organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl chloro­thio­phospho­nate

aResearch Center for Engineering Technology of Polymeric Composites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, People's Republic of China
*Correspondence e-mail: zph2004@yahoo.com.cn

(Received 29 September 2011; accepted 30 September 2011; online 8 October 2011)

The complete mol­ecule of the title compound, C12H10ClO2PS, is generated by crystallographic mirror symmetry, with the P, S and Cl atoms lying on the mirror plane. The resulting PO2SCl tetra­hedron is significantly distorted [O—P—O = 96.79 (9)°]. The crystal packing exhibits no directional inter­actions.

Related literature

For the application of related compounds as pesticides, see: Greenhalgh et al. (1980[Greenhalgh, R., Dhawson, K. L. & Weinberg, P. (1980). J. Agric. Food Chem. 28, 102-105.]); Um et al. (2003[Um, I. H., Jeom, S. E., Baek, M. H. & Dark, H. R. (2003). Chem. Commun. 24, 3016-3017.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClO2PS

  • Mr = 284.68

  • Orthorhombic, P m n 21

  • a = 14.9779 (18) Å

  • b = 7.3709 (10) Å

  • c = 5.8157 (10) Å

  • V = 642.06 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 113 K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]) Tmin = 0.866, Tmax = 0.914

  • 6462 measured reflections

  • 1590 independent reflections

  • 1422 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.01

  • 1590 reflections

  • 83 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 716 Friedel pairs

  • Flack parameter: −0.25 (7)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.]).

Supporting information


Related literature top

For the application of related compounds as pesticides, see: Greenhalgh et al. (1980); Um et al. (2003).

Experimental top

Triethylamine (127.0 mmol) were added to the dichloromethane solution (80.0 ml) of phenol (120.0 mmol) while stirring. Thiophosphory chloride (60.0 mmol) was slowly dropwise added to the above solution, and then the rection mixture was refluxed. After the reaction was completed, it is cooled to room temperature. The reaction mixture was washed with water and brine, respectively. The separated organic phase was dried with anhydrous sodium sulfate, and then the solvents were evporated thoroughly in vacuo. The obtained crude was separated through column chromatography on silica gel to give the white product. Colourless prisms of the title compound were obtained by slow evaporation of the dichloromethane/n-hexane solutions at room temperature. 31P NMR(161.9 MHz, CDCl3, TMS): 58.73 (s) p.p.m..

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids. Symmetry code: (i) –x, y, z.
[Figure 2] Fig. 2. The crystal packing for (I).
Diphenyl chlorothiophosphonate top
Crystal data top
C12H10ClO2PSDx = 1.473 Mg m3
Mr = 284.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmn21Cell parameters from 2338 reflections
a = 14.9779 (18) Åθ = 2.7–28.0°
b = 7.3709 (10) ŵ = 0.57 mm1
c = 5.8157 (10) ÅT = 113 K
V = 642.06 (16) Å3Prism, colorless
Z = 20.26 × 0.20 × 0.16 mm
F(000) = 292
Data collection top
Rigaku Saturn724 CCD
diffractometer
1590 independent reflections
Radiation source: rotating anode1422 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.046
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω and ϕ scansh = 1819
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 99
Tmin = 0.866, Tmax = 0.914l = 77
6462 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.002
S = 1.01Δρmax = 0.33 e Å3
1590 reflectionsΔρmin = 0.28 e Å3
83 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.034 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 716 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.25 (7)
Crystal data top
C12H10ClO2PSV = 642.06 (16) Å3
Mr = 284.68Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 14.9779 (18) ŵ = 0.57 mm1
b = 7.3709 (10) ÅT = 113 K
c = 5.8157 (10) Å0.26 × 0.20 × 0.16 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1590 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1422 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.914Rint = 0.046
6462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.28 e Å3
1590 reflectionsAbsolute structure: Flack (1983), 716 Friedel pairs
83 parametersAbsolute structure parameter: 0.25 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.00000.74395 (10)0.33956 (11)0.01650 (17)
Cl10.00000.78689 (13)0.00139 (10)0.0391 (3)
S10.00000.49265 (10)0.42063 (18)0.0294 (2)
O10.07867 (7)0.86334 (15)0.4369 (2)0.0162 (3)
C10.16873 (10)0.8018 (2)0.4313 (4)0.0137 (4)
C20.20060 (11)0.7047 (2)0.6162 (3)0.0166 (4)
H20.16230.67290.74000.020*
C30.29001 (12)0.6542 (3)0.6177 (3)0.0196 (4)
H30.31370.58840.74420.024*
C40.34463 (11)0.7004 (2)0.4335 (4)0.0191 (4)
H40.40560.66460.43370.023*
C50.31099 (12)0.7976 (3)0.2507 (3)0.0203 (5)
H50.34910.82910.12640.024*
C60.22133 (11)0.8504 (2)0.2460 (3)0.0166 (4)
H60.19750.91700.12040.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0102 (3)0.0226 (4)0.0167 (4)0.0000.0000.0060 (3)
Cl10.0210 (4)0.0820 (7)0.0144 (4)0.0000.0000.0040 (4)
S10.0152 (3)0.0179 (3)0.0549 (5)0.0000.0000.0040 (4)
O10.0084 (6)0.0174 (7)0.0228 (7)0.0005 (5)0.0024 (5)0.0040 (6)
C10.0078 (8)0.0143 (9)0.0188 (9)0.0010 (7)0.0003 (8)0.0051 (8)
C20.0150 (9)0.0197 (12)0.0151 (11)0.0015 (8)0.0002 (7)0.0007 (8)
C30.0181 (9)0.0188 (11)0.0219 (11)0.0012 (8)0.0054 (8)0.0023 (9)
C40.0125 (9)0.0180 (9)0.0267 (11)0.0020 (7)0.0026 (8)0.0029 (9)
C50.0137 (10)0.0216 (11)0.0255 (11)0.0039 (8)0.0076 (7)0.0015 (8)
C60.0162 (10)0.0163 (10)0.0174 (10)0.0016 (8)0.0050 (7)0.0021 (8)
Geometric parameters (Å, º) top
P1—O1i1.5758 (12)C2—H20.9500
P1—O11.5758 (12)C3—C41.390 (3)
P1—S11.9114 (11)C3—H30.9500
P1—Cl11.9920 (9)C4—C51.378 (3)
O1—C11.4234 (17)C4—H40.9500
C1—C21.377 (3)C5—C61.398 (2)
C1—C61.382 (3)C5—H50.9500
C2—C31.390 (2)C6—H60.9500
O1i—P1—O196.79 (9)C2—C3—C4119.77 (17)
O1i—P1—S1116.91 (6)C2—C3—H3120.1
O1—P1—S1116.91 (6)C4—C3—H3120.1
O1i—P1—Cl1105.42 (6)C5—C4—C3120.46 (16)
O1—P1—Cl1105.42 (6)C5—C4—H4119.8
S1—P1—Cl1113.42 (6)C3—C4—H4119.8
C1—O1—P1121.50 (11)C4—C5—C6120.71 (18)
C2—C1—C6123.07 (15)C4—C5—H5119.6
C2—C1—O1118.43 (16)C6—C5—H5119.6
C6—C1—O1118.41 (17)C1—C6—C5117.43 (17)
C1—C2—C3118.56 (16)C1—C6—H6121.3
C1—C2—H2120.7C5—C6—H6121.3
C3—C2—H2120.7
O1i—P1—O1—C1169.66 (11)C1—C2—C3—C40.7 (3)
S1—P1—O1—C144.80 (16)C2—C3—C4—C50.7 (3)
Cl1—P1—O1—C182.25 (14)C3—C4—C5—C60.5 (3)
P1—O1—C1—C290.03 (19)C2—C1—C6—C50.3 (3)
P1—O1—C1—C693.23 (17)O1—C1—C6—C5176.31 (15)
C6—C1—C2—C30.5 (3)C4—C5—C6—C10.2 (3)
O1—C1—C2—C3176.05 (16)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC12H10ClO2PS
Mr284.68
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)113
a, b, c (Å)14.9779 (18), 7.3709 (10), 5.8157 (10)
V3)642.06 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.866, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
6462, 1590, 1422
Rint0.046
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.01
No. of reflections1590
No. of parameters83
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28
Absolute structureFlack (1983), 716 Friedel pairs
Absolute structure parameter0.25 (7)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

 

Acknowledgements

This work was supported financially by the Start-up Foundation of the North University of China and the Youth Foundation of the North University of China.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGreenhalgh, R., Dhawson, K. L. & Weinberg, P. (1980). J. Agric. Food Chem. 28, 102–105.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUm, I. H., Jeom, S. E., Baek, M. H. & Dark, H. R. (2003). Chem. Commun. 24, 3016–3017.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds