metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1481-m1482

{2,2′-[o-Phenyl­enebis(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}nickel(II) monohydrate

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 September 2011; accepted 27 September 2011; online 5 October 2011)

The NiII atom in the title monohydrate, [Ni(C20H14N2O2)]·H2O, is coordinated within a cis-N2O2 square-planar donor set provided by the tetra­dentate Schiff base ligand. Overall, the mol­ecule has a curved shape with the dihedral angle formed between the planes of the outer benzene rings being 13.92 (18)°. The water mol­ecule was found to be disordered over two positions [ratio 0.80 (1):0.20 (1)] and the major component is linked to the complex via an O—H⋯O hydrogen bond.

Related literature

For background to the catalytic potential of transition metal Schiff base complexes, see: Gupta & Sutar (2008)[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450. ]. For the structure of the unsolvated form of the title complex. see: Radha et al. (1985[Radha, A., Seshasayee, M., Ramalingam, K. & Aravamudan, G. (1985). Acta Cryst. C41, 1169-1171.]); Wang et al. (2003[Wang, J., Bei, F.-L., Xu, X.-Y., Yang, X.-J. & Wang, X. (2003). J. Chem. Crystallogr. 33, 845-849.]). For our recent work in this area, see: Ghaemi et al. (2011[Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445-m1446.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H14N2O2)]·H2O

  • Mr = 391.06

  • Trigonal, [R \overline 3]

  • a = 31.5519 (13) Å

  • c = 9.0255 (6) Å

  • V = 7781.3 (6) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 294 K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.732, Tmax = 1.0

  • 13452 measured reflections

  • 3897 independent reflections

  • 2850 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.04

  • 3897 reflections

  • 251 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O1 1.8865 (18)
Ni—O2 1.886 (2)
Ni—N1 1.930 (2)
Ni—N2 1.935 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O1 0.83 (1) 2.06 (2) 2.842 (4) 158 (5)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff base complexes of transition metal ions are efficient catalysts both in homo- and hetero-geneous reactions, and the activity of these complexes varies with the type of ligand, coordination sites and metal ions (Gupta & Sutar, 2008). In continuation of work in this area (Ghaemi et al., 2011), the title complex, (I), was isolated as a monohydrate and characterized crystallographically. An unsolvated form has been characterized previously (Radha et al., 1985; Wang et al., 2003).

The NiII atom in the complex exists within a cis-N2O2 donor set defined by the tetradentate Schiff base ligand, Fig. 1 and Table 1. The respective pairs of Ni—O and Ni—N bond distances are equal within experimental error. The greatest deviation from the ideal square planar angles is seen in the N1—Ni—N2 chelate angle of 83.98 (9)°. Some minor buckling is found in the N2O2 donor set with the r.m.s. deviation being 0.0548 Å. The maximum deviations from the least-squares plane are 0.0550 (10) and -0.0552 (10) Å for the N1 and N2 atoms, respectively, and the Ni atom lies 0.0002 (11) Å out of the least-squares plane. Each of the chelate rings is essentially planar. Thus, the r.m.s. deviation for the five-membered ring is 0.046 Å, and the equivalent values for the O1- and O2-containing six-membered chelate rings are 0.013 and 0.097 Å, respectively. The dihedral angle formed between the outer benzene rings is 13.92 (18)°, indicating that overall the molecule has a slightly curved shape.

The water molecule of solvation is associated with the complex molecule, forming a hydrogen bond with the O1 atom. Disorder in the position of the water molecule precludes a detailed analysis of the supramolecular structure.

Related literature top

For background to the catalytic potential of transition metal Schiff base complexes, see: Gupta & Sutar (2008). For the structure of the unsolvated form of the title complex. see: Radha et al. (1985); Wang et al.(2003). For our recent work in this area, see: Ghaemi et al. (2011).

Experimental top

N,N'-Bis(2-hydroxybenzylidene)-o-phenylenediamine was prepared by the following procedure. To a stirred ethanolic solution (30 ml) of o-phenylenediamine (0.108 g, 1 mmol), 2-hydroxybenzaldehyde (0.244 g, 2 mmol) was added. The bright-yellow solution was stirred and heated to reflux for 1 h. A yellow precipitate was obtained that was filtered off, washed with diethyl ether; yield: 75%. The title complex was obtained by the following procedure. The Schiff base ligand (0.316 g, 1 mmol) was dissolved in 20 ml e thanol. A solution of nickel(II) acetate (0.248 g, 1 mmol) in ethanol was added to the solution of ligand and the reaction mixture was refluxed for 1 h. The product washed with ethanol and air dried; yield: 85%. Dark brown blocks of the title complex were obtained from its 5:1 acetone and methanol mixture (v/v) by slow evaporation of the solvents at room temperature over several days.

Refinement top

The C-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The water molecule is disordered over two positions in a 0.80 (1):0.20 (1) ratio (from refinement). The H atoms were found for the major component only. These were very tightly restrained with O–H = 0.84±0.01 Å and H···H = 1.37 + 0.01 Å; Uiso(H) was set to 1.5Uequiv(O). The major component forms a hydrogen bond (through the H1 atom), but the H2 atom occupies a site close to that occupied by the minor component.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Only the major component of the disordered water molecule is illustrated.
{2,2'-[o-Phenylenebis(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}nickel(II) monohydrate top
Crystal data top
[Ni(C20H14N2O2)]·H2ODx = 1.502 Mg m3
Mr = 391.06Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 4020 reflections
Hall symbol: -R 3θ = 2.2–29.2°
a = 31.5519 (13) ŵ = 1.14 mm1
c = 9.0255 (6) ÅT = 294 K
V = 7781.3 (6) Å3Block, dark-brown
Z = 180.30 × 0.15 × 0.15 mm
F(000) = 3636
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3897 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2850 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 4039
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3040
Tmin = 0.732, Tmax = 1.0l = 1111
13452 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0632P)2 + 2.9091P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C20H14N2O2)]·H2OZ = 18
Mr = 391.06Mo Kα radiation
Trigonal, R3µ = 1.14 mm1
a = 31.5519 (13) ÅT = 294 K
c = 9.0255 (6) Å0.30 × 0.15 × 0.15 mm
V = 7781.3 (6) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3897 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2850 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.0Rint = 0.036
13452 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0413 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.52 e Å3
3897 reflectionsΔρmin = 0.43 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.517165 (12)0.069858 (12)0.75915 (3)0.04310 (14)
O10.46763 (7)0.05129 (7)0.9031 (2)0.0534 (5)
O20.53199 (8)0.13507 (8)0.7881 (2)0.0663 (6)
O1W0.49982 (18)0.12723 (16)1.1173 (4)0.0839 (16)0.799 (10)
O1W'0.5396 (7)0.1609 (5)1.128 (2)0.081 (6)0.201 (10)
H10.4901 (17)0.1108 (15)1.040 (3)0.122*
H20.5295 (9)0.149 (2)1.109 (7)0.122*
N10.50665 (8)0.00460 (8)0.7325 (2)0.0433 (5)
N20.56480 (8)0.08656 (8)0.6025 (2)0.0461 (5)
C10.43849 (9)0.00727 (10)0.9530 (3)0.0442 (6)
C20.40283 (10)0.00071 (12)1.0577 (3)0.0518 (7)
H2A0.40030.02761.08710.062*
C30.37181 (10)0.04400 (12)1.1177 (3)0.0558 (7)
H30.34850.04711.18650.067*
C40.37476 (11)0.08475 (12)1.0770 (3)0.0594 (8)
H40.35390.11511.11910.071*
C50.40858 (10)0.07978 (12)0.9743 (3)0.0559 (7)
H50.41040.10720.94650.067*
C60.44089 (10)0.03438 (10)0.9090 (3)0.0454 (6)
C70.47473 (10)0.03337 (10)0.8036 (3)0.0457 (6)
H70.47380.06280.78420.055*
C80.53948 (9)0.00265 (10)0.6283 (3)0.0440 (6)
C90.54204 (11)0.03870 (11)0.5953 (3)0.0523 (7)
H90.52090.06850.64030.063*
C100.57666 (12)0.03518 (13)0.4942 (3)0.0616 (8)
H100.57840.06300.47040.074*
C110.60844 (11)0.00867 (13)0.4287 (3)0.0598 (8)
H110.63170.01050.36170.072*
C120.60606 (10)0.04971 (12)0.4617 (3)0.0547 (7)
H120.62790.07950.41830.066*
C130.57083 (9)0.04682 (11)0.5604 (3)0.0446 (6)
C140.58649 (11)0.12823 (12)0.5356 (3)0.0573 (7)
H140.60620.13120.45510.069*
C150.58292 (11)0.16991 (11)0.5738 (3)0.0585 (7)
C160.60823 (15)0.21219 (14)0.4862 (4)0.0843 (11)
H160.62530.21100.40380.101*
C170.60896 (16)0.25426 (14)0.5161 (5)0.0889 (11)
H170.62550.28130.45430.107*
C180.58475 (14)0.25664 (13)0.6400 (5)0.0827 (11)
H180.58580.28580.66350.099*
C190.55925 (13)0.21665 (13)0.7291 (5)0.0774 (10)
H190.54280.21910.81120.093*
C200.55721 (11)0.17190 (11)0.6999 (3)0.0571 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0432 (2)0.0485 (2)0.0423 (2)0.02653 (17)0.00544 (14)0.00408 (14)
O10.0591 (12)0.0557 (12)0.0528 (10)0.0342 (10)0.0125 (9)0.0075 (9)
O20.0752 (15)0.0579 (13)0.0735 (13)0.0390 (12)0.0244 (11)0.0102 (11)
O1W0.104 (4)0.077 (3)0.073 (2)0.047 (3)0.0052 (19)0.0180 (17)
O1W'0.085 (12)0.046 (9)0.123 (11)0.041 (9)0.002 (8)0.005 (7)
N10.0423 (12)0.0541 (13)0.0354 (10)0.0255 (11)0.0041 (9)0.0004 (9)
N20.0407 (12)0.0571 (14)0.0417 (10)0.0252 (11)0.0020 (9)0.0009 (10)
C10.0427 (14)0.0569 (16)0.0363 (12)0.0274 (13)0.0026 (11)0.0060 (11)
C20.0486 (16)0.0707 (19)0.0419 (13)0.0341 (15)0.0008 (12)0.0025 (13)
C30.0446 (15)0.080 (2)0.0409 (13)0.0293 (16)0.0013 (12)0.0049 (14)
C40.0476 (16)0.0648 (19)0.0514 (15)0.0172 (15)0.0003 (13)0.0110 (14)
C50.0515 (17)0.0613 (18)0.0531 (15)0.0270 (15)0.0010 (13)0.0019 (14)
C60.0429 (14)0.0567 (16)0.0391 (12)0.0267 (13)0.0028 (11)0.0027 (12)
C70.0473 (15)0.0508 (15)0.0419 (12)0.0266 (13)0.0053 (12)0.0019 (12)
C80.0400 (14)0.0608 (17)0.0354 (12)0.0284 (13)0.0068 (10)0.0063 (12)
C90.0538 (16)0.0594 (18)0.0474 (14)0.0311 (15)0.0048 (13)0.0087 (13)
C100.066 (2)0.076 (2)0.0523 (16)0.0428 (18)0.0050 (15)0.0175 (16)
C110.0526 (17)0.084 (2)0.0502 (15)0.0399 (17)0.0007 (13)0.0127 (15)
C120.0471 (16)0.0686 (19)0.0464 (14)0.0274 (15)0.0010 (12)0.0033 (14)
C130.0387 (14)0.0627 (17)0.0344 (11)0.0269 (13)0.0063 (11)0.0053 (12)
C140.0477 (16)0.066 (2)0.0518 (15)0.0237 (15)0.0072 (13)0.0060 (14)
C150.0519 (17)0.0570 (18)0.0622 (17)0.0239 (15)0.0021 (14)0.0096 (14)
C160.088 (3)0.072 (2)0.085 (2)0.034 (2)0.020 (2)0.021 (2)
C170.091 (3)0.060 (2)0.103 (3)0.029 (2)0.015 (2)0.022 (2)
C180.079 (2)0.054 (2)0.115 (3)0.0332 (19)0.005 (2)0.010 (2)
C190.068 (2)0.059 (2)0.108 (3)0.0333 (18)0.014 (2)0.007 (2)
C200.0512 (17)0.0544 (18)0.0683 (18)0.0283 (15)0.0026 (14)0.0082 (15)
Geometric parameters (Å, º) top
Ni—O11.8865 (18)C6—C71.419 (4)
Ni—O21.886 (2)C7—H70.9300
Ni—N11.930 (2)C8—C91.379 (4)
Ni—N21.935 (2)C8—C131.385 (4)
O1—C11.304 (3)C9—C101.385 (4)
O2—C201.301 (3)C9—H90.9300
O1W—O1W'1.175 (15)C10—C111.372 (5)
O1W—H10.829 (10)C10—H100.9300
O1W—H20.841 (10)C11—C121.367 (4)
O1W'—H20.39 (4)C11—H110.9300
N1—C71.286 (3)C12—C131.391 (4)
N1—C81.423 (3)C12—H120.9300
N2—C141.289 (4)C14—C151.417 (4)
N2—C131.411 (3)C14—H140.9300
C1—C21.403 (4)C15—C161.406 (5)
C1—C61.410 (4)C15—C201.417 (4)
C2—C31.364 (4)C16—C171.343 (5)
C2—H2A0.9300C16—H160.9300
C3—C41.384 (4)C17—C181.378 (6)
C3—H30.9300C17—H170.9300
C4—C51.362 (4)C18—C191.368 (5)
C4—H40.9300C18—H180.9300
C5—C61.407 (4)C19—C201.406 (4)
C5—H50.9300C19—H190.9300
O2—Ni—O187.61 (9)C9—C8—C13120.4 (2)
O2—Ni—N1176.06 (9)C9—C8—N1124.8 (3)
O1—Ni—N194.63 (9)C13—C8—N1114.7 (2)
O2—Ni—N293.96 (9)C8—C9—C10118.9 (3)
O1—Ni—N2176.40 (9)C8—C9—H9120.6
N1—Ni—N283.98 (9)C10—C9—H9120.6
C1—O1—Ni127.01 (17)C11—C10—C9121.0 (3)
C20—O2—Ni126.63 (19)C11—C10—H10119.5
O1W'—O1W—H1122 (4)C9—C10—H10119.5
O1W'—O1W—H212 (4)C12—C11—C10120.2 (3)
H1—O1W—H2110.1 (18)C12—C11—H11119.9
O1W—O1W'—H227 (8)C10—C11—H11119.9
C7—N1—C8122.5 (2)C11—C12—C13119.9 (3)
C7—N1—Ni124.63 (18)C11—C12—H12120.1
C8—N1—Ni112.83 (17)C13—C12—H12120.1
C14—N2—C13122.8 (2)C8—C13—C12119.6 (3)
C14—N2—Ni124.3 (2)C8—C13—N2115.4 (2)
C13—N2—Ni112.72 (17)C12—C13—N2124.9 (3)
O1—C1—C2118.4 (3)N2—C14—C15125.8 (3)
O1—C1—C6123.9 (2)N2—C14—H14117.1
C2—C1—C6117.7 (3)C15—C14—H14117.1
C3—C2—C1121.8 (3)C16—C15—C20118.4 (3)
C3—C2—H2A119.1C16—C15—C14118.2 (3)
C1—C2—H2A119.1C20—C15—C14123.3 (3)
C2—C3—C4120.6 (3)C17—C16—C15123.1 (4)
C2—C3—H3119.7C17—C16—H16118.5
C4—C3—H3119.7C15—C16—H16118.5
C5—C4—C3119.1 (3)C16—C17—C18118.7 (4)
C5—C4—H4120.5C16—C17—H17120.6
C3—C4—H4120.5C18—C17—H17120.6
C4—C5—C6122.0 (3)C19—C18—C17120.9 (4)
C4—C5—H5119.0C19—C18—H18119.5
C6—C5—H5119.0C17—C18—H18119.5
C5—C6—C1118.8 (2)C18—C19—C20121.8 (4)
C5—C6—C7117.3 (3)C18—C19—H19119.1
C1—C6—C7123.9 (3)C20—C19—H19119.1
N1—C7—C6125.8 (3)O2—C20—C19118.9 (3)
N1—C7—H7117.1O2—C20—C15124.1 (3)
C6—C7—H7117.1C19—C20—C15117.1 (3)
O2—Ni—O1—C1178.2 (2)Ni—N1—C8—C9175.7 (2)
N1—Ni—O1—C11.4 (2)C7—N1—C8—C13179.0 (2)
N2—Ni—O1—C165.8 (15)Ni—N1—C8—C133.1 (3)
O1—Ni—O2—C20162.7 (3)C13—C8—C9—C100.4 (4)
N1—Ni—O2—C2072.5 (13)N1—C8—C9—C10178.3 (2)
N2—Ni—O2—C2014.1 (3)C8—C9—C10—C110.8 (4)
O2—Ni—N1—C7123.7 (12)C9—C10—C11—C120.6 (4)
O1—Ni—N1—C70.9 (2)C10—C11—C12—C130.9 (4)
N2—Ni—N1—C7177.6 (2)C9—C8—C13—C121.9 (4)
O2—Ni—N1—C854.1 (13)N1—C8—C13—C12177.0 (2)
O1—Ni—N1—C8178.72 (16)C9—C8—C13—N2179.9 (2)
N2—Ni—N1—C84.61 (16)N1—C8—C13—N21.2 (3)
O2—Ni—N2—C1413.2 (2)C11—C12—C13—C82.2 (4)
O1—Ni—N2—C14102.7 (14)C11—C12—C13—N2179.8 (2)
N1—Ni—N2—C14170.2 (2)C14—N2—C13—C8170.6 (2)
O2—Ni—N2—C13171.37 (17)Ni—N2—C13—C85.0 (3)
O1—Ni—N2—C1372.8 (14)C14—N2—C13—C1211.3 (4)
N1—Ni—N2—C135.26 (16)Ni—N2—C13—C12173.1 (2)
Ni—O1—C1—C2178.18 (17)C13—N2—C14—C15178.6 (3)
Ni—O1—C1—C62.5 (4)Ni—N2—C14—C156.4 (4)
O1—C1—C2—C3178.4 (2)N2—C14—C15—C16178.5 (3)
C6—C1—C2—C31.0 (4)N2—C14—C15—C204.8 (5)
C1—C2—C3—C40.3 (4)C20—C15—C16—C170.4 (6)
C2—C3—C4—C51.0 (4)C14—C15—C16—C17177.2 (4)
C3—C4—C5—C60.5 (4)C15—C16—C17—C181.5 (6)
C4—C5—C6—C10.8 (4)C16—C17—C18—C191.8 (7)
C4—C5—C6—C7179.8 (3)C17—C18—C19—C201.0 (6)
O1—C1—C6—C5177.8 (2)Ni—O2—C20—C19171.7 (2)
C2—C1—C6—C51.5 (4)Ni—O2—C20—C157.9 (4)
O1—C1—C6—C71.1 (4)C18—C19—C20—O2179.4 (3)
C2—C1—C6—C7179.5 (2)C18—C19—C20—C150.2 (5)
C8—N1—C7—C6179.9 (2)C16—C15—C20—O2179.1 (3)
Ni—N1—C7—C62.3 (4)C14—C15—C20—O24.2 (5)
C5—C6—C7—N1179.6 (2)C16—C15—C20—C190.5 (5)
C1—C6—C7—N11.5 (4)C14—C15—C20—C19176.2 (3)
C7—N1—C8—C92.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O10.83 (1)2.06 (2)2.842 (4)158 (5)

Experimental details

Crystal data
Chemical formula[Ni(C20H14N2O2)]·H2O
Mr391.06
Crystal system, space groupTrigonal, R3
Temperature (K)294
a, c (Å)31.5519 (13), 9.0255 (6)
V3)7781.3 (6)
Z18
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.732, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
13452, 3897, 2850
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.04
No. of reflections3897
No. of parameters251
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.43

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni—O11.8865 (18)Ni—N11.930 (2)
Ni—O21.886 (2)Ni—N21.935 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O10.829 (10)2.06 (2)2.842 (4)158 (5)
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.   Web of Science CrossRef CAS Google Scholar
First citationRadha, A., Seshasayee, M., Ramalingam, K. & Aravamudan, G. (1985). Acta Cryst. C41, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Bei, F.-L., Xu, X.-Y., Yang, X.-J. & Wang, X. (2003). J. Chem. Crystallogr. 33, 845–849.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1481-m1482
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds