organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl 4-hy­dr­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 September 2011; accepted 30 September 2011; online 5 October 2011)

In the title compound, C15H11BrO4, the dihedral angle between the aromatic rings is 66.77 (8)°. In the crystal, O—H⋯O, C—H⋯Br and C—H⋯O hydrogen bonds link the mol­ecules, forming layers lying parallel to (101). The crystal packing is further consolidated by C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.5476 (7) Å].

Related literature

For a related structure and background references to phenacyl benzoates, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2836.]). For the synthesis, see: Lund & Langvad (1932[Lund, H. & Langvad, T. (1932). J. Am. Chem. Soc. 54, 4107-4110.]). For a related structure, see: Jin et al. (2008[Jin, Y., Guo, J.-N., Lin, K., Tang, G. & Zhao, Y.-F. (2008). Acta Cryst. E64, o507.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11BrO4

  • Mr = 335.15

  • Monoclinic, P 21 /c

  • a = 6.2917 (2) Å

  • b = 7.7893 (2) Å

  • c = 26.7497 (8) Å

  • β = 98.234 (2)°

  • V = 1297.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.18 mm−1

  • T = 100 K

  • 0.56 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.267, Tmax = 0.535

  • 15470 measured reflections

  • 4700 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.04

  • 4700 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O2i 0.83 1.97 2.7961 (19) 177
C12—H12A⋯Br1ii 0.95 2.90 3.7938 (18) 158
C14—H14A⋯O2i 0.95 2.52 3.198 (2) 129
C15—H15ACg2i 0.95 2.86 3.6181 (18) 137
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing structural studies of phenacyl benzoates (Fun et al., 2011), we now report the crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle formed between the bromo-substituted (C1–C6) and hydroxy-substituted (C10–C15) benzene rings is 66.77 (8)°. Bond lengths and angles are within the normal ranges and are comparable to the related structure (Jin et al., 2008).

In the crystal (Fig. 2), O4—H1O4···O2, C12—H12A···Br1 and C14—H14A···O2 hydrogen bonds (Table 1) link the molecules to form layers parallel to the (101) plane. The crystal packing is further consolidated by C—H···π interactions involving the centroid of the hydroxy-substituted benzene ring (Cg2; Table 1) and ππ interactions (Table 1) involving the centroids of the substituted benzene rings with the distance of Cg1···Cg2 being 3.5476 (7) Å. Cg 1 is the centroid of the bromo-substituted benzene ring.

Related literature top

For a related structure and background references to phenacyl benzoates, see: Fun et al. (2011). For the synthesis, see: Lund & Langvad (1932). For a related structure, see: Jin et al. (2008). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-hydroxybenzoic acid (1.0 g, 0.0072 mol), potassium carbonate (1.09 g, 0.0079 mol) and 2-bromo-1-(4-bromophenyl)ethanone (2.0 g, 0.0072 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-hydroxybenzoate began to separate out. It was collected by filtration and recrystallized from ethanol to yield colourless blocks. Yield: 2.1 g, 86.7%. M. p.: 464–465 K (Lund & Langvad, 1932).

Refinement top

O– bound H atom was located from a difference Fourier map and was refined with a riding model with Uiso(H) = 1.5 Ueq(O) [O–H = 0.8286 Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.95 or 0.99 Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the showing the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-(4-Bromophenyl)-2-oxoethyl 4-hydroxybenzoate top
Crystal data top
C15H11BrO4F(000) = 672
Mr = 335.15Dx = 1.716 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6519 reflections
a = 6.2917 (2) Åθ = 2.7–32.6°
b = 7.7893 (2) ŵ = 3.18 mm1
c = 26.7497 (8) ÅT = 100 K
β = 98.234 (2)°Block, colourless
V = 1297.43 (7) Å30.56 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4700 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.267, Tmax = 0.535k = 1011
15470 measured reflectionsl = 4027
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.236P]
where P = (Fo2 + 2Fc2)/3
4700 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C15H11BrO4V = 1297.43 (7) Å3
Mr = 335.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2917 (2) ŵ = 3.18 mm1
b = 7.7893 (2) ÅT = 100 K
c = 26.7497 (8) Å0.56 × 0.27 × 0.23 mm
β = 98.234 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4700 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3640 reflections with I > 2σ(I)
Tmin = 0.267, Tmax = 0.535Rint = 0.022
15470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
4700 reflectionsΔρmin = 0.42 e Å3
181 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39495 (3)0.75343 (3)0.055105 (7)0.02365 (6)
O10.4302 (2)0.54838 (19)0.21200 (5)0.0227 (3)
O20.4827 (2)0.73017 (18)0.12916 (5)0.0238 (3)
O30.6284 (2)0.37103 (19)0.17068 (5)0.0247 (3)
O41.2215 (2)0.48897 (18)0.38337 (5)0.0226 (3)
H1O41.31250.41440.38020.034*
C10.1846 (3)0.7654 (2)0.04036 (7)0.0188 (3)
H1A0.32280.81460.04040.023*
C20.0288 (3)0.7873 (2)0.00125 (7)0.0200 (3)
H2A0.05960.84890.03000.024*
C30.1742 (3)0.7171 (2)0.00004 (7)0.0179 (3)
C40.2212 (3)0.6222 (2)0.04075 (7)0.0196 (3)
H4A0.36000.57400.04060.024*
C50.0626 (3)0.5984 (2)0.08189 (7)0.0193 (3)
H5A0.09230.53220.10990.023*
C60.1407 (3)0.6715 (2)0.08233 (7)0.0173 (3)
C70.3110 (3)0.6554 (2)0.12660 (7)0.0180 (3)
C80.2639 (3)0.5418 (3)0.16963 (7)0.0221 (4)
H8A0.12680.57840.18040.027*
H8B0.24640.42180.15750.027*
C90.6069 (3)0.4528 (2)0.20814 (7)0.0192 (3)
C100.7646 (3)0.4610 (2)0.25472 (6)0.0172 (3)
C110.7237 (3)0.5494 (2)0.29804 (7)0.0192 (3)
H11A0.58950.60510.29840.023*
C120.8786 (3)0.5556 (2)0.34023 (7)0.0205 (3)
H12A0.85030.61540.36950.025*
C131.0759 (3)0.4745 (2)0.34009 (7)0.0194 (3)
C141.1169 (3)0.3844 (2)0.29743 (7)0.0203 (3)
H14A1.25080.32830.29720.024*
C150.9606 (3)0.3775 (2)0.25526 (7)0.0188 (3)
H15A0.98770.31480.22640.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02023 (9)0.03119 (11)0.01835 (9)0.00343 (7)0.00127 (6)0.00545 (8)
O10.0199 (6)0.0322 (8)0.0155 (6)0.0060 (5)0.0008 (5)0.0007 (5)
O20.0200 (6)0.0264 (7)0.0237 (6)0.0039 (5)0.0012 (5)0.0001 (5)
O30.0268 (6)0.0281 (7)0.0179 (6)0.0050 (6)0.0012 (5)0.0049 (5)
O40.0223 (6)0.0244 (7)0.0192 (6)0.0043 (5)0.0032 (5)0.0036 (5)
C10.0184 (7)0.0190 (8)0.0190 (7)0.0024 (6)0.0024 (6)0.0014 (7)
C20.0210 (8)0.0200 (9)0.0190 (8)0.0014 (6)0.0027 (6)0.0020 (6)
C30.0179 (7)0.0201 (9)0.0151 (7)0.0003 (6)0.0002 (6)0.0009 (6)
C40.0179 (7)0.0221 (9)0.0184 (8)0.0017 (6)0.0014 (6)0.0000 (7)
C50.0195 (7)0.0218 (9)0.0165 (7)0.0013 (6)0.0024 (6)0.0023 (6)
C60.0184 (7)0.0168 (8)0.0167 (8)0.0007 (6)0.0022 (6)0.0012 (6)
C70.0181 (7)0.0184 (8)0.0177 (8)0.0015 (6)0.0026 (6)0.0022 (6)
C80.0178 (7)0.0297 (10)0.0183 (8)0.0015 (7)0.0004 (6)0.0025 (7)
C90.0211 (8)0.0194 (9)0.0170 (7)0.0006 (6)0.0031 (6)0.0022 (6)
C100.0185 (7)0.0176 (8)0.0153 (7)0.0011 (6)0.0018 (6)0.0001 (6)
C110.0220 (8)0.0202 (9)0.0160 (8)0.0034 (6)0.0044 (6)0.0019 (6)
C120.0285 (9)0.0196 (9)0.0138 (7)0.0033 (7)0.0041 (6)0.0002 (6)
C130.0242 (8)0.0177 (8)0.0154 (7)0.0004 (6)0.0002 (6)0.0019 (6)
C140.0209 (8)0.0212 (9)0.0185 (8)0.0033 (6)0.0023 (6)0.0004 (7)
C150.0217 (8)0.0201 (8)0.0149 (7)0.0017 (6)0.0037 (6)0.0004 (6)
Geometric parameters (Å, º) top
Br1—C31.8954 (17)C5—H5A0.9500
O1—C91.354 (2)C6—C71.484 (2)
O1—C81.429 (2)C7—C81.514 (3)
O2—C71.221 (2)C8—H8A0.9900
O3—C91.211 (2)C8—H8B0.9900
O4—C131.374 (2)C9—C101.479 (2)
O4—H1O40.8286C10—C151.393 (2)
C1—C21.384 (3)C10—C111.403 (2)
C1—C61.400 (2)C11—C121.382 (3)
C1—H1A0.9500C11—H11A0.9500
C2—C31.395 (2)C12—C131.394 (3)
C2—H2A0.9500C12—H12A0.9500
C3—C41.385 (3)C13—C141.395 (3)
C4—C51.388 (2)C14—C151.387 (2)
C4—H4A0.9500C14—H14A0.9500
C5—C61.399 (2)C15—H15A0.9500
C9—O1—C8115.84 (15)C7—C8—H8A109.1
C13—O4—H1O4104.1O1—C8—H8B109.1
C2—C1—C6120.74 (16)C7—C8—H8B109.1
C2—C1—H1A119.6H8A—C8—H8B107.9
C6—C1—H1A119.6O3—C9—O1122.84 (17)
C1—C2—C3118.57 (17)O3—C9—C10125.39 (17)
C1—C2—H2A120.7O1—C9—C10111.77 (15)
C3—C2—H2A120.7C15—C10—C11119.19 (16)
C4—C3—C2121.84 (16)C15—C10—C9118.33 (16)
C4—C3—Br1118.48 (13)C11—C10—C9122.48 (16)
C2—C3—Br1119.67 (14)C12—C11—C10120.00 (17)
C3—C4—C5119.05 (16)C12—C11—H11A120.0
C3—C4—H4A120.5C10—C11—H11A120.0
C5—C4—H4A120.5C11—C12—C13120.42 (17)
C4—C5—C6120.35 (17)C11—C12—H12A119.8
C4—C5—H5A119.8C13—C12—H12A119.8
C6—C5—H5A119.8O4—C13—C12116.55 (16)
C5—C6—C1119.40 (16)O4—C13—C14123.48 (16)
C5—C6—C7121.80 (16)C12—C13—C14119.96 (16)
C1—C6—C7118.78 (16)C15—C14—C13119.49 (17)
O2—C7—C6122.43 (17)C15—C14—H14A120.3
O2—C7—C8120.28 (16)C13—C14—H14A120.3
C6—C7—C8117.30 (15)C14—C15—C10120.91 (16)
O1—C8—C7112.40 (15)C14—C15—H15A119.5
O1—C8—H8A109.1C10—C15—H15A119.5
C6—C1—C2—C31.4 (3)C8—O1—C9—O32.6 (3)
C1—C2—C3—C42.1 (3)C8—O1—C9—C10177.10 (15)
C1—C2—C3—Br1177.19 (14)O3—C9—C10—C154.2 (3)
C2—C3—C4—C50.9 (3)O1—C9—C10—C15176.10 (16)
Br1—C3—C4—C5178.33 (14)O3—C9—C10—C11175.77 (19)
C3—C4—C5—C60.9 (3)O1—C9—C10—C113.9 (3)
C4—C5—C6—C11.5 (3)C15—C10—C11—C121.2 (3)
C4—C5—C6—C7177.18 (17)C9—C10—C11—C12178.79 (18)
C2—C1—C6—C50.4 (3)C10—C11—C12—C130.1 (3)
C2—C1—C6—C7178.38 (17)C11—C12—C13—O4179.19 (17)
C5—C6—C7—O2173.81 (18)C11—C12—C13—C140.9 (3)
C1—C6—C7—O24.9 (3)O4—C13—C14—C15179.65 (17)
C5—C6—C7—C85.8 (3)C12—C13—C14—C150.5 (3)
C1—C6—C7—C8175.45 (16)C13—C14—C15—C100.8 (3)
C9—O1—C8—C779.3 (2)C11—C10—C15—C141.7 (3)
O2—C7—C8—O15.1 (3)C9—C10—C15—C14178.32 (17)
C6—C7—C8—O1174.58 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.831.972.7961 (19)177
C12—H12A···Br1ii0.952.903.7938 (18)158
C14—H14A···O2i0.952.523.198 (2)129
C15—H15A···Cg2i0.952.863.6181 (18)137
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H11BrO4
Mr335.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.2917 (2), 7.7893 (2), 26.7497 (8)
β (°) 98.234 (2)
V3)1297.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.18
Crystal size (mm)0.56 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.267, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
15470, 4700, 3640
Rint0.022
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.04
No. of reflections4700
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009, SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O4—H1O4···O2i0.831.972.7961 (19)177
C12—H12A···Br1ii0.952.903.7938 (18)158
C14—H14A···O2i0.952.523.198 (2)129
C15—H15A···Cg2i0.952.863.6181 (18)137
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. AMI thanks Professor Sandeep Sanchethi, Director of the National Institute of Technology–Karnataka, India, for providing research facilities and also thanks the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the Young Scientist award. MNS thanks the Department of Information Technology, Government of India, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Y., Guo, J.-N., Lin, K., Tang, G. & Zhao, Y.-F. (2008). Acta Cryst. E64, o507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLund, H. & Langvad, T. (1932). J. Am. Chem. Soc. 54, 4107–4110.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds