organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2879-o2880

5-[(E)-4-Fluoro­benzyl­­idene]-8-(4-fluoro­phen­yl)-2-hy­dr­oxy-9-phenyl-3,10-di­aza­hexa­cyclo­[10.7.1.13,7.02,11.07,11.016,20]henicosa-1(20),12,14,16,18-pentaen-6-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 September 2011; accepted 3 October 2011; online 8 October 2011)

In the title compound, C38H28F2N2O2, the piperidine ring adopts a chair conformation and the pyrrolidine ring adopts an envelope conformation with the spiro C atom as the flap atom. The naphthalene ring system makes dihedral angles of 39.89 (8), 35.33 (8) and 46.45 (8)° with the two fluoro-substituted benzene rings and the phenyl ring, respectively, while the dihedral angle between the two fluoro-substituted benzene rings is 75.21 (10)°. An intra­molecular O—H⋯N hydrogen bond generates an S(5) ring. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the c-axis direction. Weak C—H⋯π inter­actions further consolidate the structure.

Related literature

For further details of 1,3-dipolar cyclo­addition, see: Suresh Kumar et al. (2011[Suresh Kumar, R., Osman, H., Perumal, S., Menëndez, J. C., Ali, M. A., Ismail, R. & Choon, T. S. (2011). Tetrahedron, 67, 3132-3139.]); Jayashankaran et al. (2005[Jayashankaran, J., Manian, R. D. R. S., Venkatesan, R. & Raghunathan, R. (2005). Tetrahedron, 61, 5595-5598.]); Manian et al. (2006[Manian, R. D. R. S., Jayashankaran, J. & Raghunathan, R. (2006). Tetrahedron, 62, 12357-12362.]); Williams & Fegley (1992[Williams, R. M. & Fegley, G. J. (1992). Tetrahedron Lett. 33, 6755-6758.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C38H28F2N2O2

  • Mr = 582.62

  • Triclinic, [P \overline 1]

  • a = 9.3269 (3) Å

  • b = 11.8635 (4) Å

  • c = 14.2095 (4) Å

  • α = 75.904 (2)°

  • β = 74.726 (2)°

  • γ = 77.627 (2)°

  • V = 1452.01 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.987

  • 16981 measured reflections

  • 5915 independent reflections

  • 4221 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.03

  • 5915 reflections

  • 405 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5, Cg6, Cg7 and Cg9 are the centroids of the C1–C5/C10, C5–C10, C22–C27 and C34–C39 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.90 (2) 1.97 (2) 2.636 (2) 129.6 (17)
C13—H13A⋯O2i 0.98 2.53 3.499 (2) 171
C20—H20B⋯O2i 0.97 2.55 3.522 (2) 179
C23—H23A⋯O1ii 0.93 2.52 3.410 (2) 162
C35—H35A⋯O2i 0.93 2.46 3.383 (2) 174
C30—H30ACg5iii 0.93 2.94 3.836 (2) 168
C31—H31ACg6iii 0.93 2.91 3.609 (3) 133
C38—H38ACg7iv 0.93 2.92 3.836 (2) 168
C7—H7ACg9v 0.93 2.85 3.400 (3) 119
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1; (iii) -x, -y, -z; (iv) x, y-1, z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloaddition provides a facile route for the synthesis of many dispiroheterocyclic systems through the cycloaddition reaction of azomethine ylides with the definite dipolarophiles (Suresh Kumar et al., 2011; Jayashankaran et al., 2005; Manian et al., 2006). This method is widely used as one of the key steps for the synthesis of natural products such as alkaloids and pharmacologically important compounds (Williams & Fegley, 1992). The significance of these heterocycles prompted us to investigate the crystal structure determination of the title compound and report the results in this paper.

The asymmetric unit of the title compound is shown in Fig. 1. The piperidine (N1/C15/C17–C20) ring adopts a chair conformation [Q = 0.6152 (17) Å; θ = 39.34 (16)° and ϕ = 298.6 (2)°; Cremer & Pople, 1975] and the pyrrolidine (N2/C13–C16) ring adopts an envelope conformation with the spiro C14 atom as the flap atom (displacement -0.230 (2) Å) and with puckering parameters, Q = 0.3614 (17) Å; and ϕ = 252.3 (3)°. The naphthalene (C1–C10) ring makes dihedral angles of 39.89 (8)°, 35.33 (8)° and 46.45 (8)° with the two fluoro-substituted (C22–C27)/(C34–C39) phenyl rings and the benzene (C28–C33) ring, repectively. The corresponding angle between the two fluoro-substituted phenyl (C22–C27)/(C34–C39) rings is 75.21 (10)°.

In the crystal, (Fig. 2), the molecules are connected via C—H···O (Table 1) hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. Furthermore, the crystal structure is stabilized by weak C—H···π interactions involving the centroids of the Cg5 (C1–C5/C10); Cg6 (C5–C10); Cg7 (C22–C27) and Cg9 (C34–C39) rings.

Related literature top

For further details of 1,3-dipolar cycloaddition, see: Suresh Kumar et al. (2011); Jayashankaran et al. (2005); Manian et al. (2006); Williams & Fegley (1992). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 3,5-bis[(E)-(4-fluorophenyl)methylidene]tetrahydro-4 (1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol), and phenyl glycine (1 mmol) were dissolved in methanol (5 mL) and refluxed in a water bath for 1 hour. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered and washed with water to obtain the product which was further purified by recrystallisation from ethyl acetate to yield colourless blocks.

Refinement top

Atoms H1O2 and H1N2 were located from a difference Fourier maps and refined freely [N–H = 0.91 (2) Å and O–H = 0.90 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I). H atoms not involved in hydrogen bonding are omitted.
5-[(E)-4-Fluorobenzylidene]-8-(4-fluorophenyl)-2-hydroxy-9- phenyl-3,10-diazahexacyclo[10.7.1.13,7.02,11.07,11.016,20]henicosa- 1(20),12,14,16,18-pentaen-6-one top
Crystal data top
C38H28F2N2O2Z = 2
Mr = 582.62F(000) = 608
Triclinic, P1Dx = 1.333 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3269 (3) ÅCell parameters from 4467 reflections
b = 11.8635 (4) Åθ = 2.6–27.1°
c = 14.2095 (4) ŵ = 0.09 mm1
α = 75.904 (2)°T = 296 K
β = 74.726 (2)°Block, colourless
γ = 77.627 (2)°0.39 × 0.25 × 0.15 mm
V = 1452.01 (8) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5915 independent reflections
Radiation source: fine-focus sealed tube4221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.965, Tmax = 0.987k = 1414
16981 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.1929P]
where P = (Fo2 + 2Fc2)/3
5915 reflections(Δ/σ)max < 0.001
405 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C38H28F2N2O2γ = 77.627 (2)°
Mr = 582.62V = 1452.01 (8) Å3
Triclinic, P1Z = 2
a = 9.3269 (3) ÅMo Kα radiation
b = 11.8635 (4) ŵ = 0.09 mm1
c = 14.2095 (4) ÅT = 296 K
α = 75.904 (2)°0.39 × 0.25 × 0.15 mm
β = 74.726 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4221 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.987Rint = 0.033
16981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
5915 reflectionsΔρmin = 0.20 e Å3
405 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.31463 (18)0.41565 (14)0.63374 (12)0.1021 (5)
F20.56249 (16)0.63672 (10)0.27077 (12)0.0887 (4)
O10.19391 (15)0.13595 (11)0.41318 (8)0.0499 (3)
O20.40049 (15)0.12921 (11)0.03939 (8)0.0451 (3)
N10.46807 (15)0.06737 (11)0.19282 (9)0.0358 (3)
N20.17795 (18)0.00560 (12)0.10268 (9)0.0376 (3)
C10.08709 (18)0.11620 (13)0.24038 (10)0.0338 (3)
C20.0512 (2)0.09298 (16)0.29527 (12)0.0451 (4)
H2A0.07740.01890.30520.054*
C30.1538 (2)0.18431 (18)0.33664 (14)0.0553 (5)
H3A0.24630.16780.37650.066*
C40.1225 (2)0.29506 (18)0.32049 (14)0.0556 (5)
H4A0.19360.35260.34860.067*
C50.0179 (2)0.32359 (15)0.26106 (12)0.0445 (4)
C60.0639 (3)0.43508 (16)0.22979 (15)0.0567 (5)
H6A0.00060.50020.25070.068*
C70.2025 (3)0.44862 (16)0.16899 (16)0.0583 (5)
H7A0.22880.52360.14810.070*
C80.3068 (2)0.35270 (15)0.13694 (13)0.0477 (4)
H8A0.40130.36360.09700.057*
C90.26533 (19)0.24316 (14)0.16619 (11)0.0370 (4)
C100.12161 (19)0.23011 (13)0.22507 (11)0.0359 (4)
C110.34421 (18)0.12516 (13)0.14237 (10)0.0344 (4)
C130.23219 (19)0.12206 (13)0.10589 (11)0.0350 (4)
H13A0.33280.13100.06210.042*
C140.24873 (18)0.17285 (13)0.21430 (10)0.0333 (3)
H14A0.14730.17910.25540.040*
C150.30126 (17)0.07313 (13)0.24017 (10)0.0316 (3)
C160.21783 (18)0.04178 (13)0.18294 (10)0.0325 (3)
C170.26517 (18)0.06749 (13)0.34904 (11)0.0343 (4)
C180.31892 (18)0.03074 (13)0.37188 (11)0.0345 (4)
C190.44652 (19)0.08607 (15)0.29507 (11)0.0381 (4)
H19A0.42710.17010.29340.046*
H19B0.53970.05430.31710.046*
C200.46882 (18)0.05780 (14)0.19841 (12)0.0373 (4)
H20A0.53120.10690.24260.045*
H20B0.50580.07780.13310.045*
C210.2415 (2)0.06910 (14)0.45470 (11)0.0397 (4)
H21A0.16040.03110.49030.048*
C220.26546 (19)0.16222 (15)0.49779 (11)0.0397 (4)
C230.1410 (2)0.23249 (19)0.54396 (15)0.0630 (6)
H23A0.04480.22190.54450.076*
C240.1579 (3)0.3180 (2)0.58917 (18)0.0773 (7)
H24A0.07400.36560.61920.093*
C250.2994 (3)0.33166 (19)0.58914 (15)0.0619 (6)
C260.4247 (2)0.26458 (17)0.54571 (14)0.0540 (5)
H26A0.52010.27530.54680.065*
C270.4069 (2)0.17962 (16)0.49972 (12)0.0457 (4)
H27A0.49180.13320.46940.055*
C280.1336 (2)0.18155 (14)0.07132 (12)0.0394 (4)
C290.1885 (2)0.22550 (17)0.01543 (13)0.0551 (5)
H29A0.28320.21310.05430.066*
C300.1038 (3)0.28786 (19)0.04489 (18)0.0736 (7)
H30A0.14200.31720.10310.088*
C310.0349 (3)0.30622 (19)0.0110 (2)0.0766 (7)
H31A0.09040.34950.00840.092*
C320.0932 (3)0.2612 (2)0.09581 (17)0.0706 (6)
H32A0.18890.27250.13330.085*
C330.0093 (2)0.19859 (18)0.12561 (14)0.0551 (5)
H33A0.04970.16760.18290.066*
C340.34205 (19)0.29458 (13)0.23043 (11)0.0361 (4)
C350.4672 (2)0.33131 (15)0.16058 (13)0.0463 (4)
H35A0.50040.27800.10290.056*
C360.5438 (2)0.44564 (16)0.17465 (16)0.0561 (5)
H36A0.62840.46920.12770.067*
C370.4923 (2)0.52266 (15)0.25895 (17)0.0574 (5)
C380.3723 (3)0.49040 (17)0.33078 (16)0.0604 (5)
H38A0.34140.54440.38850.073*
C390.2972 (2)0.37606 (15)0.31647 (13)0.0485 (4)
H39A0.21500.35310.36530.058*
H1O20.334 (2)0.0994 (18)0.0207 (15)0.068 (7)*
H1N20.078 (2)0.0265 (17)0.1045 (15)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1084 (12)0.1056 (11)0.1283 (12)0.0232 (9)0.0316 (10)0.0792 (10)
F20.0824 (10)0.0379 (6)0.1443 (12)0.0081 (6)0.0506 (9)0.0034 (7)
O10.0685 (9)0.0515 (7)0.0319 (6)0.0280 (6)0.0041 (6)0.0042 (5)
O20.0559 (8)0.0511 (7)0.0276 (6)0.0205 (6)0.0018 (5)0.0083 (5)
N10.0367 (8)0.0365 (7)0.0340 (7)0.0090 (6)0.0025 (6)0.0097 (5)
N20.0495 (9)0.0322 (7)0.0346 (7)0.0078 (7)0.0143 (6)0.0067 (5)
C10.0363 (9)0.0351 (8)0.0293 (7)0.0041 (7)0.0074 (7)0.0062 (6)
C20.0418 (10)0.0445 (10)0.0446 (9)0.0072 (8)0.0053 (8)0.0054 (8)
C30.0398 (11)0.0667 (13)0.0510 (11)0.0010 (9)0.0002 (9)0.0138 (9)
C40.0485 (12)0.0602 (13)0.0569 (11)0.0106 (10)0.0112 (9)0.0270 (9)
C50.0515 (11)0.0416 (10)0.0458 (9)0.0031 (8)0.0189 (8)0.0194 (8)
C60.0693 (14)0.0393 (10)0.0703 (13)0.0041 (10)0.0281 (11)0.0247 (9)
C70.0788 (16)0.0332 (10)0.0742 (13)0.0109 (10)0.0338 (12)0.0117 (9)
C80.0576 (12)0.0374 (10)0.0532 (10)0.0153 (9)0.0162 (9)0.0075 (8)
C90.0470 (10)0.0334 (8)0.0338 (8)0.0086 (7)0.0122 (7)0.0073 (6)
C100.0439 (10)0.0344 (8)0.0322 (8)0.0044 (7)0.0127 (7)0.0087 (6)
C110.0393 (9)0.0351 (8)0.0281 (7)0.0104 (7)0.0012 (7)0.0076 (6)
C130.0413 (9)0.0325 (8)0.0317 (8)0.0078 (7)0.0060 (7)0.0080 (6)
C140.0366 (9)0.0332 (8)0.0307 (7)0.0083 (7)0.0056 (6)0.0074 (6)
C150.0354 (9)0.0300 (8)0.0291 (7)0.0066 (7)0.0052 (6)0.0063 (6)
C160.0390 (9)0.0296 (8)0.0290 (7)0.0085 (7)0.0059 (6)0.0056 (6)
C170.0358 (9)0.0348 (8)0.0311 (8)0.0061 (7)0.0070 (7)0.0047 (6)
C180.0372 (9)0.0362 (8)0.0307 (8)0.0071 (7)0.0087 (7)0.0056 (6)
C190.0381 (9)0.0423 (9)0.0369 (8)0.0115 (7)0.0075 (7)0.0102 (7)
C200.0374 (9)0.0366 (9)0.0364 (8)0.0048 (7)0.0037 (7)0.0101 (7)
C210.0435 (10)0.0435 (9)0.0339 (8)0.0133 (8)0.0071 (7)0.0069 (7)
C220.0447 (10)0.0454 (10)0.0301 (8)0.0108 (8)0.0043 (7)0.0107 (7)
C230.0445 (11)0.0833 (15)0.0718 (13)0.0175 (11)0.0027 (10)0.0456 (12)
C240.0604 (14)0.0917 (17)0.0944 (17)0.0149 (13)0.0037 (12)0.0661 (14)
C250.0756 (15)0.0627 (13)0.0626 (12)0.0189 (11)0.0156 (11)0.0335 (10)
C260.0565 (12)0.0600 (12)0.0558 (11)0.0145 (10)0.0243 (10)0.0136 (9)
C270.0448 (10)0.0504 (11)0.0451 (9)0.0045 (8)0.0149 (8)0.0130 (8)
C280.0511 (11)0.0321 (8)0.0381 (8)0.0064 (7)0.0169 (8)0.0055 (7)
C290.0700 (14)0.0553 (12)0.0475 (10)0.0040 (10)0.0224 (10)0.0192 (9)
C300.109 (2)0.0606 (14)0.0721 (14)0.0011 (14)0.0513 (15)0.0295 (11)
C310.113 (2)0.0535 (13)0.0912 (17)0.0260 (14)0.0699 (17)0.0037 (12)
C320.0741 (15)0.0735 (15)0.0764 (15)0.0347 (12)0.0385 (13)0.0060 (12)
C330.0587 (13)0.0617 (12)0.0526 (11)0.0207 (10)0.0174 (10)0.0107 (9)
C340.0414 (9)0.0313 (8)0.0395 (8)0.0102 (7)0.0120 (7)0.0074 (7)
C350.0485 (11)0.0342 (9)0.0546 (10)0.0083 (8)0.0073 (9)0.0087 (8)
C360.0456 (11)0.0436 (11)0.0806 (14)0.0014 (9)0.0146 (10)0.0195 (10)
C370.0573 (13)0.0317 (10)0.0896 (15)0.0016 (9)0.0389 (12)0.0045 (10)
C380.0750 (15)0.0423 (11)0.0630 (12)0.0126 (10)0.0296 (11)0.0096 (9)
C390.0589 (12)0.0414 (10)0.0442 (9)0.0119 (9)0.0133 (9)0.0013 (8)
Geometric parameters (Å, º) top
F1—C251.353 (2)C17—C181.495 (2)
F2—C371.362 (2)C18—C211.336 (2)
O1—C171.2181 (18)C18—C191.530 (2)
O2—C111.4110 (17)C19—H19A0.9700
O2—H1O20.90 (2)C19—H19B0.9700
N1—C201.466 (2)C20—H20A0.9700
N1—C111.475 (2)C20—H20B0.9700
N1—C191.4781 (19)C21—C221.467 (2)
N2—C161.4675 (19)C21—H21A0.9300
N2—C131.484 (2)C22—C271.386 (2)
N2—H1N20.91 (2)C22—C231.387 (2)
C1—C21.366 (2)C23—C241.380 (3)
C1—C101.408 (2)C23—H23A0.9300
C1—C161.516 (2)C24—C251.363 (3)
C2—C31.416 (2)C24—H24A0.9300
C2—H2A0.9300C25—C261.357 (3)
C3—C41.359 (3)C26—C271.386 (2)
C3—H3A0.9300C26—H26A0.9300
C4—C51.418 (3)C27—H27A0.9300
C4—H4A0.9300C28—C331.382 (3)
C5—C101.408 (2)C28—C291.386 (2)
C5—C61.410 (3)C29—C301.387 (3)
C6—C71.370 (3)C29—H29A0.9300
C6—H6A0.9300C30—C311.359 (3)
C7—C81.412 (3)C30—H30A0.9300
C7—H7A0.9300C31—C321.371 (3)
C8—C91.371 (2)C31—H31A0.9300
C8—H8A0.9300C32—C331.386 (3)
C9—C101.398 (2)C32—H32A0.9300
C9—C111.508 (2)C33—H33A0.9300
C11—C161.601 (2)C34—C351.385 (2)
C13—C281.506 (2)C34—C391.390 (2)
C13—C141.547 (2)C35—C361.385 (2)
C13—H13A0.9800C35—H35A0.9300
C14—C341.517 (2)C36—C371.361 (3)
C14—C151.526 (2)C36—H36A0.9300
C14—H14A0.9800C37—C381.359 (3)
C15—C171.509 (2)C38—C391.381 (3)
C15—C201.552 (2)C38—H38A0.9300
C15—C161.570 (2)C39—H39A0.9300
C11—O2—H1O2104.9 (13)C21—C18—C19125.49 (15)
C20—N1—C11102.48 (12)C17—C18—C19118.04 (12)
C20—N1—C19108.12 (12)N1—C19—C18115.25 (13)
C11—N1—C19115.60 (12)N1—C19—H19A108.5
C16—N2—C13109.96 (12)C18—C19—H19A108.5
C16—N2—H1N2111.2 (13)N1—C19—H19B108.5
C13—N2—H1N2113.2 (13)C18—C19—H19B108.5
C2—C1—C10119.20 (15)H19A—C19—H19B107.5
C2—C1—C16131.77 (15)N1—C20—C15104.08 (12)
C10—C1—C16108.91 (13)N1—C20—H20A110.9
C1—C2—C3118.44 (17)C15—C20—H20A110.9
C1—C2—H2A120.8N1—C20—H20B110.9
C3—C2—H2A120.8C15—C20—H20B110.9
C4—C3—C2122.67 (18)H20A—C20—H20B109.0
C4—C3—H3A118.7C18—C21—C22129.62 (16)
C2—C3—H3A118.7C18—C21—H21A115.2
C3—C4—C5120.48 (16)C22—C21—H21A115.2
C3—C4—H4A119.8C27—C22—C23117.87 (16)
C5—C4—H4A119.8C27—C22—C21123.22 (15)
C10—C5—C6115.95 (17)C23—C22—C21118.81 (16)
C10—C5—C4116.03 (16)C24—C23—C22120.89 (19)
C6—C5—C4127.95 (17)C24—C23—H23A119.6
C7—C6—C5120.74 (17)C22—C23—H23A119.6
C7—C6—H6A119.6C25—C24—C23119.03 (19)
C5—C6—H6A119.6C25—C24—H24A120.5
C6—C7—C8122.24 (18)C23—C24—H24A120.5
C6—C7—H7A118.9F1—C25—C26119.1 (2)
C8—C7—H7A118.9F1—C25—C24118.54 (19)
C9—C8—C7118.34 (18)C26—C25—C24122.37 (18)
C9—C8—H8A120.8C25—C26—C27118.26 (18)
C7—C8—H8A120.8C25—C26—H26A120.9
C8—C9—C10119.39 (16)C27—C26—H26A120.9
C8—C9—C11132.10 (16)C26—C27—C22121.57 (17)
C10—C9—C11108.41 (13)C26—C27—H27A119.2
C9—C10—C5123.22 (16)C22—C27—H27A119.2
C9—C10—C1113.65 (14)C33—C28—C29118.09 (17)
C5—C10—C1123.03 (16)C33—C28—C13122.14 (15)
O2—C11—N1107.74 (12)C29—C28—C13119.71 (17)
O2—C11—C9112.93 (12)C28—C29—C30120.6 (2)
N1—C11—C9115.59 (12)C28—C29—H29A119.7
O2—C11—C16109.11 (12)C30—C29—H29A119.7
N1—C11—C16106.18 (11)C31—C30—C29120.3 (2)
C9—C11—C16104.93 (12)C31—C30—H30A119.9
N2—C13—C28113.74 (14)C29—C30—H30A119.9
N2—C13—C14104.58 (11)C30—C31—C32120.2 (2)
C28—C13—C14114.42 (13)C30—C31—H31A119.9
N2—C13—H13A107.9C32—C31—H31A119.9
C28—C13—H13A107.9C31—C32—C33119.9 (2)
C14—C13—H13A107.9C31—C32—H32A120.1
C34—C14—C15117.75 (13)C33—C32—H32A120.1
C34—C14—C13114.81 (12)C28—C33—C32120.91 (19)
C15—C14—C13102.44 (11)C28—C33—H33A119.5
C34—C14—H14A107.1C32—C33—H33A119.5
C15—C14—H14A107.1C35—C34—C39117.66 (16)
C13—C14—H14A107.1C35—C34—C14122.94 (14)
C17—C15—C14116.38 (12)C39—C34—C14119.31 (15)
C17—C15—C20106.73 (12)C36—C35—C34121.48 (17)
C14—C15—C20117.62 (12)C36—C35—H35A119.3
C17—C15—C16108.69 (12)C34—C35—H35A119.3
C14—C15—C16104.15 (12)C37—C36—C35118.36 (19)
C20—C15—C16101.98 (12)C37—C36—H36A120.8
N2—C16—C1112.71 (13)C35—C36—H36A120.8
N2—C16—C15105.47 (12)C38—C37—C36122.46 (17)
C1—C16—C15119.60 (12)C38—C37—F2118.92 (19)
N2—C16—C11112.65 (12)C36—C37—F2118.6 (2)
C1—C16—C11103.30 (12)C37—C38—C39118.78 (18)
C15—C16—C11102.82 (12)C37—C38—H38A120.6
O1—C17—C18122.52 (13)C39—C38—H38A120.6
O1—C17—C15122.42 (14)C38—C39—C34121.21 (18)
C18—C17—C15115.02 (13)C38—C39—H39A119.4
C21—C18—C17116.22 (14)C34—C39—H39A119.4
C10—C1—C2—C31.3 (2)N1—C11—C16—N2124.04 (13)
C16—C1—C2—C3176.77 (16)C9—C11—C16—N2113.09 (14)
C1—C2—C3—C42.8 (3)O2—C11—C16—C1130.08 (13)
C2—C3—C4—C50.7 (3)N1—C11—C16—C1114.06 (12)
C3—C4—C5—C102.7 (3)C9—C11—C16—C18.81 (14)
C3—C4—C5—C6174.06 (18)O2—C11—C16—C15104.87 (13)
C10—C5—C6—C70.7 (3)N1—C11—C16—C1511.00 (14)
C4—C5—C6—C7177.53 (18)C9—C11—C16—C15133.86 (12)
C5—C6—C7—C81.7 (3)C14—C15—C17—O12.3 (2)
C6—C7—C8—C91.6 (3)C20—C15—C17—O1135.86 (16)
C7—C8—C9—C100.9 (2)C16—C15—C17—O1114.85 (17)
C7—C8—C9—C11176.86 (17)C14—C15—C17—C18179.67 (13)
C8—C9—C10—C53.5 (2)C20—C15—C17—C1846.08 (17)
C11—C9—C10—C5179.68 (14)C16—C15—C17—C1863.21 (17)
C8—C9—C10—C1173.13 (14)O1—C17—C18—C2124.6 (2)
C11—C9—C10—C13.69 (18)C15—C17—C18—C21153.42 (15)
C6—C5—C10—C93.3 (2)O1—C17—C18—C19160.88 (15)
C4—C5—C10—C9179.46 (15)C15—C17—C18—C1921.1 (2)
C6—C5—C10—C1172.97 (15)C20—N1—C19—C1847.68 (17)
C4—C5—C10—C14.2 (2)C11—N1—C19—C1866.45 (17)
C2—C1—C10—C9178.85 (14)C21—C18—C19—N1153.25 (16)
C16—C1—C10—C92.45 (18)C17—C18—C19—N120.7 (2)
C2—C1—C10—C52.2 (2)C11—N1—C20—C1548.50 (13)
C16—C1—C10—C5174.19 (14)C19—N1—C20—C1574.05 (15)
C20—N1—C11—O280.31 (13)C17—C15—C20—N173.35 (14)
C19—N1—C11—O2162.36 (12)C14—C15—C20—N1153.74 (12)
C20—N1—C11—C9152.34 (13)C16—C15—C20—N140.60 (14)
C19—N1—C11—C935.01 (18)C17—C18—C21—C22179.54 (16)
C20—N1—C11—C1636.48 (13)C19—C18—C21—C226.4 (3)
C19—N1—C11—C1680.86 (14)C18—C21—C22—C2740.3 (3)
C8—C9—C11—O249.7 (2)C18—C21—C22—C23143.4 (2)
C10—C9—C11—O2126.53 (14)C27—C22—C23—C240.8 (3)
C8—C9—C11—N175.0 (2)C21—C22—C23—C24177.3 (2)
C10—C9—C11—N1108.77 (15)C22—C23—C24—C250.9 (4)
C8—C9—C11—C16168.46 (17)C23—C24—C25—F1179.9 (2)
C10—C9—C11—C167.80 (16)C23—C24—C25—C260.4 (4)
C16—N2—C13—C28148.04 (13)F1—C25—C26—C27179.51 (18)
C16—N2—C13—C1422.51 (17)C24—C25—C26—C270.2 (3)
N2—C13—C14—C34164.10 (13)C25—C26—C27—C220.2 (3)
C28—C13—C14—C3470.80 (18)C23—C22—C27—C260.3 (3)
N2—C13—C14—C1535.25 (16)C21—C22—C27—C26176.57 (16)
C28—C13—C14—C15160.35 (13)N2—C13—C28—C3369.3 (2)
C34—C14—C15—C1778.91 (17)C14—C13—C28—C3350.8 (2)
C13—C14—C15—C17154.11 (13)N2—C13—C28—C29113.44 (17)
C34—C14—C15—C2049.57 (18)C14—C13—C28—C29126.44 (16)
C13—C14—C15—C2077.41 (16)C33—C28—C29—C301.9 (3)
C34—C14—C15—C16161.50 (12)C13—C28—C29—C30175.42 (17)
C13—C14—C15—C1634.52 (14)C28—C29—C30—C310.3 (3)
C13—N2—C16—C1132.84 (14)C29—C30—C31—C321.3 (3)
C13—N2—C16—C150.66 (16)C30—C31—C32—C331.2 (3)
C13—N2—C16—C11110.74 (14)C29—C28—C33—C322.1 (3)
C2—C1—C16—N260.9 (2)C13—C28—C33—C32175.23 (17)
C10—C1—C16—N2114.87 (14)C31—C32—C33—C280.5 (3)
C2—C1—C16—C1563.9 (2)C15—C14—C34—C3585.00 (19)
C10—C1—C16—C15120.36 (14)C13—C14—C34—C3535.7 (2)
C2—C1—C16—C11177.22 (16)C15—C14—C34—C3998.43 (18)
C10—C1—C16—C117.00 (15)C13—C14—C34—C39140.82 (16)
C17—C15—C16—N2146.38 (13)C39—C34—C35—C361.1 (3)
C14—C15—C16—N221.70 (15)C14—C34—C35—C36175.49 (16)
C20—C15—C16—N2101.13 (13)C34—C35—C36—C370.7 (3)
C17—C15—C16—C118.22 (19)C35—C36—C37—C382.3 (3)
C14—C15—C16—C1106.46 (15)C35—C36—C37—F2176.64 (16)
C20—C15—C16—C1130.71 (14)C36—C37—C38—C391.9 (3)
C17—C15—C16—C1195.40 (13)F2—C37—C38—C39177.05 (17)
C14—C15—C16—C11139.92 (11)C37—C38—C39—C340.1 (3)
C20—C15—C16—C1117.09 (13)C35—C34—C39—C381.6 (3)
O2—C11—C16—N28.18 (18)C14—C34—C39—C38175.19 (16)
Hydrogen-bond geometry (Å, º) top
Cg5, Cg6, Cg7 and Cg9 are the centroids of the C1–C5/C10, C5–C10, C22–C27 and C34–C39 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.90 (2)1.97 (2)2.636 (2)129.6 (17)
C13—H13A···O2i0.982.533.499 (2)171
C20—H20B···O2i0.972.553.522 (2)179
C23—H23A···O1ii0.932.523.410 (2)162
C35—H35A···O2i0.932.463.383 (2)174
C30—H30A···Cg5iii0.932.943.836 (2)168
C31—H31A···Cg6iii0.932.913.609 (3)133
C38—H38A···Cg7iv0.932.923.836 (2)168
C7—H7A···Cg9v0.932.853.400 (3)119
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC38H28F2N2O2
Mr582.62
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.3269 (3), 11.8635 (4), 14.2095 (4)
α, β, γ (°)75.904 (2), 74.726 (2), 77.627 (2)
V3)1452.01 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.965, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
16981, 5915, 4221
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.03
No. of reflections5915
No. of parameters405
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5, Cg6, Cg7 and Cg9 are the centroids of the C1–C5/C10, C5–C10, C22–C27 and C34–C39 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.90 (2)1.97 (2)2.636 (2)129.6 (17)
C13—H13A···O2i0.982.533.499 (2)171
C20—H20B···O2i0.972.553.522 (2)179
C23—H23A···O1ii0.932.523.410 (2)162
C35—H35A···O2i0.932.463.383 (2)174
C30—H30A···Cg5iii0.932.943.836 (2)168
C31—H31A···Cg6iii0.932.913.609 (3)133
C38—H38A···Cg7iv0.932.923.836 (2)168
C7—H7A···Cg9v0.932.853.400 (3)119
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y, z; (iv) x, y1, z; (v) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RSK, HO and ASA thank Universiti Sains Malaysia (USM) for support under the University Research Grant No. 203/PKIMIA/6711179 and the Ministry of Science, Technology and Innovation Grant No. 09-05-lfn-meb-004. RSK also thanks USM for the award of a post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJayashankaran, J., Manian, R. D. R. S., Venkatesan, R. & Raghunathan, R. (2005). Tetrahedron, 61, 5595–5598.  Web of Science CrossRef CAS Google Scholar
First citationManian, R. D. R. S., Jayashankaran, J. & Raghunathan, R. (2006). Tetrahedron, 62, 12357–12362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh Kumar, R., Osman, H., Perumal, S., Menëndez, J. C., Ali, M. A., Ismail, R. & Choon, T. S. (2011). Tetrahedron, 67, 3132–3139.  Web of Science CrossRef Google Scholar
First citationWilliams, R. M. & Fegley, G. J. (1992). Tetrahedron Lett. 33, 6755–6758.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2879-o2880
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds