organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β,8β-Dihy­dr­oxy­eremophil-7(11)-en-8α,12-olide

aSchool of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zhangzhx@lzu.edu.cn

(Received 28 September 2011; accepted 8 October 2011; online 12 October 2011)

The title compound, C15H22O4, an eremophilane sesquiternoid, was isolated from the roots of Ligularia virgaurea. Both six-membered rings (A and B) adopt chair conformations and the five-membered ring is almost planar (r.m.s. deviation = 0.016 Å). The two methyl and two hy­droxy groups adopt a syn conformation and the A/B ring junction is cis-fused. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into [100] chains.

Related literature

For further information on the isolation of the title compound, see Moriyama & Takahashi (1976[Moriyama, Y. & Takahashi, T. (1976). Chem. Pharm. Bull. 24, 360-362.]); Zhang et al. (2008[Zhang, Z.-X., Fei, D.-Q. & Jia, Z.-J. (2008). Helv. Chim. Acta, 91, 1045-1052.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22O4

  • Mr = 266.33

  • Orthorhombic, P 21 21 21

  • a = 9.8627 (7) Å

  • b = 10.5674 (7) Å

  • c = 13.1565 (9) Å

  • V = 1371.21 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.38 × 0.33 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.974

  • 7478 measured reflections

  • 2680 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.087

  • S = 1.06

  • 2680 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.11 2.8061 (19) 142
O3—H3⋯O1i 0.82 1.93 2.7502 (18) 174
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 6β,8β-dihydroxyeremophil-7(11)-en-8α,12-olide (Fig. 1), was originally isolated from the Ligularia fauriei (Moriyama et al., 1976). With the present compound, which was isolated from the roots of L. virgaurea (Zhang et al., 2008). The title compound is composed of three rings, two six-membered and one five-membered. The two six-membered rings A and B adopt chair conformations with pucking paramaters Q = 0.559 (2) Å, θ = 176.0 (2)o, ϕ = 101 (3)° and Q = 0.5527 (18) Å, θ = 1.20 (19)o, ϕ = 127 (9)°, respectively. The five-membered ring C is almost planar with a mean torsion angle of 1.65 (8)°. The A/B ring junction is cis- fused. In the crystal, O—H···O hydrogen bonds occur.

Related literature top

For further information on the isolation of the title compound, see Moriyama & Takahashi (1976); Zhang et al. (2008).

Experimental top

The air-dried roots of L. virgaurea (3.8 kg) were pulverized and extracted with petroleum ether (60–90°C)—Et2O-MeOH (1: 1: 1) (6 days × 3 times) at room temperature. The extract was concentrated under reduced pressure giving a residue (256 g), which was chromatographed on a silica gel column (200–300 mesh) with a gradient of PE-acetone (AC) (30: 1; 15: 1; 8: 1; 5: 1; 3: 1; 1: 1 and 0: 1). According to TLC analysis, seven crude fractions (Fr. A—Fr. G) were collected. Fr. F was further fractionated on a silica gel column to obtain a mixture of the title compound and other compounds, which were purified by preparative TLC using PE—AC (2: 1) to give pure the title compound. Colourless blocks of the title compound were obtained after slow evaporation of a methanolic solution at room temperature.

Refinement top

The absolute structure was indeterminate in the present experiment. All H atoms were placed in geometrically calculated positions, and allowed to ride on their parent atoms with O—H = 0.82 Å and C—H = 0.96 - 0.98 Å, and with Uiso(H) = 1.2Ueq(C) for methylene- and methine-H, and 1.5Ueq for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
6β,8β-Dihydroxyeremophil-7(11)-en-8α,12-olide top
Crystal data top
C15H22O4Dx = 1.290 Mg m3
Mr = 266.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2527 reflections
a = 9.8627 (7) Åθ = 2.5–24.7°
b = 10.5674 (7) ŵ = 0.09 mm1
c = 13.1565 (9) ÅT = 296 K
V = 1371.21 (16) Å3Block, colourless
Z = 40.38 × 0.33 × 0.29 mm
F(000) = 576
Data collection top
Bruker APEXII CCD
diffractometer
2680 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 126
Tmin = 0.966, Tmax = 0.974k = 1312
7478 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.043P)2 + 0.0843P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2680 reflectionsΔρmax = 0.15 e Å3
178 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (3)
Crystal data top
C15H22O4V = 1371.21 (16) Å3
Mr = 266.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.8627 (7) ŵ = 0.09 mm1
b = 10.5674 (7) ÅT = 296 K
c = 13.1565 (9) Å0.38 × 0.33 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
2680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2306 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.028
7478 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
2680 reflectionsΔρmin = 0.12 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52336 (19)0.0280 (2)0.02370 (15)0.0528 (5)
H1A0.60330.04280.06500.063*
H1B0.54880.02770.03170.063*
C20.4742 (2)0.1530 (2)0.01946 (17)0.0589 (6)
H2A0.40240.13710.06820.071*
H2B0.54820.19410.05500.071*
C30.4214 (2)0.24061 (19)0.06327 (16)0.0573 (5)
H3A0.38210.31500.03180.069*
H3B0.49700.26820.10490.069*
C40.31514 (18)0.17838 (17)0.13139 (14)0.0432 (4)
H40.23710.15840.08810.052*
C50.36613 (16)0.05137 (17)0.17644 (13)0.0380 (4)
C60.24978 (17)0.01496 (17)0.23600 (12)0.0401 (4)
H60.20930.04680.28250.048*
C70.14293 (16)0.05820 (15)0.16381 (12)0.0335 (4)
C80.01487 (16)0.02563 (16)0.14955 (12)0.0360 (4)
C90.03401 (18)0.09426 (16)0.05925 (13)0.0405 (4)
C100.18821 (16)0.14622 (15)0.08141 (13)0.0349 (4)
C110.29893 (16)0.08367 (15)0.01959 (12)0.0359 (4)
H11A0.26120.01280.01780.043*
H11B0.33470.14380.02920.043*
C120.41454 (16)0.03650 (17)0.08853 (13)0.0373 (4)
H120.45630.11110.11970.045*
C130.2660 (3)0.2734 (2)0.21109 (18)0.0673 (6)
H13A0.18570.24150.24340.101*
H13B0.24590.35270.17870.101*
H13C0.33550.28580.26120.101*
C140.4830 (2)0.0732 (2)0.25188 (15)0.0559 (5)
H14A0.55260.12260.21980.084*
H14B0.51980.00690.27250.084*
H14C0.44950.11750.31040.084*
C150.07474 (19)0.06430 (19)0.20584 (15)0.0498 (5)
H15A0.03670.08110.27160.075*
H15B0.16320.02760.21370.075*
H15C0.08190.14200.16840.075*
O10.14548 (13)0.09203 (13)0.02165 (11)0.0576 (4)
O20.06687 (12)0.16515 (11)0.01970 (9)0.0429 (3)
O30.22670 (13)0.26232 (11)0.12267 (9)0.0471 (3)
H30.26940.30280.08020.071*
O40.29776 (15)0.11964 (14)0.29448 (10)0.0555 (4)
H4A0.30330.18240.25800.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (9)0.0668 (13)0.0565 (11)0.0029 (9)0.0062 (9)0.0042 (11)
C20.0502 (11)0.0631 (13)0.0635 (13)0.0217 (10)0.0032 (11)0.0153 (11)
C30.0551 (12)0.0445 (11)0.0723 (13)0.0125 (9)0.0128 (11)0.0068 (10)
C40.0401 (10)0.0368 (9)0.0526 (10)0.0005 (7)0.0124 (8)0.0072 (8)
C50.0328 (9)0.0441 (10)0.0369 (9)0.0036 (8)0.0076 (7)0.0035 (8)
C60.0416 (10)0.0486 (10)0.0299 (8)0.0076 (8)0.0010 (7)0.0035 (8)
C70.0347 (9)0.0335 (9)0.0322 (8)0.0004 (7)0.0052 (7)0.0024 (7)
C80.0349 (9)0.0327 (9)0.0406 (9)0.0038 (7)0.0043 (8)0.0021 (7)
C90.0377 (9)0.0339 (9)0.0498 (10)0.0049 (8)0.0017 (8)0.0012 (8)
C100.0362 (9)0.0331 (8)0.0355 (8)0.0005 (7)0.0015 (7)0.0024 (7)
C110.0406 (9)0.0345 (8)0.0326 (8)0.0018 (7)0.0023 (7)0.0027 (7)
C120.0320 (8)0.0398 (9)0.0400 (9)0.0069 (7)0.0001 (7)0.0024 (8)
C130.0713 (15)0.0482 (12)0.0823 (16)0.0058 (11)0.0124 (12)0.0203 (11)
C140.0453 (11)0.0706 (14)0.0519 (10)0.0003 (10)0.0178 (9)0.0061 (11)
C150.0436 (10)0.0480 (11)0.0577 (11)0.0047 (9)0.0100 (9)0.0039 (9)
O10.0394 (7)0.0547 (8)0.0786 (9)0.0039 (6)0.0148 (7)0.0134 (8)
O20.0402 (7)0.0426 (7)0.0458 (7)0.0028 (5)0.0015 (6)0.0104 (6)
O30.0542 (8)0.0359 (7)0.0511 (7)0.0070 (6)0.0127 (6)0.0047 (5)
O40.0637 (9)0.0639 (9)0.0390 (7)0.0101 (7)0.0063 (6)0.0115 (6)
Geometric parameters (Å, º) top
C1—C21.517 (3)C8—C151.494 (2)
C1—C121.531 (2)C9—O11.206 (2)
C1—H1A0.9700C9—O21.350 (2)
C1—H1B0.9700C10—O31.3943 (19)
C2—C31.521 (3)C10—O21.460 (2)
C2—H2A0.9700C10—C111.514 (2)
C2—H2B0.9700C11—C121.540 (2)
C3—C41.528 (3)C11—H11A0.9700
C3—H3A0.9700C11—H11B0.9700
C3—H3B0.9700C12—H120.9800
C4—C131.531 (3)C13—H13A0.9600
C4—C51.551 (2)C13—H13B0.9600
C4—H40.9800C13—H13C0.9600
C5—C141.538 (2)C14—H14A0.9600
C5—C121.558 (2)C14—H14B0.9600
C5—C61.556 (2)C14—H14C0.9600
C6—O41.428 (2)C15—H15A0.9600
C6—C71.490 (2)C15—H15B0.9600
C6—H60.9800C15—H15C0.9600
C7—C81.323 (2)O3—H30.8200
C7—C101.497 (2)O4—H4A0.8200
C8—C91.473 (2)
C2—C1—C12111.83 (15)O1—C9—O2121.66 (16)
C2—C1—H1A109.2O1—C9—C8128.29 (17)
C12—C1—H1A109.2O2—C9—C8110.06 (14)
C2—C1—H1B109.2O3—C10—O2108.61 (12)
C12—C1—H1B109.2O3—C10—C7110.25 (13)
H1A—C1—H1B107.9O2—C10—C7104.09 (12)
C1—C2—C3111.80 (17)O3—C10—C11113.40 (14)
C1—C2—H2A109.3O2—C10—C11110.63 (13)
C3—C2—H2A109.3C7—C10—C11109.46 (13)
C1—C2—H2B109.3C10—C11—C12111.04 (13)
C3—C2—H2B109.3C10—C11—H11A109.4
H2A—C2—H2B107.9C12—C11—H11A109.4
C2—C3—C4113.11 (16)C10—C11—H11B109.4
C2—C3—H3A109.0C12—C11—H11B109.4
C4—C3—H3A109.0H11A—C11—H11B108.0
C2—C3—H3B109.0C1—C12—C11109.57 (14)
C4—C3—H3B109.0C1—C12—C5111.28 (15)
H3A—C3—H3B107.8C11—C12—C5113.78 (13)
C3—C4—C13109.68 (16)C1—C12—H12107.3
C3—C4—C5111.97 (15)C11—C12—H12107.3
C13—C4—C5114.13 (15)C5—C12—H12107.3
C3—C4—H4106.9C4—C13—H13A109.5
C13—C4—H4106.9C4—C13—H13B109.5
C5—C4—H4106.9H13A—C13—H13B109.5
C14—C5—C4111.07 (15)C4—C13—H13C109.5
C14—C5—C12109.80 (14)H13A—C13—H13C109.5
C4—C5—C12109.35 (14)H13B—C13—H13C109.5
C14—C5—C6107.17 (14)C5—C14—H14A109.5
C4—C5—C6110.06 (14)C5—C14—H14B109.5
C12—C5—C6109.34 (14)H14A—C14—H14B109.5
O4—C6—C7109.88 (14)C5—C14—H14C109.5
O4—C6—C5112.07 (14)H14A—C14—H14C109.5
C7—C6—C5109.79 (13)H14B—C14—H14C109.5
O4—C6—H6108.3C8—C15—H15A109.5
C7—C6—H6108.3C8—C15—H15B109.5
C5—C6—H6108.3H15A—C15—H15B109.5
C8—C7—C6133.31 (15)C8—C15—H15C109.5
C8—C7—C10110.12 (14)H15A—C15—H15C109.5
C6—C7—C10116.18 (14)H15B—C15—H15C109.5
C7—C8—C9107.39 (15)C9—O2—C10108.29 (12)
C7—C8—C15131.31 (15)C10—O3—H3109.5
C9—C8—C15121.29 (15)C6—O4—H4A109.5
C12—C1—C2—C354.1 (2)C7—C8—C9—O21.19 (19)
C1—C2—C3—C452.5 (2)C15—C8—C9—O2177.43 (15)
C2—C3—C4—C13179.04 (17)C8—C7—C10—O3118.86 (15)
C2—C3—C4—C553.2 (2)C6—C7—C10—O367.41 (18)
C3—C4—C5—C1467.24 (19)C8—C7—C10—O22.55 (17)
C13—C4—C5—C1458.1 (2)C6—C7—C10—O2176.28 (13)
C3—C4—C5—C1254.10 (18)C8—C7—C10—C11115.75 (15)
C13—C4—C5—C12179.45 (15)C6—C7—C10—C1157.99 (18)
C3—C4—C5—C6174.23 (14)O3—C10—C11—C1270.31 (17)
C13—C4—C5—C660.42 (19)O2—C10—C11—C12167.39 (12)
C14—C5—C6—O448.17 (19)C7—C10—C11—C1253.25 (17)
C4—C5—C6—O4169.07 (14)C2—C1—C12—C1169.93 (19)
C12—C5—C6—O470.79 (16)C2—C1—C12—C556.8 (2)
C14—C5—C6—C7170.58 (14)C10—C11—C12—C1179.08 (14)
C4—C5—C6—C768.52 (17)C10—C11—C12—C553.80 (18)
C12—C5—C6—C751.62 (18)C14—C5—C12—C166.08 (19)
O4—C6—C7—C8121.9 (2)C4—C5—C12—C156.03 (18)
C5—C6—C7—C8114.4 (2)C6—C5—C12—C1176.60 (13)
O4—C6—C7—C1066.24 (18)C14—C5—C12—C11169.56 (15)
C5—C6—C7—C1057.46 (19)C4—C5—C12—C1168.34 (17)
C6—C7—C8—C9174.56 (17)C6—C5—C12—C1152.23 (17)
C10—C7—C8—C92.30 (18)O1—C9—O2—C10179.36 (15)
C6—C7—C8—C153.9 (3)C8—C9—O2—C100.46 (18)
C10—C7—C8—C15176.13 (17)O3—C10—O2—C9119.19 (14)
C7—C8—C9—O1179.00 (18)C7—C10—O2—C91.73 (16)
C15—C8—C9—O12.4 (3)C11—C10—O2—C9115.75 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.112.8061 (19)142
O3—H3···O1i0.821.932.7502 (18)174
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H22O4
Mr266.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.8627 (7), 10.5674 (7), 13.1565 (9)
V3)1371.21 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.33 × 0.29
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
7478, 2680, 2306
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.06
No. of reflections2680
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.822.112.8061 (19)142
O3—H3···O1i0.821.932.7502 (18)174
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

This work was kindly supported by the National Natural Science Foundation of China (No. 21102065) and the Fundational Research Funds for the Central Universities (No. lzujbky-2009–144).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMoriyama, Y. & Takahashi, T. (1976). Chem. Pharm. Bull. 24, 360–362.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-X., Fei, D.-Q. & Jia, Z.-J. (2008). Helv. Chim. Acta, 91, 1045–1052.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds