245 (6)0.0003 (5)0.0003 (4)0.0072 (5)
C360.0183 (5)0.0212 (5)0.0206 (5)0.0025 (4)0.0032 (4)0.0032 (4)
C370.0161 (5)0.0165 (5)0.0147 (5)0.0008 (4)0.0038 (4)0.0040 (4)
C380.0195 (5)0.0150 (5)0.0169 (5)0.0003 (4)0.0067 (4)0.0049 (4)
Geometric parameters (Å, º) top
O1—C91.2200 (13)C16—C171.382 (2)
O2—C281.4095 (13)C16—H16A0.9500
O2—H1O20.92 (2)C17—C181.3883 (19)
N1—C271.4650 (13)C17—H17A0.9500
N1—C201.4841 (14)C18—C191.3957 (16)
N1—H1N10.895 (17)C18—H18A0.9500
N2—C111.4705 (14)C19—H19A0.9500
N2—C281.4772 (14)C20—C211.5105 (15)
N2—C121.4809 (14)C20—H20A1.0000
C1—C21.3902 (18)C21—C261.3945 (16)
C1—C61.3976 (17)C21—C221.3957 (17)
C1—H1A0.9500C22—C231.3926 (17)
C2—C31.388 (2)C22—H22A0.9500
C2—H2A0.9500C23—C241.389 (2)
C3—C41.3830 (19)C23—H23A0.9500
C3—H3A0.9500C24—C251.382 (2)
C4—C51.3936 (16)C24—H24A0.9500
C4—H4A0.9500C25—C261.3960 (17)
C5—C61.3984 (16)C25—H25A0.9500
C5—H5A0.9500C26—H26A0.9500
C6—C71.4662 (15)C27—C371.5145 (15)
C7—C81.3443 (15)C27—C281.6054 (15)
C7—H7A0.9500C28—C291.5069 (15)
C8—C91.5006 (15)C29—C301.3747 (16)
C8—C121.5302 (15)C29—C381.4037 (16)
C9—C101.5091 (14)C30—C311.4200 (17)
C10—C131.5300 (14)C30—H30A0.9500
C10—C111.5524 (15)C31—C321.3705 (19)
C10—C271.5715 (15)C31—H31A0.9500
C11—H11A0.9900C32—C331.4222 (17)
C11—H11B0.9900C32—H32A0.9500
C12—H12A0.9900C33—C381.4056 (15)
C12—H12B0.9900C33—C341.4217 (18)
C13—C141.5167 (15)C34—C351.3756 (19)
C13—C201.5478 (15)C34—H34A0.9500
C13—H13A1.0000C35—C361.4201 (17)
C14—C151.3977 (16)C35—H35A0.9500
C14—C191.3984 (16)C36—C371.3707 (15)
C15—C161.3914 (17)C36—H36A0.9500
C15—H15A0.9500C37—C381.4128 (15)
C28—O2—H1O2101.1 (13)C17—C18—H18A119.8
C27—N1—C20109.79 (8)C19—C18—H18A119.8
C27—N1—H1N1111.1 (11)C18—C19—C14120.53 (11)
C20—N1—H1N1112.7 (10)C18—C19—H19A119.7
C11—N2—C28102.58 (8)C14—C19—H19A119.7
C11—N2—C12107.90 (8)N1—C20—C21113.79 (9)
C28—N2—C12115.78 (9)N1—C20—C13104.68 (8)
C2—C1—C6120.34 (12)C21—C20—C13113.90 (9)
C2—C1—H1A119.8N1—C20—H20A108.1
C6—C1—H1A119.8C21—C20—H20A108.1
C3—C2—C1120.74 (13)C13—C20—H20A108.1
C3—C2—H2A119.6C26—C21—C22119.05 (11)
C1—C2—H2A119.6C26—C21—C20119.30 (10)
C4—C3—C2119.54 (12)C22—C21—C20121.59 (10)
C4—C3—H3A120.2C23—C22—C21120.44 (12)
C2—C3—H3A120.2C23—C22—H22A119.8
C3—C4—C5120.03 (12)C21—C22—H22A119.8
C3—C4—H4A120.0C24—C23—C22119.96 (13)
C5—C4—H4A120.0C24—C23—H23A120.0
C4—C5—C6120.97 (11)C22—C23—H23A120.0
C4—C5—H5A119.5C25—C24—C23120.04 (12)
C6—C5—H5A119.5C25—C24—H24A120.0
C1—C6—C5118.38 (11)C23—C24—H24A120.0
C1—C6—C7118.64 (10)C24—C25—C26120.16 (12)
C5—C6—C7122.82 (10)C24—C25—H25A119.9
C8—C7—C6129.09 (10)C26—C25—H25A119.9
C8—C7—H7A115.5C21—C26—C25120.27 (12)
C6—C7—H7A115.5C21—C26—H26A119.9
C7—C8—C9115.80 (10)C25—C26—H26A119.9
C7—C8—C12125.78 (10)N1—C27—C37113.15 (9)
C9—C8—C12118.22 (9)N1—C27—C10105.52 (8)
O1—C9—C8122.57 (10)C37—C27—C10119.35 (8)
O1—C9—C10122.77 (9)N1—C27—C28112.48 (8)
C8—C9—C10114.62 (9)C37—C27—C28103.27 (8)
C9—C10—C13116.33 (9)C10—C27—C28102.71 (8)
C9—C10—C11107.84 (8)O2—C28—N2107.94 (9)
C13—C10—C11116.86 (9)O2—C28—C29113.38 (9)
C9—C10—C27107.93 (8)N2—C28—C29114.94 (9)
C13—C10—C27104.25 (8)O2—C28—C27109.13 (8)
C11—C10—C27102.26 (8)N2—C28—C27105.97 (8)
N2—C11—C10103.74 (8)C29—C28—C27105.07 (8)
N2—C11—H11A111.0C30—C29—C38119.65 (11)
C10—C11—H11A111.0C30—C29—C28131.97 (11)
N2—C11—H11B111.0C38—C29—C28108.33 (9)
C10—C11—H11B111.0C29—C30—C31118.17 (11)
H11A—C11—H11B109.0C29—C30—H30A120.9
N2—C12—C8115.52 (9)C31—C30—H30A120.9
N2—C12—H12A108.4C32—C31—C30122.28 (11)
C8—C12—H12A108.4C32—C31—H31A118.9
N2—C12—H12B108.4C30—C31—H31A118.9
C8—C12—H12B108.4C31—C32—C33120.55 (11)
H12A—C12—H12B107.5C31—C32—H32A119.7
C14—C13—C10116.62 (9)C33—C32—H32A119.7
C14—C13—C20115.23 (9)C38—C33—C34116.17 (11)
C10—C13—C20101.96 (8)C38—C33—C32116.15 (11)
C14—C13—H13A107.5C34—C33—C32127.63 (11)
C10—C13—H13A107.5C35—C34—C33120.22 (11)
C20—C13—H13A107.5C35—C34—H34A119.9
C15—C14—C19118.28 (10)C33—C34—H34A119.9
C15—C14—C13119.04 (10)C34—C35—C36122.51 (11)
C19—C14—C13122.65 (10)C34—C35—H35A118.7
C16—C15—C14120.96 (12)C36—C35—H35A118.7
C16—C15—H15A119.5C37—C36—C35118.40 (11)
C14—C15—H15A119.5C37—C36—H36A120.8
C17—C16—C15120.29 (12)C35—C36—H36A120.8
C17—C16—H16A119.9C36—C37—C38119.20 (10)
C15—C16—H16A119.9C36—C37—C27131.72 (10)
C16—C17—C18119.58 (11)C38—C37—C27109.02 (9)
C16—C17—H17A120.2C29—C38—C33123.08 (10)
C18—C17—H17A120.2C29—C38—C37113.51 (10)
C17—C18—C19120.36 (12)C33—C38—C37123.35 (11)
C6—C1—C2—C31.0 (2)C20—C21—C26—C25174.86 (11)
C1—C2—C3—C40.9 (2)C24—C25—C26—C210.22 (19)
C2—C3—C4—C50.5 (2)C20—N1—C27—C37134.03 (9)
C3—C4—C5—C60.20 (18)C20—N1—C27—C101.81 (11)
C2—C1—C6—C50.7 (2)C20—N1—C27—C28109.42 (10)
C2—C1—C6—C7176.23 (13)C9—C10—C27—N1145.40 (9)
C4—C5—C6—C10.26 (18)C13—C10—C27—N121.12 (10)
C4—C5—C6—C7175.63 (11)C11—C10—C27—N1101.03 (9)
C1—C6—C7—C8148.67 (13)C9—C10—C27—C3716.77 (12)
C5—C6—C7—C835.97 (18)C13—C10—C27—C37107.51 (10)
C6—C7—C8—C9177.69 (11)C11—C10—C27—C37130.34 (9)
C6—C7—C8—C127.47 (19)C9—C10—C27—C2896.60 (9)
C7—C8—C9—O121.80 (15)C13—C10—C27—C28139.12 (8)
C12—C8—C9—O1162.96 (10)C11—C10—C27—C2816.97 (9)
C7—C8—C9—C10155.94 (10)C11—N2—C28—O279.87 (9)
C12—C8—C9—C1019.31 (13)C12—N2—C28—O2162.90 (8)
O1—C9—C10—C133.92 (15)C11—N2—C28—C29152.50 (9)
C8—C9—C10—C13178.35 (9)C12—N2—C28—C2935.27 (13)
O1—C9—C10—C11137.47 (11)C11—N2—C28—C2736.94 (10)
C8—C9—C10—C1144.80 (11)C12—N2—C28—C2780.29 (10)
O1—C9—C10—C27112.75 (11)N1—C27—C28—O28.33 (12)
C8—C9—C10—C2764.98 (11)C37—C27—C28—O2130.65 (9)
C28—N2—C11—C1048.78 (10)C10—C27—C28—O2104.64 (9)
C12—N2—C11—C1073.93 (10)N1—C27—C28—N2124.34 (9)
C9—C10—C11—N273.02 (10)C37—C27—C28—N2113.34 (9)
C13—C10—C11—N2153.71 (9)C10—C27—C28—N211.37 (10)
C27—C10—C11—N240.61 (10)N1—C27—C28—C29113.57 (9)
C11—N2—C12—C847.97 (12)C37—C27—C28—C298.76 (10)
C28—N2—C12—C866.24 (12)C10—C27—C28—C29133.47 (8)
C7—C8—C12—N2154.71 (11)O2—C28—C29—C3050.25 (16)
C9—C8—C12—N220.01 (14)N2—C28—C29—C3074.59 (15)
C9—C10—C13—C1480.35 (12)C27—C28—C29—C30169.34 (12)
C11—C10—C13—C1448.99 (13)O2—C28—C29—C38127.09 (10)
C27—C10—C13—C14160.96 (9)N2—C28—C29—C38108.08 (10)
C9—C10—C13—C20153.24 (9)C27—C28—C29—C388.00 (11)
C11—C10—C13—C2077.42 (10)C38—C29—C30—C310.81 (17)
C27—C10—C13—C2034.55 (10)C28—C29—C30—C31177.90 (11)
C10—C13—C14—C1598.20 (12)C29—C30—C31—C321.57 (18)
C20—C13—C14—C15142.30 (10)C30—C31—C32—C331.29 (19)
C10—C13—C14—C1983.78 (13)C31—C32—C33—C381.32 (17)
C20—C13—C14—C1935.72 (14)C31—C32—C33—C34178.55 (12)
C19—C14—C15—C161.04 (17)C38—C33—C34—C352.95 (17)
C13—C14—C15—C16177.07 (10)C32—C33—C34—C35174.28 (12)
C14—C15—C16—C170.61 (18)C33—C34—C35—C360.48 (19)
C15—C16—C17—C180.47 (19)C34—C35—C36—C372.72 (18)
C16—C17—C18—C191.10 (19)C35—C36—C37—C381.34 (16)
C17—C18—C19—C140.66 (18)C35—C36—C37—C27178.17 (11)
C15—C14—C19—C180.41 (17)N1—C27—C37—C3661.88 (15)
C13—C14—C19—C18177.63 (10)C10—C27—C37—C3663.17 (15)
C27—N1—C20—C21148.81 (9)C28—C27—C37—C36176.24 (11)
C27—N1—C20—C1323.83 (11)N1—C27—C37—C38115.19 (10)
C14—C13—C20—N1163.34 (9)C10—C27—C37—C38119.76 (10)
C10—C13—C20—N136.02 (10)C28—C27—C37—C386.69 (11)
C14—C13—C20—C2171.76 (12)C30—C29—C38—C333.60 (17)
C10—C13—C20—C21160.93 (9)C28—C29—C38—C33178.68 (10)
N1—C20—C21—C26113.39 (11)C30—C29—C38—C37173.61 (10)
C13—C20—C21—C26126.72 (11)C28—C29—C38—C374.10 (13)
N1—C20—C21—C2269.44 (13)C34—C33—C38—C29178.66 (10)
C13—C20—C21—C2250.46 (14)C32—C33—C38—C293.78 (16)
C26—C21—C22—C232.41 (17)C34—C33—C38—C374.40 (16)
C20—C21—C22—C23174.77 (11)C32—C33—C38—C37173.16 (10)
C21—C22—C23—C240.25 (19)C36—C37—C38—C29179.49 (10)
C22—C23—C24—C251.96 (19)C27—C37—C38—C291.99 (13)
C23—C24—C25—C261.98 (19)C36—C37—C38—C332.29 (16)
C22—C21—C26—C252.39 (17)C27—C37—C38—C33175.21 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.93 (2)1.91 (2)2.6348 (14)133.7 (18)
C1—H1A···O1i0.952.483.3874 (17)160
C11—H11A···O2ii0.992.573.5621 (13)175
C19—H19A···O2ii0.952.463.4044 (14)176
C20—H20A···O2ii1.002.423.4090 (15)172
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC38H30N2O2
Mr546.64
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.0811 (1), 11.7300 (1), 14.0859 (2)
α, β, γ (°)75.828 (1), 75.470 (1), 77.635 (1)
V3)1389.49 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.34 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
29369, 7966, 6687
Rint0.022
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.04
No. of reflections7966
No. of parameters387
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009)0, SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N10.93 (2)1.91 (2)2.6348 (14)133.7 (18)
C1—H1A···O1i0.952.483.3874 (17)160
C11—H11A···O2ii0.992.573.5621 (13)175
C19—H19A···O2ii0.952.463.4044 (14)176
C20—H20A···O2ii1.002.423.4090 (15)172
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant No. FRGS 203/PKIMIA/ 6711179 and the Ministry of Science, Technology and Innovation Grant No. 09–05-lfn-meb-004. RSK thanks USM for the award of post-doctoral fellowship and HKF thanks USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHensler, M. E., Bernstein, G., Nizet, V. & Nefzi, A. (2006). Bioorg. Med. Chem. Lett. 16, 5073–5079.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLown, J. W. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, p. 653. New York: Wiley.  Google Scholar
First citationMonlineux, R. J. (1987). Alkaloids: Chemical and Biological Perspective, edited by S. W. Pelletier, ch. 1. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O. & Kanemasa, S. (1989). Advances in Heterocyclic Chemistry, Vol. 45, edited by A. R. Katritzky, p. 231. San Diego: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2877-o2878
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds