organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1H-benzimidazol-1-yl)methane monohydrate

aFaculty of Science, ZheJiang A & F University, Lin'An 311300, People's Republic of China, and bTianmu College of ZheJiang A & F University, Lin'An 311300, People's Republic of China
*Correspondence e-mail: jinsw@zafu.edu.cn

(Received 27 September 2011; accepted 10 October 2011; online 12 October 2011)

In the title compound, C15H12N4·H2O, the organic mol­ecule displays approximate non-crystallographic twofold symmetry: the dihedral angle between the benzimidazole ring systems is 81.37 (12)°. In the crystal, the components are linked by O—H⋯N hydrogen bonds, forming chains propagating in [101]. Aromatic ππ stacking [centroid–centroid separation = 3.595 (2) Å] helps to consolidate the structure.

Related literature

For background to coordination polymers containing bridged imidazole systems, see: Jin & Chen (2007[Jin, S. W. & Chen, W. Z. (2007). Inorg. Chim. Acta, 12, 3756-3764.]); Ma et al. (2003[Ma, J. F., Yang, J., Zheng, G. L., Li, L. & Liu, J. F. (2003). Inorg. Chem. 42, 7531-7534.]). For the synthesis, see: Lavandera et al. (1988[Lavandera, J. L., Cabildo, P. & Claramunt, R. M. (1988). J. Heterocycl. Chem. 25, 771-778.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12N4·H2O

  • Mr = 266.30

  • Triclinic, [P \overline 1]

  • a = 7.3035 (6) Å

  • b = 8.9731 (8) Å

  • c = 11.1943 (10) Å

  • α = 103.578 (2)°

  • β = 103.408 (2)°

  • γ = 96.934 (1)°

  • V = 681.67 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.23 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.980

  • 3472 measured reflections

  • 2350 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.03

  • 2350 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯N4i 0.85 2.14 2.940 (4) 157
O1—H1C⋯N2ii 0.85 2.12 2.923 (3) 157
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bridged imidazole derivatives are a good choice of a N-donor ligand, and the flexible nature of the spacers allows the ligands to bend and rotate when coordinating to metal centers so as to conform to the coordination geometries of the metal ions. Significant progress has been achieved by us (Jin et al., 2007) and others (Ma et al., 2003) in this area.

As an extension of our research in bridged imidazole derivatives, here in this paper, we report the structure of the title compound, (I).

The r.m.s. deviations of the two benzimidazole rings are 0.003 Å and 0.007Å. They make dihedral angle of 81.37 (12)° with each other, indicating the almost perpendicular arrangement of both rings.

In the crystal, the water molecule and the bis(N-benzimidazolyl)methane molecule are connected together by the O—H···N hydrogen bonds to form a chain.

Related literature top

For background to coordination polymers containing bridged imidazole systems, see: Jin & Chen (2007); Ma et al. (2003). For the synthesis, see: Lavandera et al. (1988).

Experimental top

The starting material bis(N-benzimidazolyl)methane was prepared according to the published procedure (Lavandera et al., 1988). Crystals of bis(N-benzimidazolyl)methane monohydrate were formed during an experiment to recrystallize the title compound. A solid of bis(N-benzimidazolyl)methane (24.8 mg, 0.10 mmol) in 4 ml of dmf and 1 ml of water was stirred for about 1 h at room temperature to dissolve it, then the solution was filtered into a test tube. The solution was left standing at room temperature for three weaks, colorless block crystals were isolated after slow evaporation of the solution in air at ambient temperature. The crystals were collected and dried in air to give the title compound.

Refinement top

H atoms bonded to the O atoms were located in a difference Fourier map, the O—H distance was kept 0.85 Å and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Two-dimensional corrugated sheet structure formed through π-π interactions.
Bis(1H-benzimidazol-1-yl)methane monohydrate top
Crystal data top
C15H12N4·H2OZ = 2
Mr = 266.30F(000) = 280
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3035 (6) ÅCell parameters from 733 reflections
b = 8.9731 (8) Åθ = 2.4–21.4°
c = 11.1943 (10) ŵ = 0.09 mm1
α = 103.578 (2)°T = 298 K
β = 103.408 (2)°Block, colorless
γ = 96.934 (1)°0.40 × 0.38 × 0.23 mm
V = 681.67 (10) Å3
Data collection top
Bruker SMART CCD
diffractometer
2350 independent reflections
Radiation source: fine-focus sealed tube1280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 78
Tmin = 0.966, Tmax = 0.980k = 910
3472 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.2485P]
where P = (Fo2 + 2Fc2)/3
2350 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H12N4·H2Oγ = 96.934 (1)°
Mr = 266.30V = 681.67 (10) Å3
Triclinic, P1Z = 2
a = 7.3035 (6) ÅMo Kα radiation
b = 8.9731 (8) ŵ = 0.09 mm1
c = 11.1943 (10) ÅT = 298 K
α = 103.578 (2)°0.40 × 0.38 × 0.23 mm
β = 103.408 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2350 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1280 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.980Rint = 0.026
3472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2350 reflectionsΔρmin = 0.23 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0524 (4)0.0854 (3)0.6722 (2)0.0493 (7)
N20.2207 (4)0.1766 (3)0.5192 (2)0.0608 (8)
N30.0643 (4)0.1058 (3)0.8964 (2)0.0519 (7)
N40.2853 (4)0.2315 (4)1.0804 (3)0.0759 (9)
O10.5456 (4)0.1029 (3)0.2553 (2)0.0940 (9)
H1C0.60080.14850.33340.113*
H1D0.47760.16200.22380.113*
C10.2270 (5)0.0924 (4)0.6003 (3)0.0593 (9)
H10.34110.04210.60790.071*
C20.0259 (5)0.2298 (4)0.5402 (3)0.0488 (8)
C30.0822 (4)0.1746 (3)0.6359 (3)0.0445 (7)
C40.2790 (5)0.2106 (4)0.6748 (3)0.0642 (10)
H40.34930.17280.73800.077*
C50.3680 (6)0.3060 (5)0.6156 (4)0.0838 (12)
H50.50080.33430.64040.101*
C60.2613 (6)0.3602 (5)0.5194 (4)0.0806 (12)
H60.32520.42240.48050.097*
C70.0655 (6)0.3244 (4)0.4807 (3)0.0637 (10)
H70.00410.36170.41700.076*
C80.2462 (5)0.1256 (5)0.9711 (3)0.0686 (10)
H80.33560.06830.94630.082*
C90.1143 (5)0.2873 (4)1.0789 (3)0.0583 (9)
C100.0250 (4)0.2100 (4)0.9655 (3)0.0482 (8)
C110.2091 (5)0.2400 (4)0.9394 (3)0.0622 (9)
H110.30050.18710.86340.075*
C120.2505 (6)0.3520 (5)1.0315 (4)0.0808 (12)
H120.37320.37501.01750.097*
C130.1141 (8)0.4315 (5)1.1446 (4)0.0867 (13)
H130.14730.50661.20450.104*
C140.0688 (7)0.4015 (5)1.1699 (3)0.0788 (12)
H140.15990.45581.24560.095*
C150.0163 (5)0.0014 (4)0.7692 (3)0.0576 (9)
H15A0.13560.06180.76640.069*
H15B0.07130.06820.75050.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0491 (16)0.0624 (17)0.0391 (14)0.0136 (13)0.0125 (12)0.0168 (13)
N20.0571 (19)0.087 (2)0.0422 (15)0.0220 (15)0.0100 (13)0.0243 (15)
N30.0533 (17)0.0689 (18)0.0401 (14)0.0216 (14)0.0122 (13)0.0225 (13)
N40.065 (2)0.112 (3)0.0501 (18)0.0118 (18)0.0035 (15)0.0338 (19)
O10.103 (2)0.098 (2)0.0688 (16)0.0330 (17)0.0108 (15)0.0273 (15)
C10.049 (2)0.085 (3)0.0428 (18)0.0131 (18)0.0125 (16)0.0165 (18)
C20.056 (2)0.054 (2)0.0377 (16)0.0181 (16)0.0131 (15)0.0107 (15)
C30.0490 (19)0.0477 (18)0.0417 (16)0.0188 (15)0.0159 (14)0.0132 (14)
C40.050 (2)0.079 (3)0.071 (2)0.0227 (18)0.0155 (18)0.031 (2)
C50.057 (2)0.092 (3)0.110 (3)0.011 (2)0.031 (2)0.036 (3)
C60.087 (3)0.083 (3)0.094 (3)0.020 (2)0.045 (3)0.044 (2)
C70.081 (3)0.065 (2)0.057 (2)0.025 (2)0.026 (2)0.0269 (18)
C80.056 (2)0.103 (3)0.062 (2)0.033 (2)0.0165 (19)0.043 (2)
C90.066 (2)0.069 (2)0.0407 (18)0.0001 (19)0.0132 (17)0.0239 (18)
C100.053 (2)0.058 (2)0.0396 (17)0.0110 (16)0.0147 (15)0.0212 (15)
C110.061 (2)0.070 (2)0.057 (2)0.0191 (19)0.0156 (17)0.0177 (18)
C120.083 (3)0.079 (3)0.096 (3)0.029 (2)0.046 (3)0.025 (3)
C130.117 (4)0.067 (3)0.080 (3)0.010 (3)0.050 (3)0.009 (2)
C140.106 (4)0.078 (3)0.043 (2)0.012 (2)0.021 (2)0.011 (2)
C150.074 (2)0.063 (2)0.0438 (18)0.0218 (18)0.0201 (16)0.0208 (17)
Geometric parameters (Å, º) top
N1—C11.358 (4)C5—C61.397 (5)
N1—C31.385 (4)C5—H50.9300
N1—C151.455 (4)C6—C71.368 (5)
N2—C11.316 (4)C6—H60.9300
N2—C21.391 (4)C7—H70.9300
N3—C81.362 (4)C8—H80.9300
N3—C101.393 (4)C9—C101.395 (4)
N3—C151.450 (4)C9—C141.396 (5)
N4—C81.308 (4)C10—C111.381 (4)
N4—C91.398 (4)C11—C121.377 (5)
O1—H1C0.8500C11—H110.9300
O1—H1D0.8500C12—C131.387 (6)
C1—H10.9300C12—H120.9300
C2—C71.394 (4)C13—C141.373 (6)
C2—C31.403 (4)C13—H130.9300
C3—C41.376 (4)C14—H140.9300
C4—C51.387 (5)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C1—N1—C3106.7 (2)C2—C7—H7121.2
C1—N1—C15126.0 (3)N4—C8—N3114.7 (3)
C3—N1—C15127.3 (3)N4—C8—H8122.7
C1—N2—C2103.8 (3)N3—C8—H8122.7
C8—N3—C10105.8 (3)C10—C9—C14119.3 (3)
C8—N3—C15126.7 (3)C10—C9—N4110.3 (3)
C10—N3—C15127.4 (3)C14—C9—N4130.3 (3)
C8—N4—C9103.9 (3)C11—C10—N3132.0 (3)
H1C—O1—H1D108.9C11—C10—C9122.7 (3)
N2—C1—N1114.2 (3)N3—C10—C9105.3 (3)
N2—C1—H1122.9C12—C11—C10116.6 (3)
N1—C1—H1122.9C12—C11—H11121.7
N2—C2—C7129.1 (3)C10—C11—H11121.7
N2—C2—C3110.7 (3)C11—C12—C13121.8 (4)
C7—C2—C3120.1 (3)C11—C12—H12119.1
C4—C3—N1133.1 (3)C13—C12—H12119.1
C4—C3—C2122.2 (3)C14—C13—C12121.3 (4)
N1—C3—C2104.7 (3)C14—C13—H13119.4
C3—C4—C5117.0 (3)C12—C13—H13119.4
C3—C4—H4121.5C13—C14—C9118.2 (4)
C5—C4—H4121.5C13—C14—H14120.9
C4—C5—C6121.1 (4)C9—C14—H14120.9
C4—C5—H5119.5N3—C15—N1112.2 (3)
C6—C5—H5119.5N3—C15—H15A109.2
C7—C6—C5121.9 (4)N1—C15—H15A109.2
C7—C6—H6119.1N3—C15—H15B109.2
C5—C6—H6119.1N1—C15—H15B109.2
C6—C7—C2117.6 (3)H15A—C15—H15B107.9
C6—C7—H7121.2
C2—N2—C1—N10.4 (3)C15—N3—C8—N4177.6 (3)
C3—N1—C1—N20.6 (3)C8—N4—C9—C100.2 (4)
C15—N1—C1—N2179.9 (3)C8—N4—C9—C14179.9 (3)
C1—N2—C2—C7179.9 (3)C8—N3—C10—C11178.7 (3)
C1—N2—C2—C30.0 (3)C15—N3—C10—C113.4 (5)
C1—N1—C3—C4179.8 (3)C8—N3—C10—C90.5 (3)
C15—N1—C3—C40.5 (5)C15—N3—C10—C9177.5 (3)
C1—N1—C3—C20.5 (3)C14—C9—C10—C110.9 (5)
C15—N1—C3—C2179.8 (3)N4—C9—C10—C11178.8 (3)
N2—C2—C3—C4180.0 (3)C14—C9—C10—N3179.8 (3)
C7—C2—C3—C40.2 (4)N4—C9—C10—N30.4 (3)
N2—C2—C3—N10.3 (3)N3—C10—C11—C12179.3 (3)
C7—C2—C3—N1179.6 (3)C9—C10—C11—C120.2 (5)
N1—C3—C4—C5179.9 (3)C10—C11—C12—C130.3 (5)
C2—C3—C4—C50.4 (5)C11—C12—C13—C140.2 (6)
C3—C4—C5—C61.0 (5)C12—C13—C14—C90.5 (6)
C4—C5—C6—C71.1 (6)C10—C9—C14—C131.0 (5)
C5—C6—C7—C20.5 (6)N4—C9—C14—C13178.7 (3)
N2—C2—C7—C6180.0 (3)C8—N3—C15—N1110.3 (3)
C3—C2—C7—C60.1 (5)C10—N3—C15—N167.3 (4)
C9—N4—C8—N30.2 (4)C1—N1—C15—N3112.9 (3)
C10—N3—C8—N40.4 (4)C3—N1—C15—N366.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N4i0.852.142.940 (4)157
O1—H1C···N2ii0.852.122.923 (3)157
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H12N4·H2O
Mr266.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3035 (6), 8.9731 (8), 11.1943 (10)
α, β, γ (°)103.578 (2), 103.408 (2), 96.934 (1)
V3)681.67 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.38 × 0.23
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.966, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3472, 2350, 1280
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.03
No. of reflections2350
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···N4i0.852.142.940 (4)157
O1—H1C···N2ii0.852.122.923 (3)157
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the Innovation Project of Zhejiang A & F University.

References

First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, S. W. & Chen, W. Z. (2007). Inorg. Chim. Acta, 12, 3756–3764.  Web of Science CSD CrossRef Google Scholar
First citationLavandera, J. L., Cabildo, P. & Claramunt, R. M. (1988). J. Heterocycl. Chem. 25, 771–778.  Google Scholar
First citationMa, J. F., Yang, J., Zheng, G. L., Li, L. & Liu, J. F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds