metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1475-m1476

(Methanol-κO)(methano­lato-κO)oxido{N′-[1-(2-oxidonaphthalen-1-yl-κO)ethyl­­idene]nicotinohydrazidato-κ2N′,O}vanadium(V)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China, and bHuzhou No. 11 Middle School, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 26 September 2011; accepted 27 September 2011; online 5 October 2011)

The title oxovanadium(V) complex, [V(C18H13N3O2)(CH3O)O(CH3OH)], was obtained by the reaction of 1-(2-hy­droxy­naphthalen-1-yl)ethanone, nicotinohydrazide and vanadyl sulfate in methanol. The VV atom is six-coordinated by the N,N,O-tridentate Schiff base ligand, one methano­late O atom, one methanol O atom and one oxide O atom, forming a distorted octa­hedral geometry. The methanol O atom lies trans to the V=O group. The dihedral angle between the pyridine ring and the naphthalene ring system is 31.52 (10)°. In the crystal, inversion dimers linked by pairs of O—H⋯N hydrogen bonds occur.

Related literature

For related Schiff base complexes, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar oxidovanadium complexes, see: Deng et al. (2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214-m2216.]); Gao et al. (2005[Gao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978-m980.]); Huo et al. (2004[Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606-m608.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C18H13N3O2)(CH3O)O(CH4O)]

  • Mr = 433.33

  • Triclinic, [P \overline 1]

  • a = 8.056 (2) Å

  • b = 8.931 (3) Å

  • c = 14.204 (3) Å

  • α = 92.312 (1)°

  • β = 95.418 (2)°

  • γ = 105.481 (2)°

  • V = 978.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.913

  • 6564 measured reflections

  • 4117 independent reflections

  • 3350 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.05

  • 4117 reflections

  • 268 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

V1—O3 1.5826 (17)
V1—O5 1.7796 (15)
V1—O1 1.8555 (15)
V1—O2 1.9716 (15)
V1—N1 2.1143 (17)
V1—O4 2.3162 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3i 0.84 (1) 1.90 (1) 2.734 (3) 173 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into new Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear oxovanadium(V) complex, Fig. 1. The V atom in the complex is six-coordinated by the NNO donor atoms of the Schiff base ligand, one methoxy O atom, one methanol O atom, and one oxo O atom, forming an octahedral geometry. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar vanadium complexes (Deng et al., 2005; Gao et al., 2005; Huo et al., 2004).

Related literature top

For related Schiff base complexes, see: Wang (2009); Wang & Ye (2011). For similar oxidovanadium complexes, see: Deng et al. (2005); Gao et al. (2005); Huo et al. (2004).

Experimental top

1-(2-Hydroxynaphthalen-1-yl)ethanone (1.0 mmol, 0.19 g), nicotinohydrazide (1.0 mmol, 0.14 g), and vanadyl sulfate (1.0 mmol, 0.16 g) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 10 min to give a clear brown solution. After keeping the solution in air for a week, brown block-shaped crystals were formed at the bottom of the vessel.

Refinement top

The methanol H atom was located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.85 (1) Å. The remaining H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
(Methanol-κO)(methanolato-κO)oxido{N'-[1-(2- oxidonaphthalen-1-yl-κO)ethylidene]nicotinohydrazidato- κ2N',O}vanadium(V) top
Crystal data top
[V(C18H13N3O2)(CH3O)O(CH4O)]Z = 2
Mr = 433.33F(000) = 448
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.056 (2) ÅCell parameters from 2743 reflections
b = 8.931 (3) Åθ = 2.6–28.3°
c = 14.204 (3) ŵ = 0.55 mm1
α = 92.312 (1)°T = 298 K
β = 95.418 (2)°Block, brown
γ = 105.481 (2)°0.18 × 0.17 × 0.17 mm
V = 978.2 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
4117 independent reflections
Radiation source: fine-focus sealed tube3350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.908, Tmax = 0.913k = 1111
6564 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.4135P]
where P = (Fo2 + 2Fc2)/3
4117 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[V(C18H13N3O2)(CH3O)O(CH4O)]γ = 105.481 (2)°
Mr = 433.33V = 978.2 (4) Å3
Triclinic, P1Z = 2
a = 8.056 (2) ÅMo Kα radiation
b = 8.931 (3) ŵ = 0.55 mm1
c = 14.204 (3) ÅT = 298 K
α = 92.312 (1)°0.18 × 0.17 × 0.17 mm
β = 95.418 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4117 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3350 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.913Rint = 0.019
6564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
4117 reflectionsΔρmin = 0.34 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.72590 (5)0.34810 (4)0.26717 (2)0.03238 (12)
N10.8461 (2)0.2127 (2)0.18547 (11)0.0313 (4)
N20.7882 (2)0.1918 (2)0.08861 (11)0.0334 (4)
N30.3240 (3)0.2650 (3)0.12462 (14)0.0468 (5)
O10.9408 (2)0.40094 (18)0.33860 (10)0.0393 (4)
O20.58351 (19)0.29999 (18)0.14338 (10)0.0373 (4)
O30.6236 (2)0.20826 (19)0.32235 (11)0.0436 (4)
O40.8772 (2)0.5456 (2)0.18195 (13)0.0488 (4)
O50.6277 (2)0.49724 (18)0.29763 (11)0.0394 (4)
C11.0365 (3)0.1721 (3)0.31538 (14)0.0320 (5)
C21.0262 (3)0.3008 (3)0.37105 (15)0.0335 (5)
C31.1149 (3)0.3354 (3)0.46378 (15)0.0393 (5)
H31.11470.42630.49810.047*
C41.1993 (3)0.2377 (3)0.50247 (16)0.0428 (6)
H4A1.25870.26340.56280.051*
C51.1996 (3)0.0961 (3)0.45323 (15)0.0375 (5)
C61.2751 (3)0.0119 (3)0.49719 (17)0.0460 (6)
H61.33330.01350.55790.055*
C71.2650 (3)0.1525 (3)0.45303 (18)0.0498 (6)
H71.31840.22140.48230.060*
C81.1733 (3)0.1919 (3)0.36306 (18)0.0495 (6)
H81.16080.28990.33380.059*
C91.1014 (3)0.0885 (3)0.31728 (16)0.0418 (5)
H91.04240.11740.25700.050*
C101.1148 (3)0.0606 (3)0.35915 (14)0.0332 (5)
C110.9751 (3)0.1582 (2)0.21387 (14)0.0315 (5)
C121.0689 (3)0.0947 (3)0.14163 (16)0.0453 (6)
H12A1.00060.00710.11720.068*
H12B1.17880.08820.17100.068*
H12C1.08700.16270.09070.068*
C130.6477 (3)0.2374 (2)0.07614 (14)0.0318 (5)
C140.5526 (3)0.2159 (2)0.02017 (14)0.0315 (4)
C150.5965 (3)0.1316 (3)0.09313 (15)0.0371 (5)
H150.68720.08600.08270.045*
C160.5042 (3)0.1159 (3)0.18146 (16)0.0432 (6)
H160.53210.06050.23170.052*
C170.3698 (3)0.1840 (3)0.19387 (16)0.0472 (6)
H170.30780.17300.25360.057*
C180.4158 (3)0.2800 (3)0.03938 (16)0.0401 (5)
H180.38580.33660.00950.048*
C191.0283 (4)0.5696 (4)0.1364 (2)0.0628 (8)
H19A1.12190.55870.18030.094*
H19B1.05700.67240.11410.094*
H19C1.00950.49410.08370.094*
C200.4631 (4)0.4778 (4)0.3286 (3)0.0748 (10)
H20A0.37550.43750.27640.112*
H20B0.45280.57640.35290.112*
H20C0.44860.40610.37780.112*
H40.814 (4)0.600 (3)0.159 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0342 (2)0.0342 (2)0.0302 (2)0.01284 (16)0.00180 (14)0.00170 (14)
N10.0326 (9)0.0343 (10)0.0267 (8)0.0111 (8)0.0022 (7)0.0020 (7)
N20.0369 (10)0.0382 (10)0.0261 (8)0.0144 (8)0.0017 (7)0.0019 (7)
N30.0436 (12)0.0538 (13)0.0434 (11)0.0169 (10)0.0063 (9)0.0081 (9)
O10.0416 (9)0.0370 (9)0.0399 (8)0.0169 (7)0.0064 (7)0.0082 (7)
O20.0356 (8)0.0473 (10)0.0319 (8)0.0179 (7)0.0009 (6)0.0026 (7)
O30.0529 (10)0.0412 (10)0.0363 (8)0.0113 (8)0.0070 (7)0.0025 (7)
O40.0403 (10)0.0485 (11)0.0640 (11)0.0180 (8)0.0131 (8)0.0204 (8)
O50.0347 (8)0.0400 (9)0.0461 (9)0.0141 (7)0.0082 (7)0.0033 (7)
C10.0280 (11)0.0370 (12)0.0307 (10)0.0102 (9)0.0004 (8)0.0004 (9)
C20.0289 (11)0.0371 (12)0.0341 (11)0.0097 (9)0.0010 (8)0.0013 (9)
C30.0355 (12)0.0458 (14)0.0349 (11)0.0113 (10)0.0010 (9)0.0093 (10)
C40.0364 (12)0.0565 (16)0.0313 (11)0.0096 (11)0.0050 (9)0.0038 (10)
C50.0288 (11)0.0479 (14)0.0342 (11)0.0083 (10)0.0002 (9)0.0051 (10)
C60.0382 (13)0.0586 (17)0.0407 (13)0.0137 (12)0.0033 (10)0.0101 (11)
C70.0482 (15)0.0541 (16)0.0521 (15)0.0223 (13)0.0008 (12)0.0165 (12)
C80.0559 (16)0.0446 (15)0.0523 (15)0.0216 (12)0.0038 (12)0.0051 (11)
C90.0427 (13)0.0447 (14)0.0393 (12)0.0168 (11)0.0017 (10)0.0000 (10)
C100.0262 (10)0.0400 (12)0.0335 (11)0.0096 (9)0.0024 (8)0.0027 (9)
C110.0316 (11)0.0319 (11)0.0313 (10)0.0110 (9)0.0003 (8)0.0018 (8)
C120.0479 (14)0.0608 (16)0.0358 (12)0.0306 (13)0.0049 (10)0.0019 (11)
C130.0337 (11)0.0312 (11)0.0294 (10)0.0080 (9)0.0004 (8)0.0013 (8)
C140.0313 (11)0.0289 (11)0.0318 (10)0.0043 (9)0.0009 (8)0.0045 (8)
C150.0370 (12)0.0378 (13)0.0356 (11)0.0095 (10)0.0026 (9)0.0006 (9)
C160.0467 (14)0.0448 (14)0.0337 (12)0.0062 (11)0.0014 (10)0.0018 (10)
C170.0488 (15)0.0519 (16)0.0341 (12)0.0053 (12)0.0068 (11)0.0067 (11)
C180.0432 (13)0.0436 (14)0.0351 (12)0.0165 (11)0.0002 (10)0.0029 (10)
C190.0587 (18)0.0611 (19)0.0673 (19)0.0090 (14)0.0232 (14)0.0018 (14)
C200.0444 (16)0.069 (2)0.117 (3)0.0212 (15)0.0286 (17)0.0109 (19)
Geometric parameters (Å, º) top
V1—O31.5826 (17)C6—H60.9300
V1—O51.7796 (15)C7—C81.396 (3)
V1—O11.8555 (15)C7—H70.9300
V1—O21.9716 (15)C8—C91.368 (3)
V1—N12.1143 (17)C8—H80.9300
V1—O42.3162 (18)C9—C101.409 (3)
N1—C111.299 (3)C9—H90.9300
N1—N21.399 (2)C11—C121.508 (3)
N2—C131.301 (3)C12—H12A0.9600
N3—C171.334 (3)C12—H12B0.9600
N3—C181.340 (3)C12—H12C0.9600
O1—C21.337 (3)C13—C141.482 (3)
O2—C131.302 (2)C14—C181.382 (3)
O4—C191.403 (3)C14—C151.384 (3)
O4—H40.843 (10)C15—C161.379 (3)
O5—C201.406 (3)C15—H150.9300
C1—C21.394 (3)C16—C171.377 (3)
C1—C101.444 (3)C16—H160.9300
C1—C111.469 (3)C17—H170.9300
C2—C31.419 (3)C18—H180.9300
C3—C41.346 (3)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.421 (3)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.407 (3)C20—H20B0.9600
C5—C101.425 (3)C20—H20C0.9600
C6—C71.360 (4)
O3—V1—O5101.71 (8)C9—C8—H8119.5
O3—V1—O1100.85 (8)C7—C8—H8119.5
O5—V1—O1105.37 (7)C8—C9—C10121.6 (2)
O3—V1—O299.22 (8)C8—C9—H9119.2
O5—V1—O291.49 (7)C10—C9—H9119.2
O1—V1—O2150.41 (7)C9—C10—C5116.9 (2)
O3—V1—N195.53 (8)C9—C10—C1123.88 (19)
O5—V1—N1159.33 (7)C5—C10—C1119.1 (2)
O1—V1—N182.18 (7)N1—C11—C1119.21 (18)
O2—V1—N174.42 (6)N1—C11—C12119.49 (18)
O3—V1—O4177.71 (7)C1—C11—C12121.08 (18)
O5—V1—O480.30 (7)C11—C12—H12A109.5
O1—V1—O479.58 (7)C11—C12—H12B109.5
O2—V1—O479.56 (7)H12A—C12—H12B109.5
N1—V1—O482.28 (7)C11—C12—H12C109.5
C11—N1—N2117.13 (17)H12A—C12—H12C109.5
C11—N1—V1127.25 (13)H12B—C12—H12C109.5
N2—N1—V1115.38 (12)N2—C13—O2124.12 (18)
C13—N2—N1107.79 (16)N2—C13—C14118.44 (18)
C17—N3—C18117.3 (2)O2—C13—C14117.43 (18)
C2—O1—V1125.76 (14)C18—C14—C15117.97 (19)
C13—O2—V1116.38 (13)C18—C14—C13120.36 (19)
C19—O4—V1134.37 (17)C15—C14—C13121.66 (19)
C19—O4—H4110 (2)C16—C15—C14119.2 (2)
V1—O4—H4112 (2)C16—C15—H15120.4
C20—O5—V1127.10 (17)C14—C15—H15120.4
C2—C1—C10118.48 (18)C17—C16—C15118.7 (2)
C2—C1—C11119.09 (19)C17—C16—H16120.7
C10—C1—C11122.37 (18)C15—C16—H16120.7
O1—C2—C1122.17 (18)N3—C17—C16123.3 (2)
O1—C2—C3117.00 (19)N3—C17—H17118.3
C1—C2—C3120.7 (2)C16—C17—H17118.3
C4—C3—C2120.5 (2)N3—C18—C14123.5 (2)
C4—C3—H3119.8N3—C18—H18118.2
C2—C3—H3119.8C14—C18—H18118.2
C3—C4—C5121.5 (2)O4—C19—H19A109.5
C3—C4—H4A119.2O4—C19—H19B109.5
C5—C4—H4A119.2H19A—C19—H19B109.5
C6—C5—C4121.2 (2)O4—C19—H19C109.5
C6—C5—C10119.8 (2)H19A—C19—H19C109.5
C4—C5—C10119.0 (2)H19B—C19—H19C109.5
C7—C6—C5121.5 (2)O5—C20—H20A109.5
C7—C6—H6119.2O5—C20—H20B109.5
C5—C6—H6119.2H20A—C20—H20B109.5
C6—C7—C8119.0 (2)O5—C20—H20C109.5
C6—C7—H7120.5H20A—C20—H20C109.5
C8—C7—H7120.5H20B—C20—H20C109.5
C9—C8—C7121.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.84 (1)1.90 (1)2.734 (3)173 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[V(C18H13N3O2)(CH3O)O(CH4O)]
Mr433.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.056 (2), 8.931 (3), 14.204 (3)
α, β, γ (°)92.312 (1), 95.418 (2), 105.481 (2)
V3)978.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
6564, 4117, 3350
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.05
No. of reflections4117
No. of parameters268
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O31.5826 (17)V1—O21.9716 (15)
V1—O51.7796 (15)V1—N12.1143 (17)
V1—O11.8555 (15)V1—O42.3162 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.843 (10)1.896 (11)2.734 (3)173 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Technological Innovation Project (sinfonietta talent plan) of college students in Zhejiang Province (No. 2010R42525 & No. 2011R425027).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978–m980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1475-m1476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds