organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Fluoro­benzyl­­idene)-2-(4-fluoro­phen­yl)acetohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 September 2011; accepted 28 September 2011; online 5 October 2011)

In the title compound, C15H12F2N2O, the dihedral angle between the two benzene rings is 48.73 (8)°. The hydrazine group is twisted slightly, with a C—N—N—C torsion angle of 172.48 (12)°. In the crystal, mol­ecules are connected by strong N—H⋯O and weak C—H⋯O hydrogen bonds, forming supra­molecular chains along the c axis. The structure is consolidated by ππ [centroid–centroid separation = 3.6579 (10) Å] and C—H⋯π inter­actions.

Related literature

For further details of aroyl­hydro­zones, see: Li & Qu (2011[Li, T.-Y. & Qu, Y.-G. (2011). Acta Cryst. E67, o330.]); Zhang (2011[Zhang, Z. (2011). Acta Cryst. E67, o301.]); Fan et al. (2008[Fan, C. D., Su, H., Zhao, B. X., Zhanz, S. L. & Miao, J. Y. (2008). Eur. J. Med. Chem. 45, 1438-1446.]). Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F2N2O

  • Mr = 274.27

  • Monoclinic, P 21 /c

  • a = 13.8754 (15) Å

  • b = 12.5349 (13) Å

  • c = 7.7093 (8) Å

  • β = 93.566 (2)°

  • V = 1338.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.85 × 0.26 × 0.12 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.988

  • 17153 measured reflections

  • 4415 independent reflections

  • 2586 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.153

  • S = 1.02

  • 4415 reflections

  • 229 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N1⋯O1i 0.892 (15) 2.013 (15) 2.8841 (14) 165.2 (14)
C4—H4⋯O1ii 0.92 (2) 2.47 (2) 3.370 (2) 168 (2)
C1—H1⋯Cg1iii 0.98 (2) 2.92 (2) 3.7025 (18) 138.0 (15)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Large number of aroylhydrozones have been synthesized in the recent years (Li & Qu, 2011; Zhang, 2011; Fan et al., 2008) which can serve as intermediates in synthesizing biologically active compounds (Ajani et al., 2010; Avaji et al., 2009; Rasras et al., 2010).

The asymmetric unit of the title compound is shown in Fig. 1. The dihedral angle between the two benzene rings (C1–C6/C10–C15) is 48.73 (8)°. The hydrazine group is twisted slightly with C9-N1-N2-C8, N1-N2-C8-C7 and N2-N1-C9-C10 torsion angles of 172.48 (12)°, 169.41 (12)° and 174.13 (11)°, respectively.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular strong N—H···O and weak C—H···.O (Table 1) hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. The crystal structure is further stabilized by ππ interactions between the benzene (Cg2; C10–C15) rings [Cg2···Cg2 = 3.6579 (10) Å; -x, 2-y, 1-z] and C—H···π interaction involving the centroid of the C1–C6 (Cg1) ring.

Related literature top

For further details of aroylhydrozones, see: Li & Qu (2011); Zhang (2011); Fan et al. (2008). Ajani et al. (2010); Avaji et al. (2009); Rasras et al. (2010).

Experimental top

An equimolar mixture of 2-(4-fluorophenyl)acetohydrazide and 4-fluorobenzaldehyde was refluxed for four hours in the presence of few drops of acid catalyst and ethanol as solvent. The compound obtained was filtered, washed, dried and recrystalised from ethanol to yield colourless needles.

Refinement top

All hydrogen atoms were located from a difference Fourier maps and refined freely [N–H = 0.890 (17) Å and C–H = 0.92 (2)– 1.001 (18) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
N'-(4-Fluorobenzylidene)-2-(4-fluorophenyl)acetohydrazide top
Crystal data top
C15H12F2N2OF(000) = 568
Mr = 274.27Dx = 1.361 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3867 reflections
a = 13.8754 (15) Åθ = 3.1–28.1°
b = 12.5349 (13) ŵ = 0.11 mm1
c = 7.7093 (8) ÅT = 296 K
β = 93.566 (2)°Needle, colourless
V = 1338.3 (2) Å30.85 × 0.26 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
4415 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 31.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2018
Tmin = 0.915, Tmax = 0.988k = 1817
17153 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0834P]
where P = (Fo2 + 2Fc2)/3
4415 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H12F2N2OV = 1338.3 (2) Å3
Mr = 274.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8754 (15) ŵ = 0.11 mm1
b = 12.5349 (13) ÅT = 296 K
c = 7.7093 (8) Å0.85 × 0.26 × 0.12 mm
β = 93.566 (2)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
4415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2586 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.988Rint = 0.026
17153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.153All H-atom parameters refined
S = 1.02Δρmax = 0.21 e Å3
4415 reflectionsΔρmin = 0.23 e Å3
229 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.76995 (8)0.61553 (12)0.39014 (18)0.1100 (4)
F20.21176 (8)0.96296 (11)0.46342 (17)0.1026 (4)
O10.31477 (7)0.63023 (8)0.33790 (11)0.0593 (3)
N10.18163 (7)0.77410 (8)0.22901 (12)0.0457 (2)
N20.26129 (8)0.75056 (9)0.13713 (13)0.0486 (3)
C10.56239 (12)0.71146 (14)0.1320 (2)0.0681 (4)
C20.65526 (13)0.70642 (17)0.2100 (3)0.0799 (5)
C30.67904 (11)0.62143 (15)0.3128 (2)0.0695 (4)
C40.61612 (13)0.54169 (15)0.3421 (2)0.0693 (4)
C50.52362 (12)0.54705 (12)0.2623 (2)0.0598 (4)
C60.49585 (9)0.63228 (11)0.15654 (15)0.0501 (3)
C70.39518 (11)0.63844 (15)0.07075 (17)0.0603 (4)
C80.32068 (9)0.67230 (11)0.19528 (14)0.0478 (3)
C90.13383 (10)0.85672 (11)0.17896 (16)0.0482 (3)
C100.04314 (9)0.88361 (10)0.25544 (15)0.0469 (3)
C110.00248 (11)0.98366 (12)0.22675 (18)0.0572 (3)
C120.08399 (11)1.01067 (14)0.2957 (2)0.0647 (4)
C130.12794 (11)0.93654 (14)0.3933 (2)0.0655 (4)
C140.09066 (12)0.83664 (14)0.4254 (2)0.0663 (4)
C150.00469 (11)0.81012 (12)0.35531 (19)0.0571 (3)
H10.5397 (14)0.7715 (16)0.059 (3)0.094 (6)*
H20.7039 (17)0.7598 (17)0.196 (3)0.101 (7)*
H40.6331 (15)0.4869 (19)0.417 (3)0.104 (7)*
H50.4770 (13)0.4897 (15)0.275 (2)0.079 (5)*
H7A0.3934 (12)0.6871 (14)0.029 (2)0.074 (5)*
H7B0.3739 (14)0.5682 (15)0.026 (2)0.080 (5)*
H90.1566 (11)0.9042 (12)0.0904 (19)0.058 (4)*
H110.0356 (12)1.0384 (14)0.157 (2)0.071 (5)*
H120.1126 (15)1.0787 (17)0.276 (2)0.088 (6)*
H140.1233 (15)0.7855 (16)0.491 (3)0.090 (6)*
H150.0238 (13)0.7400 (14)0.374 (2)0.073 (5)*
H1N10.2685 (11)0.7821 (12)0.035 (2)0.061 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0595 (6)0.1415 (12)0.1263 (9)0.0162 (6)0.0142 (6)0.0132 (8)
F20.0706 (7)0.1242 (10)0.1173 (9)0.0344 (6)0.0415 (6)0.0197 (7)
O10.0625 (6)0.0731 (7)0.0435 (5)0.0189 (5)0.0134 (4)0.0069 (4)
N10.0455 (5)0.0527 (6)0.0396 (5)0.0043 (4)0.0094 (4)0.0022 (4)
N20.0490 (6)0.0616 (7)0.0362 (5)0.0069 (5)0.0119 (4)0.0018 (4)
C10.0654 (9)0.0731 (10)0.0675 (9)0.0061 (8)0.0180 (7)0.0172 (8)
C20.0626 (10)0.0866 (13)0.0921 (13)0.0099 (9)0.0175 (9)0.0057 (10)
C30.0493 (8)0.0895 (12)0.0701 (9)0.0114 (8)0.0064 (6)0.0068 (8)
C40.0693 (10)0.0696 (10)0.0695 (9)0.0247 (8)0.0079 (7)0.0071 (8)
C50.0606 (8)0.0538 (8)0.0664 (8)0.0082 (7)0.0148 (7)0.0035 (6)
C60.0502 (7)0.0589 (8)0.0427 (6)0.0099 (6)0.0155 (5)0.0009 (5)
C70.0545 (8)0.0864 (11)0.0409 (6)0.0146 (7)0.0107 (5)0.0074 (7)
C80.0462 (6)0.0611 (8)0.0367 (5)0.0050 (6)0.0059 (4)0.0054 (5)
C90.0515 (7)0.0508 (7)0.0429 (6)0.0015 (6)0.0071 (5)0.0005 (5)
C100.0490 (6)0.0489 (7)0.0429 (6)0.0039 (5)0.0035 (5)0.0028 (5)
C110.0612 (8)0.0547 (8)0.0563 (7)0.0090 (6)0.0092 (6)0.0071 (6)
C120.0660 (9)0.0607 (9)0.0682 (9)0.0205 (8)0.0103 (7)0.0060 (7)
C130.0510 (8)0.0800 (11)0.0669 (8)0.0149 (7)0.0136 (6)0.0006 (7)
C140.0589 (9)0.0680 (10)0.0736 (9)0.0006 (7)0.0185 (7)0.0084 (8)
C150.0564 (8)0.0511 (8)0.0647 (8)0.0042 (6)0.0115 (6)0.0022 (6)
Geometric parameters (Å, º) top
F1—C31.3633 (18)C6—C71.510 (2)
F2—C131.3538 (17)C7—C81.5146 (17)
O1—C81.2268 (15)C7—H7A0.982 (18)
N1—C91.2765 (16)C7—H7B0.984 (19)
N1—N21.3812 (14)C9—C101.4619 (18)
N2—C81.3402 (17)C9—H90.973 (16)
N2—H1N10.890 (17)C10—C111.3873 (19)
C1—C61.377 (2)C10—C151.3947 (19)
C1—C21.389 (3)C11—C121.384 (2)
C1—H10.98 (2)C11—H111.001 (18)
C2—C31.356 (3)C12—C131.363 (2)
C2—H20.96 (2)C12—H120.95 (2)
C3—C41.355 (3)C13—C141.372 (2)
C4—C51.390 (2)C14—C151.380 (2)
C4—H40.92 (2)C14—H140.95 (2)
C5—C61.3840 (19)C15—H150.971 (18)
C5—H50.976 (19)
C9—N1—N2115.83 (10)C8—C7—H7B105.7 (11)
C8—N2—N1118.67 (10)H7A—C7—H7B106.8 (15)
C8—N2—H1N1121.3 (10)O1—C8—N2122.72 (11)
N1—N2—H1N1119.7 (10)O1—C8—C7122.27 (12)
C6—C1—C2121.31 (16)N2—C8—C7115.01 (11)
C6—C1—H1116.0 (12)N1—C9—C10120.62 (12)
C2—C1—H1122.6 (12)N1—C9—H9121.5 (9)
C3—C2—C1118.30 (17)C10—C9—H9117.8 (9)
C3—C2—H2117.8 (13)C11—C10—C15118.84 (12)
C1—C2—H2123.9 (13)C11—C10—C9119.73 (12)
C4—C3—C2122.74 (16)C15—C10—C9121.43 (12)
C4—C3—F1118.37 (16)C12—C11—C10120.90 (14)
C2—C3—F1118.89 (17)C12—C11—H11118.5 (10)
C3—C4—C5118.51 (16)C10—C11—H11120.6 (10)
C3—C4—H4120.9 (14)C13—C12—C11118.25 (14)
C5—C4—H4120.5 (14)C13—C12—H12120.2 (12)
C6—C5—C4120.90 (16)C11—C12—H12121.5 (12)
C6—C5—H5117.8 (11)F2—C13—C12118.59 (15)
C4—C5—H5121.2 (11)F2—C13—C14118.36 (15)
C1—C6—C5118.24 (14)C12—C13—C14123.05 (14)
C1—C6—C7120.86 (14)C13—C14—C15118.33 (15)
C5—C6—C7120.90 (14)C13—C14—H14121.7 (12)
C6—C7—C8112.71 (10)C15—C14—H14119.9 (12)
C6—C7—H7A110.7 (10)C14—C15—C10120.63 (14)
C8—C7—H7A109.8 (10)C14—C15—H15120.8 (10)
C6—C7—H7B110.9 (11)C10—C15—H15118.5 (10)
C9—N1—N2—C8172.48 (12)C6—C7—C8—O149.3 (2)
C6—C1—C2—C30.4 (3)C6—C7—C8—N2131.47 (14)
C1—C2—C3—C40.0 (3)N2—N1—C9—C10174.13 (11)
C1—C2—C3—F1179.98 (16)N1—C9—C10—C11166.80 (12)
C2—C3—C4—C50.5 (3)N1—C9—C10—C1514.1 (2)
F1—C3—C4—C5179.50 (14)C15—C10—C11—C120.0 (2)
C3—C4—C5—C60.6 (2)C9—C10—C11—C12179.11 (13)
C2—C1—C6—C50.3 (2)C10—C11—C12—C130.3 (2)
C2—C1—C6—C7179.85 (14)C11—C12—C13—F2178.96 (15)
C4—C5—C6—C10.2 (2)C11—C12—C13—C140.3 (3)
C4—C5—C6—C7179.62 (13)F2—C13—C14—C15179.36 (15)
C1—C6—C7—C8102.93 (16)C12—C13—C14—C150.1 (3)
C5—C6—C7—C876.90 (18)C13—C14—C15—C100.5 (2)
N1—N2—C8—O19.9 (2)C11—C10—C15—C140.4 (2)
N1—N2—C8—C7169.41 (12)C9—C10—C15—C14179.50 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O1i0.892 (15)2.013 (15)2.8841 (14)165.2 (14)
C4—H4···O1ii0.92 (2)2.47 (2)3.370 (2)168 (2)
C1—H1···Cg1iii0.98 (2)2.92 (2)3.7025 (18)138.0 (15)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC15H12F2N2O
Mr274.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8754 (15), 12.5349 (13), 7.7093 (8)
β (°) 93.566 (2)
V3)1338.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.85 × 0.26 × 0.12
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.915, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
17153, 4415, 2586
Rint0.026
(sin θ/λ)max1)0.734
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.153, 1.02
No. of reflections4415
No. of parameters229
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N1···O1i0.892 (15)2.013 (15)2.8841 (14)165.2 (14)
C4—H4···O1ii0.92 (2)2.47 (2)3.370 (2)168 (2)
C1—H1···Cg1iii0.98 (2)2.92 (2)3.7025 (18)138.0 (15)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, B. X., Zhanz, S. L. & Miao, J. Y. (2008). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef Google Scholar
First citationLi, T.-Y. & Qu, Y.-G. (2011). Acta Cryst. E67, o330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. (2011). Acta Cryst. E67, o301.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds