organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-2-oxo­ethyl 3-(tri­fluoro­meth­yl)benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 23 September 2011; accepted 26 September 2011; online 5 October 2011)

In the title compound, C16H10F4O3, the fluoro­form group is disordered over two orientations with an occupancy ratio of 0.834 (4):0.166 (4). The dihedral angle between the two aromatic rings is 20.34 (9)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into layers lying parallel to the bc plane.

Related literature

For background to the chemistry of phenacyl benzoate deriv­atives, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1528.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10F4O3

  • Mr = 326.24

  • Monoclinic, P 21 /c

  • a = 14.7694 (19) Å

  • b = 12.1602 (16) Å

  • c = 8.0929 (10) Å

  • β = 95.886 (2)°

  • V = 1445.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.38 × 0.25 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.990

  • 18790 measured reflections

  • 4815 independent reflections

  • 2841 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.182

  • S = 1.04

  • 4815 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.50 3.263 (2) 139
C8—H8A⋯O1ii 0.97 2.55 3.502 (2) 169
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTLand PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, phenacyl benzoate is a derivative of an acid formed by reaction between acid and phenacyl bromide. They find applications in the field of synthetic chemistry (Huang et al., 1996; Gandhi et al., 1995) such as synthesis of oxazoles, imidazoles and benzoxazepines. They are also useful for photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka et al., 2002; Litera et al., 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

In the molecular structure (Fig. 1), the fluoro form group is disordered over two orientations with an occupancy ratio of 0.834 (4):0.166 (4). The two phenyl rings (C1–C6 & C10–C15) make a dihedral angle of 20.34 (9)°. Bond lengths (Allen et al., 1987) and angles are within normal range and are comparable to the related structures (Fun et al., 2011).

The crystal packing is shown in Fig. 2. Intermolecular C5—H5A···O3 and C8—H8A···O1 hydrogen bonds (Table 1) linked the molecules into layers parallel to bc plane.

Related literature top

For background to the chemistry of phenacyl benzoate derivatives, see: Huang et al. (1996); Gandhi et al. (1995); Ruzicka et al. (2002); Litera et al. (2006); Sheehan & Umezaw (1973). For bond-length data, see: Allen et al. (1987). For related structure, see: Fun et al. (2011).

Experimental top

A mixture of 3-(trifluoromethyl)benzoic acid (1.0 g, 0.0052 mol), potassium carbonate (0.78 g, 0.0057 mol) and 2-bromo-1-(4-fluorophenyl)ethanone (1.12 g, 0.0052 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate begin to separate out. These were collected by filtration and recrystallized from ethanol to yield colourles blocks. Yield: 1.6 g, 93.5%. M.p: 369–370 K.

Refinement top

The fluoro form group is disordered over two orientations, with a final refined occupancy ratio of 0.834 (4):0.166 (4). All H atoms were positioned geometrically [C–H = 0.93 or 0.97 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Only the major disordered components are shown.
2-(4-Fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate top
Crystal data top
C16H10F4O3F(000) = 664
Mr = 326.24Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4165 reflections
a = 14.7694 (19) Åθ = 2.2–27.2°
b = 12.1602 (16) ŵ = 0.14 mm1
c = 8.0929 (10) ÅT = 296 K
β = 95.886 (2)°Block, colourless
V = 1445.8 (3) Å30.38 × 0.25 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4815 independent reflections
Radiation source: fine-focus sealed tube2841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 31.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.950, Tmax = 0.990k = 1717
18790 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.3289P]
where P = (Fo2 + 2Fc2)/3
4815 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H10F4O3V = 1445.8 (3) Å3
Mr = 326.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.7694 (19) ŵ = 0.14 mm1
b = 12.1602 (16) ÅT = 296 K
c = 8.0929 (10) Å0.38 × 0.25 × 0.07 mm
β = 95.886 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4815 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2841 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.990Rint = 0.028
18790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
4815 reflectionsΔρmin = 0.35 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.41559 (16)0.37665 (19)0.5044 (2)0.1144 (9)0.834 (4)
F20.44559 (19)0.25120 (16)0.3326 (4)0.1179 (11)0.834 (4)
F30.53719 (16)0.3931 (3)0.3405 (5)0.1359 (12)0.834 (4)
F1X0.5096 (11)0.4001 (13)0.4146 (18)0.110 (5)*0.166 (4)
F2X0.4251 (10)0.2913 (17)0.413 (2)0.137 (6)*0.166 (4)
F3X0.5187 (7)0.2898 (8)0.2308 (12)0.096 (3)*0.166 (4)
F40.27124 (10)0.35096 (15)0.5827 (2)0.1118 (6)
O10.18686 (10)0.27074 (10)0.0004 (2)0.0756 (4)
O20.15270 (8)0.43444 (10)0.10304 (15)0.0578 (3)
O30.02656 (9)0.56904 (9)0.18644 (16)0.0623 (3)
C10.11779 (12)0.51838 (14)0.3751 (2)0.0522 (4)
H1A0.10710.59220.35430.063*
C20.18848 (13)0.48938 (17)0.4648 (2)0.0628 (5)
H2A0.22570.54270.50500.075*
C30.20243 (14)0.38007 (19)0.4931 (3)0.0707 (5)
C40.14948 (14)0.29857 (17)0.4363 (3)0.0720 (5)
H4A0.16090.22500.45770.086*
C50.07894 (13)0.32825 (14)0.3467 (2)0.0577 (4)
H5A0.04230.27410.30710.069*
C60.06199 (11)0.43833 (12)0.31499 (18)0.0447 (3)
C70.01478 (11)0.47363 (12)0.22220 (19)0.0458 (3)
C80.07752 (12)0.38408 (13)0.1730 (2)0.0523 (4)
H8A0.09940.34080.26960.063*
H8B0.04510.33560.09210.063*
C90.20286 (12)0.36718 (13)0.0189 (2)0.0520 (4)
C100.27900 (11)0.42548 (13)0.0491 (2)0.0502 (4)
C110.30026 (13)0.53430 (15)0.0112 (3)0.0658 (5)
H11A0.26760.57270.06240.079*
C120.36985 (16)0.58564 (18)0.0826 (3)0.0818 (7)
H12A0.38330.65890.05810.098*
C130.41962 (15)0.52905 (18)0.1900 (3)0.0753 (6)
H13A0.46650.56390.23790.090*
C140.39943 (13)0.42070 (16)0.2259 (2)0.0604 (4)
C150.32944 (12)0.36853 (14)0.1566 (2)0.0550 (4)
H15A0.31610.29530.18200.066*
C160.45169 (18)0.3601 (2)0.3439 (4)0.0866 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.153 (2)0.1219 (18)0.0750 (12)0.0103 (13)0.0431 (12)0.0150 (11)
F20.162 (2)0.0723 (12)0.1333 (19)0.0433 (13)0.0827 (18)0.0078 (12)
F30.0656 (13)0.194 (3)0.156 (3)0.0032 (14)0.0486 (15)0.064 (2)
F40.0863 (10)0.1217 (13)0.1375 (13)0.0144 (9)0.0607 (9)0.0101 (10)
O10.0871 (10)0.0428 (7)0.1035 (11)0.0067 (6)0.0413 (8)0.0073 (7)
O20.0601 (7)0.0439 (6)0.0729 (8)0.0040 (5)0.0234 (6)0.0052 (5)
O30.0732 (8)0.0360 (6)0.0797 (8)0.0019 (5)0.0170 (6)0.0077 (5)
C10.0571 (9)0.0416 (8)0.0576 (9)0.0070 (7)0.0040 (7)0.0007 (7)
C20.0567 (10)0.0668 (12)0.0655 (10)0.0109 (9)0.0099 (8)0.0044 (9)
C30.0556 (11)0.0800 (14)0.0791 (13)0.0082 (10)0.0185 (9)0.0035 (10)
C40.0748 (13)0.0512 (10)0.0933 (14)0.0120 (9)0.0253 (11)0.0056 (10)
C50.0640 (10)0.0377 (8)0.0735 (11)0.0022 (7)0.0171 (8)0.0004 (7)
C60.0494 (8)0.0350 (7)0.0493 (8)0.0001 (6)0.0033 (6)0.0004 (6)
C70.0542 (9)0.0338 (7)0.0491 (8)0.0008 (6)0.0042 (6)0.0008 (6)
C80.0580 (9)0.0404 (8)0.0606 (9)0.0023 (7)0.0164 (7)0.0015 (7)
C90.0572 (9)0.0425 (8)0.0574 (9)0.0022 (7)0.0117 (7)0.0004 (7)
C100.0503 (9)0.0429 (8)0.0581 (9)0.0028 (6)0.0090 (7)0.0009 (7)
C110.0630 (11)0.0483 (9)0.0894 (13)0.0005 (8)0.0236 (10)0.0124 (9)
C120.0803 (14)0.0515 (11)0.1196 (18)0.0159 (10)0.0387 (13)0.0176 (11)
C130.0658 (12)0.0634 (12)0.1012 (16)0.0088 (10)0.0307 (11)0.0018 (11)
C140.0562 (10)0.0586 (10)0.0685 (11)0.0035 (8)0.0172 (8)0.0001 (8)
C150.0596 (10)0.0446 (8)0.0623 (10)0.0038 (7)0.0129 (8)0.0012 (7)
C160.0847 (16)0.0780 (16)0.1050 (19)0.0056 (13)0.0472 (14)0.0146 (14)
Geometric parameters (Å, º) top
F1—C161.368 (4)C5—C61.391 (2)
F2—C161.331 (3)C5—H5A0.9300
F3—C161.323 (3)C6—C71.486 (2)
F1X—C161.182 (16)C7—C81.510 (2)
F2X—C161.059 (17)C8—H8A0.9700
F3X—C161.537 (10)C8—H8B0.9700
F4—C31.355 (2)C9—C101.482 (2)
O1—C91.203 (2)C10—C111.387 (2)
O2—C91.336 (2)C10—C151.387 (2)
O2—C81.4342 (19)C11—C121.379 (3)
O3—C71.2126 (18)C11—H11A0.9300
C1—C21.377 (3)C12—C131.379 (3)
C1—C61.395 (2)C12—H12A0.9300
C1—H1A0.9300C13—C141.375 (3)
C2—C31.368 (3)C13—H13A0.9300
C2—H2A0.9300C14—C151.380 (2)
C3—C41.371 (3)C14—C161.484 (3)
C4—C51.377 (3)C15—H15A0.9300
C4—H4A0.9300
C9—O2—C8115.59 (13)C12—C11—C10120.07 (17)
C2—C1—C6120.80 (16)C12—C11—H11A120.0
C2—C1—H1A119.6C10—C11—H11A120.0
C6—C1—H1A119.6C13—C12—C11120.44 (18)
C3—C2—C1118.20 (17)C13—C12—H12A119.8
C3—C2—H2A120.9C11—C12—H12A119.8
C1—C2—H2A120.9C14—C13—C12119.56 (19)
F4—C3—C2118.5 (2)C14—C13—H13A120.2
F4—C3—C4118.41 (19)C12—C13—H13A120.2
C2—C3—C4123.04 (18)C13—C14—C15120.65 (18)
C3—C4—C5118.40 (18)C13—C14—C16119.73 (19)
C3—C4—H4A120.8C15—C14—C16119.59 (19)
C5—C4—H4A120.8C14—C15—C10119.88 (16)
C4—C5—C6120.66 (17)C14—C15—H15A120.1
C4—C5—H5A119.7C10—C15—H15A120.1
C6—C5—H5A119.7F2X—C16—F1X108.5 (12)
C5—C6—C1118.91 (15)F2X—C16—F3123.5 (9)
C5—C6—C7122.18 (14)F1X—C16—F2120.0 (8)
C1—C6—C7118.90 (14)F3—C16—F2111.8 (3)
O3—C7—C6122.18 (14)F2X—C16—F161.8 (11)
O3—C7—C8121.35 (14)F1X—C16—F173.2 (7)
C6—C7—C8116.47 (12)F3—C16—F1104.7 (3)
O2—C8—C7108.49 (12)F2—C16—F1100.9 (3)
O2—C8—H8A110.0F2X—C16—C14122.9 (9)
C7—C8—H8A110.0F1X—C16—C14123.9 (8)
O2—C8—H8B110.0F3—C16—C14113.3 (2)
C7—C8—H8B110.0F2—C16—C14114.0 (2)
H8A—C8—H8B108.4F1—C16—C14111.1 (2)
O1—C9—O2123.44 (16)F2X—C16—F3X93.2 (11)
O1—C9—C10124.35 (16)F1X—C16—F3X93.6 (8)
O2—C9—C10112.20 (14)F3—C16—F3X66.5 (4)
C11—C10—C15119.39 (16)F2—C16—F3X56.6 (4)
C11—C10—C9122.52 (15)F1—C16—F3X144.3 (4)
C15—C10—C9118.08 (15)C14—C16—F3X103.9 (4)
C6—C1—C2—C30.0 (3)C15—C10—C11—C121.2 (3)
C1—C2—C3—F4179.32 (18)C9—C10—C11—C12177.7 (2)
C1—C2—C3—C40.1 (3)C10—C11—C12—C130.9 (4)
F4—C3—C4—C5179.30 (19)C11—C12—C13—C140.0 (4)
C2—C3—C4—C50.1 (3)C12—C13—C14—C150.6 (3)
C3—C4—C5—C60.0 (3)C12—C13—C14—C16178.9 (2)
C4—C5—C6—C10.1 (3)C13—C14—C15—C100.3 (3)
C4—C5—C6—C7178.56 (17)C16—C14—C15—C10178.6 (2)
C2—C1—C6—C50.2 (2)C11—C10—C15—C140.6 (3)
C2—C1—C6—C7178.58 (15)C9—C10—C15—C14178.38 (16)
C5—C6—C7—O3175.79 (16)C13—C14—C16—F2X154.8 (13)
C1—C6—C7—O35.5 (2)C15—C14—C16—F2X23.5 (14)
C5—C6—C7—C83.7 (2)C13—C14—C16—F1X2.1 (9)
C1—C6—C7—C8174.96 (14)C15—C14—C16—F1X176.3 (9)
C9—O2—C8—C7165.10 (14)C13—C14—C16—F332.0 (4)
O3—C7—C8—O27.2 (2)C15—C14—C16—F3149.7 (3)
C6—C7—C8—O2173.24 (13)C13—C14—C16—F2161.3 (3)
C8—O2—C9—O10.9 (3)C15—C14—C16—F220.3 (4)
C8—O2—C9—C10179.97 (14)C13—C14—C16—F185.5 (3)
O1—C9—C10—C11173.9 (2)C15—C14—C16—F192.9 (3)
O2—C9—C10—C117.0 (2)C13—C14—C16—F3X102.0 (5)
O1—C9—C10—C157.2 (3)C15—C14—C16—F3X79.6 (5)
O2—C9—C10—C15171.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.503.263 (2)139
C8—H8A···O1ii0.972.553.502 (2)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H10F4O3
Mr326.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.7694 (19), 12.1602 (16), 8.0929 (10)
β (°) 95.886 (2)
V3)1445.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.38 × 0.25 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
18790, 4815, 2841
Rint0.028
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.182, 1.04
No. of reflections4815
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.503.263 (2)139
C8—H8A···O1ii0.972.553.502 (2)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and SA thank Universiti Sains Malaysia for the Research University Grants (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India for providing research facilities and the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds