organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-meth­­oxy­phen­yl)thio­urea

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 28 September 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C15H16N2O2S, the N–C(=S) bond lengths are indicative of the presence of amide-type resonance. The dihedral angles between the thio­urea unit and the attached aromatic rings are 59.80 (5) and 73.41 (4)° while the dihedral angle between the rings is 56.83 (4)°. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur. An N—H⋯π inter­action is observed for the second amino group. The shortest centroid–centroid distance between two aromatic systems is 4.0958 (8) Å.

Related literature

For related structures, see: Shashidhar et al. (2006[Shashidhar, Thiruvenkatam, V., Shivashankar, S. A., Halli, M. B. & Guru Row, T. N. (2006). Acta Cryst. E62, o1518-o1519.]); Muhammed et al. (2007[Muhammed, N., Zia-ur-Rehman, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o634-o635.]); Kuan & Tiekink (2007[Kuan, F. S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, o4692.]); Srivastava et al. (2010[Srivastava, P. C., Dwivedi, S., Singh, V. & Butcher, R. J. (2010). Polyhedron, 29, 2202-2212.]). For further synthetic details, see: Voss & Walter (1968[Voss, J. & Walter, W. (1968). Justus Liebigs Ann. Chem. 716, 209-211.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For general information about coordination chemistry, see: Gade (1998[Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley-VCH.]). Structures containing similar bond lengths were retrieved from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O2S

  • Mr = 288.36

  • Monoclinic, C 2/c

  • a = 14.3187 (8) Å

  • b = 12.8628 (7) Å

  • c = 16.1168 (10) Å

  • β = 103.790 (3)°

  • V = 2882.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.42 × 0.36 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10474 measured reflections

  • 3567 independent reflections

  • 2765 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.05

  • 3567 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H72⋯S1i 0.831 (16) 2.506 (17) 3.3343 (12) 174.3 (14)
N1—H71⋯Cg1ii 0.782 (16) 2.967 (18) 3.5127 (13) 129.1 (14)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade, 1998). Combining different donor atoms, a molecular set-up to accomodate a large variety of metal centers of variable Lewis acidity is at hand. In this aspect, the title compound, 1,3-bis(2-methoxyphenyl)thiourea, (I), seemed of interest due to its possible use as a strictly neutral or, depending on the pH value, as an anionic or cationic ligand. In addition, due to the set-up of its functional groups, it may act as mono- or multidentate ligand offering the possibility to create chelate rings of various size. The intriguing combination of a secondary amino group, a thioketo group as well as methylether groups classifies the title compound as a highly versatile ligand. To enable comparative studies in terms of bond lengths and angles in envisioned coordination compounds, we determined the molecular and crystal structure of the title compound. Information about the crystal structure of 1,3-bis(4-methoxyphenyl)thiourea (Shashidhar et al., 2006), 1,3-bis(2-methylphenyl)thiourea, (Muhammed et al., 2007; Kuan & Tiekink, 2007) and 1,3-bis(phenyl)thiourea (Srivastava et al., 2010) is available in the literature.

N–C=S bond lengths (dN–C: 1.3469 (15) Å and 1.3488 (16) Å, respectively) are in good agreement with values deposited for comparable compounds with the Cambridge Structural Database (Allen, 2002) and are indicative of admide-type resonance between the atoms of this entity. This finding is further corroborated by the planarity of the S=CN2 moiety (r.m.s. of all fitted atoms = 0.0015 Å). The aromatic substituents on the nitrogen atom adopt syn and anti conformation with respect to the sulfur atom. The least-squares planes defined by the carbon atoms of the respective phenyl rings enclose an angle of 56.83 (4) ° while the individual planes defined by the phenyl rings intersect with the least-squares plane defined by the atoms of the central S=CN2 moiety at angles of 59.80 (5) ° and 73.41 (4) ° (Fig. 1, Fig. 2).

In the crystal, the hydrogen atoms of the secondary amine groups participate in two different types of intermolecular interactions. While one of the protons is part of a classical hydrogen bond of the N–H···S type, the other amine group's hydrogen atom forms a contact to one of the aromatic systems. The classical hydrogen bonds connect the molecules to centrosymmetric dimers orientated approximately perpendicular to the crystallographic b axis. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is R22(8) on the unitary level. The shortest intercentroid distance between two aromatic systems was measured at 4.0958 (8) Å (Fig. 3).

The packing of the title compound in the crystal structure is shown in Figure 4.

Related literature top

For related structures, see: Shashidhar et al. (2006); Muhammed et al. (2007); Kuan & Tiekink (2007); Srivastava et al. (2010). For further synthetic details, see: Voss & Walter (1968). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For general information about coordination chemistry, see: Gade (1998). Structures containing similar bond lengths were retrieved from the Cambridge Structural Database (Allen, 2002).

Experimental top

The title compound was prepared upon reacting Lawesson's reagent with the corresponding amide in analogy to a published procedure (Voss & Walter, 1968).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Statistical distribution of N(H)–C(=S) bond lengths in thiourea-derived amides (data based on CSD search including all deposited crystal structures up to August 2011).
[Figure 3] Fig. 3. Intermolecular contacts, viewed along [0 1 0]. Symmetry operator: i -x, y, -z + 1/2.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
1,3-Bis(2-methoxyphenyl)thiourea top
Crystal data top
C15H16N2O2SZ = 8
Mr = 288.36F(000) = 1216
Monoclinic, C2/cDx = 1.329 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.3187 (8) ŵ = 0.23 mm1
b = 12.8628 (7) ÅT = 173 K
c = 16.1168 (10) ÅPlate, colourless
β = 103.790 (3)°0.42 × 0.36 × 0.14 mm
V = 2882.8 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2765 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 1619
10474 measured reflectionsk = 1417
3567 independent reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.1621P]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H16N2O2SV = 2882.8 (3) Å3
Mr = 288.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.3187 (8) ŵ = 0.23 mm1
b = 12.8628 (7) ÅT = 173 K
c = 16.1168 (10) Å0.42 × 0.36 × 0.14 mm
β = 103.790 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2765 reflections with I > 2σ(I)
10474 measured reflectionsRint = 0.058
3567 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
3567 reflectionsΔρmin = 0.23 e Å3
191 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01726 (2)0.20091 (3)0.11713 (2)0.02289 (10)
O10.09218 (7)0.42621 (7)0.03050 (6)0.0323 (2)
O20.24916 (6)0.20317 (7)0.36118 (6)0.0291 (2)
N10.14650 (8)0.28483 (9)0.09695 (7)0.0251 (3)
H710.1955 (12)0.3130 (13)0.1153 (10)0.036 (5)*
N20.12052 (7)0.29144 (9)0.23257 (7)0.0232 (2)
H720.0931 (11)0.2653 (11)0.2676 (10)0.028 (4)*
C10.08967 (8)0.26236 (9)0.15016 (8)0.0197 (3)
C110.12847 (8)0.25261 (10)0.00981 (8)0.0223 (3)
C120.10350 (9)0.32650 (10)0.05553 (8)0.0238 (3)
C130.09201 (9)0.29468 (11)0.14003 (9)0.0288 (3)
H130.07710.34440.18490.035*
C140.10227 (9)0.19063 (12)0.15889 (9)0.0307 (3)
H140.09290.16950.21680.037*
C150.12589 (10)0.11744 (11)0.09458 (9)0.0311 (3)
H150.13240.04630.10790.037*
C160.14008 (9)0.14937 (11)0.00994 (9)0.0281 (3)
H160.15790.09980.03470.034*
C170.06484 (12)0.50262 (12)0.09648 (10)0.0408 (4)
H1710.11700.51160.12570.061*
H1720.05230.56890.07120.061*
H1730.00660.47960.13770.061*
C210.20704 (8)0.34620 (10)0.26996 (8)0.0215 (3)
C220.27304 (8)0.30070 (10)0.33908 (8)0.0218 (3)
C230.35552 (9)0.35490 (11)0.37961 (8)0.0257 (3)
H230.39970.32510.42720.031*
C240.37282 (9)0.45274 (11)0.35004 (9)0.0287 (3)
H240.42980.48890.37700.034*
C250.30840 (10)0.49852 (10)0.28199 (9)0.0299 (3)
H250.32100.56550.26230.036*
C260.22491 (9)0.44499 (11)0.24273 (9)0.0267 (3)
H260.17970.47650.19680.032*
C270.31264 (10)0.15497 (12)0.43256 (10)0.0358 (3)
H2710.37610.14610.42050.054*
H2720.28690.08690.44300.054*
H2730.31850.19890.48320.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01794 (15)0.03006 (19)0.02002 (17)0.00105 (12)0.00324 (11)0.00245 (13)
O10.0424 (6)0.0268 (5)0.0263 (5)0.0036 (4)0.0056 (4)0.0003 (4)
O20.0276 (5)0.0279 (5)0.0269 (5)0.0045 (4)0.0032 (4)0.0055 (4)
N10.0220 (5)0.0345 (7)0.0186 (6)0.0060 (5)0.0046 (4)0.0010 (5)
N20.0198 (5)0.0333 (6)0.0162 (5)0.0042 (4)0.0035 (4)0.0021 (5)
C10.0190 (5)0.0199 (6)0.0193 (6)0.0044 (4)0.0026 (5)0.0035 (5)
C110.0195 (5)0.0302 (7)0.0183 (6)0.0015 (5)0.0065 (5)0.0004 (6)
C120.0218 (6)0.0275 (7)0.0225 (7)0.0000 (5)0.0059 (5)0.0017 (5)
C130.0274 (6)0.0381 (8)0.0206 (7)0.0024 (6)0.0052 (5)0.0017 (6)
C140.0256 (6)0.0439 (9)0.0233 (7)0.0013 (6)0.0072 (5)0.0096 (6)
C150.0312 (7)0.0299 (8)0.0354 (8)0.0016 (5)0.0144 (6)0.0063 (6)
C160.0277 (6)0.0292 (7)0.0296 (8)0.0007 (5)0.0112 (5)0.0018 (6)
C170.0526 (9)0.0313 (8)0.0366 (9)0.0041 (7)0.0067 (7)0.0071 (7)
C210.0201 (5)0.0267 (7)0.0181 (6)0.0015 (5)0.0056 (5)0.0035 (5)
C220.0225 (6)0.0226 (6)0.0205 (6)0.0003 (5)0.0056 (5)0.0025 (5)
C230.0230 (6)0.0308 (8)0.0214 (7)0.0010 (5)0.0016 (5)0.0049 (6)
C240.0267 (6)0.0289 (8)0.0306 (8)0.0052 (5)0.0074 (6)0.0120 (6)
C250.0367 (7)0.0210 (7)0.0342 (8)0.0026 (5)0.0129 (6)0.0032 (6)
C260.0293 (6)0.0263 (7)0.0246 (7)0.0035 (5)0.0067 (5)0.0002 (6)
C270.0371 (7)0.0326 (8)0.0321 (8)0.0016 (6)0.0027 (6)0.0081 (7)
Geometric parameters (Å, º) top
S1—C11.6923 (12)C15—H150.9500
O1—C121.3658 (16)C16—H160.9500
O1—C171.4324 (17)C17—H1710.9800
O2—C221.3695 (15)C17—H1720.9800
O2—C271.4266 (16)C17—H1730.9800
N1—C11.3469 (15)C21—C261.3879 (19)
N1—C111.4275 (16)C21—C221.4053 (17)
N1—H710.782 (16)C22—C231.3928 (17)
N2—C11.3488 (16)C23—C241.3887 (19)
N2—C211.4277 (15)C23—H230.9500
N2—H720.831 (16)C24—C251.385 (2)
C11—C161.3848 (18)C24—H240.9500
C11—C121.4003 (18)C25—C261.3939 (19)
C12—C131.3937 (19)C25—H250.9500
C13—C141.388 (2)C26—H260.9500
C13—H130.9500C27—H2710.9800
C14—C151.381 (2)C27—H2720.9800
C14—H140.9500C27—H2730.9800
C15—C161.392 (2)
C12—O1—C17117.11 (11)O1—C17—H172109.5
C22—O2—C27117.21 (10)H171—C17—H172109.5
C1—N1—C11124.69 (11)O1—C17—H173109.5
C1—N1—H71118.9 (12)H171—C17—H173109.5
C11—N1—H71116.2 (12)H172—C17—H173109.5
C1—N2—C21126.87 (11)C26—C21—C22119.49 (11)
C1—N2—H72117.3 (10)C26—C21—N2121.67 (11)
C21—N2—H72114.6 (10)C22—C21—N2118.75 (11)
N1—C1—N2117.50 (11)O2—C22—C23124.96 (12)
N1—C1—S1122.59 (10)O2—C22—C21115.17 (11)
N2—C1—S1119.91 (9)C23—C22—C21119.87 (12)
C16—C11—C12120.07 (12)C24—C23—C22119.56 (12)
C16—C11—N1120.07 (12)C24—C23—H23120.2
C12—C11—N1119.79 (12)C22—C23—H23120.2
O1—C12—C13124.73 (12)C25—C24—C23121.17 (12)
O1—C12—C11116.24 (11)C25—C24—H24119.4
C13—C12—C11119.02 (13)C23—C24—H24119.4
C14—C13—C12120.20 (13)C24—C25—C26119.12 (13)
C14—C13—H13119.9C24—C25—H25120.4
C12—C13—H13119.9C26—C25—H25120.4
C15—C14—C13120.84 (13)C21—C26—C25120.76 (13)
C15—C14—H14119.6C21—C26—H26119.6
C13—C14—H14119.6C25—C26—H26119.6
C14—C15—C16119.12 (13)O2—C27—H271109.5
C14—C15—H15120.4O2—C27—H272109.5
C16—C15—H15120.4H271—C27—H272109.5
C11—C16—C15120.70 (13)O2—C27—H273109.5
C11—C16—H16119.6H271—C27—H273109.5
C15—C16—H16119.6H272—C27—H273109.5
O1—C17—H171109.5
C11—N1—C1—N2174.85 (11)N1—C11—C16—C15177.83 (11)
C11—N1—C1—S15.62 (18)C14—C15—C16—C111.57 (19)
C21—N2—C1—N11.47 (19)C1—N2—C21—C2660.94 (18)
C21—N2—C1—S1178.08 (10)C1—N2—C21—C22122.51 (14)
C1—N1—C11—C1671.93 (16)C27—O2—C22—C231.70 (18)
C1—N1—C11—C12111.13 (14)C27—O2—C22—C21178.28 (11)
C17—O1—C12—C131.17 (18)C26—C21—C22—O2179.98 (11)
C17—O1—C12—C11178.84 (12)N2—C21—C22—O23.39 (16)
C16—C11—C12—O1179.11 (11)C26—C21—C22—C230.04 (18)
N1—C11—C12—O13.95 (16)N2—C21—C22—C23176.59 (11)
C16—C11—C12—C130.90 (17)O2—C22—C23—C24178.63 (11)
N1—C11—C12—C13176.04 (11)C21—C22—C23—C241.39 (19)
O1—C12—C13—C14177.99 (12)C22—C23—C24—C251.41 (19)
C11—C12—C13—C142.02 (18)C23—C24—C25—C260.1 (2)
C12—C13—C14—C151.4 (2)C22—C21—C26—C251.34 (19)
C13—C14—C15—C160.4 (2)N2—C21—C26—C25177.86 (12)
C12—C11—C16—C150.89 (18)C24—C25—C26—C211.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H72···S1i0.831 (16)2.506 (17)3.3343 (12)174.3 (14)
N1—H71···Cg1ii0.782 (16)2.967 (18)3.5127 (13)129.1 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H16N2O2S
Mr288.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.3187 (8), 12.8628 (7), 16.1168 (10)
β (°) 103.790 (3)
V3)2882.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.42 × 0.36 × 0.14
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10474, 3567, 2765
Rint0.058
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.05
No. of reflections3567
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N2—H72···S1i0.831 (16)2.506 (17)3.3343 (12)174.3 (14)
N1—H71···Cg1ii0.782 (16)2.967 (18)3.5127 (13)129.1 (14)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr Marc van der Vyver for helpful discussions.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH.  Google Scholar
First citationKuan, F. S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, o4692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMuhammed, N., Zia-ur-Rehman, Ali, S. & Meetsma, A. (2007). Acta Cryst. E63, o634–o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShashidhar, Thiruvenkatam, V., Shivashankar, S. A., Halli, M. B. & Guru Row, T. N. (2006). Acta Cryst. E62, o1518–o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, P. C., Dwivedi, S., Singh, V. & Butcher, R. J. (2010). Polyhedron, 29, 2202–2212.  Web of Science CSD CrossRef CAS Google Scholar
First citationVoss, J. & Walter, W. (1968). Justus Liebigs Ann. Chem. 716, 209–211.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds