metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1541-m1542

catena-Poly[[[aqua­(1,10-phenanthro­line)manganese(II)]-μ-adamantane-1,3-di­carboxyl­ato] monohydrate]

aGuangdong Medical College, School of Pharmacy, Dongguan 523808, People's Republic of China
*Correspondence e-mail: jianqiangliu2010@126.com

(Received 30 September 2011; accepted 11 October 2011; online 12 October 2011)

In the title coordination polymer, {[Mn(C12H14O4)(C12H8N2)(H2O)]·H2O}n, the MnII atom has a highly distorted cis-MnN2O4 octa­hedral geometry arising from its coordination by a bidentate phenanthroline ligand, a water mol­ecule and monodentate and bidentate adamantane-1,3-dicarboxyl­ate dianions. The bridging dianion leads to [001] chains in the crystal. The chains are linked by O—H⋯O hydrogen bonds, involving both the coordinated and uncoordinated water mol­ecules, thereby forming a two-dimensional network.

Related literature

For related structures, see: Liu & Wu (2010[Liu, J. Q. & Wu, T. (2010). Z. Kristallogr. New Cryst. Struct. 225, 483-485.]); Chen & Liu (2002[Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811-4817.]). For background to the synthesis of functionalized adamantane compounds, see: Seidel & Stang (2002[Seidel, S. R. & Stang, P. J. (2002). Acc. Chem. Res. 35, 972-986.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H14O4)(C12H8N2)(H2O)]·H2O

  • Mr = 493.41

  • Monoclinic, P 21 /c

  • a = 13.248 (2) Å

  • b = 18.345 (3) Å

  • c = 9.3908 (17) Å

  • β = 105.283 (3)°

  • V = 2201.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.30 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.898

  • 10943 measured reflections

  • 3918 independent reflections

  • 2393 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 0.83

  • 3918 reflections

  • 310 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn2—O3i 2.140 (2)
Mn2—O5 2.170 (2)
Mn2—O2 2.224 (2)
Mn2—N1 2.244 (2)
Mn2—O1 2.271 (2)
Mn2—N2 2.282 (2)
O2—Mn2—O1 57.92 (7)
Symmetry code: (i) x, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5WA⋯O2ii 0.84 (1) 1.88 (1) 2.711 (3) 173 (5)
O5—H5WB⋯O4i 0.83 (1) 1.76 (1) 2.582 (3) 172 (5)
O6—H6WA⋯O3iii 0.84 (1) 2.60 (6) 3.062 (4) 116 (5)
O6—H6WB⋯O1iv 0.84 (1) 2.22 (4) 2.914 (4) 140 (5)
Symmetry codes: (i) x, y, z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Adamantane-1,3-dicarboxylate (H2L), is a dicarboxylaic acid and one of the most stable hydrocarbons, which was discovered in the 1930s. As a consequence of its stability, it can be produced catalytically from a wide various precursor organic substances (Seidel & Stang, 2002). In our recent work, we have studied the supramolecular chemistry based on L and 2,2-bipy (Liu et al., 2010). With this background in mind, we continued to our investigation and chose L as a bridging ligand and phenanthroline (phen) ligand to react with the d-block metal ions. Herein, we are interested in self-assembly reactions of MnII with H2L and phen, which led to the title compound, (I).

The title compound, {[Mn(L)(phen)(H2O)].H2O} is comprised of a MnII, one adamantane-1,3-dicarboxylate dianion and one phen ligand, one coordinated water molecule and one free water molecule. As illustrated in Fig. 1. the MnII has a highly distorted octahedral coordination sphere (Table 1) comprising two N atoms from one different phen ligand, three one oxygen atoms from the adjacent L ligands and one coordinated water molecule. In title compound, the MnII ions are linked by L ligands to form chains along the c axis (Fig. 2), and the resulting chains are further held together based on O—H···O hydrogen bonds interactions, shaping 2D supramolecular sheet parallel to [010] (Table 2).

Compared to the title compound and {[MnII(L)(2,2'-bipy).H2O]}n, the L exhibits bridging bidentate and chelated-bidentate modes in the latter compoud (Liu & Wu, 2010). Moreover, a dinuclear unit MnII was also shaped due to the different coordinated mode. Thus, the assistant ligand could induce the separated fomration of structures (Chen & Liu., 2002).

Related literature top

For related structures, see: Liu & Wu (2010); Chen & Liu (2002). For background to the synthesis of functionalized adamantane compounds, see: Seidel & Stang (2002).

Experimental top

A mixture of Mn(ac)2.H2O (25 mg, 0.1 mmol), H2L (21 mg, 0.1 mmol), phen (18 mg, 0.1 mmol), NaOH (0.1mmol) and 8 ml H2O and CH3OH (3ml) was stirred for 1h, and then the mixture was transferred to an 25-ml Teflon-lined reactor and kept under autogenous pressure at 435 K for 3 days,then cooled down to room temperature. Colourless blocks of (I) were obtained.

Refinement top

All H atoms attached to C and O (hydroxyl group) atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(). H atoms of water molecules were located in a difference map and refined with restraints of O-H=0.83 (1)Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing ellipsoids drawn at the 30% probability level. (symmetry code: (i): x, y, z-1).
[Figure 2] Fig. 2. View of the 1D chain along the bc plane.
catena-Poly[[[aqua(1,10-phenanthroline)manganese(II)]- µ-adamantane-1,3-dicarboxylato] monohydrate] top
Crystal data top
[Mn(C12H14O4)(C12H8N2)(H2O)]·H2OF(000) = 1028
Mr = 493.41Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3918 reflections
a = 13.248 (2) Åθ = 1.6–25.2°
b = 18.345 (3) ŵ = 0.64 mm1
c = 9.3908 (17) ÅT = 298 K
β = 105.283 (3)°Block, colorless
V = 2201.6 (6) Å30.30 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3918 independent reflections
Radiation source: fine-focus sealed tube2393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1513
Tmin = 0.830, Tmax = 0.898k = 2121
10943 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
3918 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.28 e Å3
6 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C12H14O4)(C12H8N2)(H2O)]·H2OV = 2201.6 (6) Å3
Mr = 493.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.248 (2) ŵ = 0.64 mm1
b = 18.345 (3) ÅT = 298 K
c = 9.3908 (17) Å0.30 × 0.22 × 0.17 mm
β = 105.283 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3918 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2393 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.898Rint = 0.046
10943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.28 e Å3
3918 reflectionsΔρmin = 0.26 e Å3
310 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn20.19018 (3)0.04500 (3)0.66751 (5)0.03220 (17)
O10.30979 (16)0.00888 (12)0.5476 (2)0.0446 (6)
O20.14940 (15)0.03061 (12)0.4757 (2)0.0417 (6)
O30.24611 (15)0.02364 (12)0.1439 (2)0.0402 (5)
O40.09567 (17)0.06327 (14)0.1146 (2)0.0623 (8)
O50.04001 (16)0.04967 (12)0.7192 (2)0.0415 (5)
N10.28258 (17)0.13908 (14)0.7887 (2)0.0325 (6)
N20.13230 (18)0.14711 (14)0.5316 (2)0.0356 (6)
C190.2230 (2)0.04651 (16)0.1959 (3)0.0282 (6)
H19A0.25030.00230.19160.034*
H19B0.14780.04290.17950.034*
C50.2538 (2)0.20657 (16)0.7326 (3)0.0309 (7)
C90.1728 (2)0.21121 (16)0.5955 (3)0.0314 (7)
C140.2711 (2)0.07909 (16)0.3488 (3)0.0292 (7)
C70.1847 (3)0.34353 (18)0.6131 (4)0.0496 (9)
H70.16180.38910.57440.060*
C40.2981 (2)0.27062 (18)0.8028 (3)0.0376 (8)
C170.2031 (2)0.17043 (17)0.0829 (3)0.0370 (7)
H17A0.12780.16740.06630.044*
H17B0.21770.20130.00680.044*
C10.3574 (2)0.13474 (19)0.9138 (3)0.0395 (8)
H10.37870.08880.95190.047*
C100.0618 (2)0.28050 (19)0.4005 (3)0.0440 (8)
H100.03810.32470.35540.053*
C130.2427 (2)0.03075 (16)0.4641 (3)0.0322 (7)
C180.2479 (2)0.09385 (16)0.0732 (3)0.0300 (7)
C80.1389 (2)0.27964 (18)0.5349 (3)0.0376 (8)
C230.3666 (2)0.09953 (18)0.1002 (3)0.0388 (8)
H23A0.39600.05140.09530.047*
H23B0.38310.12960.02450.047*
C30.3762 (2)0.2630 (2)0.9355 (3)0.0460 (9)
H30.40800.30420.98580.055*
C200.3902 (2)0.08430 (19)0.3729 (3)0.0393 (8)
H20A0.42210.10450.46980.047*
H20B0.41900.03600.36820.047*
C150.2259 (2)0.15618 (16)0.3527 (3)0.0357 (7)
H15A0.25520.17780.44900.043*
H15B0.15060.15320.33640.043*
C110.0218 (2)0.2171 (2)0.3362 (4)0.0475 (9)
H110.02960.21730.24690.057*
C240.1921 (2)0.05850 (17)0.0733 (3)0.0354 (8)
C210.3698 (3)0.20887 (19)0.2604 (4)0.0527 (10)
H21A0.40060.23030.35650.063*
H21B0.38640.23990.18600.063*
C20.4056 (2)0.19561 (19)0.9908 (3)0.0456 (9)
H20.45730.19021.07890.055*
C160.2516 (3)0.20380 (18)0.2341 (3)0.0448 (9)
H160.22280.25270.23820.054*
C120.0587 (2)0.15148 (19)0.4056 (3)0.0442 (8)
H120.02990.10830.36070.053*
C60.2598 (3)0.33959 (18)0.7406 (4)0.0468 (9)
H60.28730.38220.78910.056*
C220.4146 (2)0.1333 (2)0.2532 (3)0.0441 (9)
H220.49060.13690.26970.053*
O60.5446 (2)0.0628 (2)0.2049 (4)0.0980 (11)
H5WB0.053 (4)0.0136 (19)0.775 (5)0.147*
H5WA0.016 (2)0.046 (3)0.654 (4)0.147*
H6WB0.557 (4)0.042 (3)0.287 (3)0.147*
H6WA0.595 (3)0.090 (3)0.200 (5)0.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn20.0366 (3)0.0309 (3)0.0281 (3)0.0007 (2)0.00675 (19)0.0015 (2)
O10.0418 (12)0.0487 (15)0.0423 (13)0.0064 (11)0.0093 (10)0.0153 (11)
O20.0329 (12)0.0563 (16)0.0357 (12)0.0018 (10)0.0088 (9)0.0116 (11)
O30.0416 (12)0.0472 (15)0.0331 (12)0.0018 (10)0.0119 (10)0.0123 (10)
O40.0420 (14)0.085 (2)0.0501 (15)0.0114 (13)0.0041 (11)0.0307 (14)
O50.0350 (12)0.0440 (15)0.0434 (13)0.0023 (11)0.0068 (10)0.0010 (11)
N10.0302 (13)0.0357 (17)0.0307 (14)0.0010 (11)0.0067 (10)0.0003 (12)
N20.0375 (14)0.0339 (17)0.0313 (14)0.0010 (12)0.0019 (11)0.0008 (12)
C190.0331 (15)0.0214 (16)0.0292 (15)0.0023 (13)0.0069 (12)0.0021 (13)
C50.0326 (16)0.0294 (19)0.0325 (17)0.0018 (13)0.0116 (13)0.0018 (14)
C90.0344 (16)0.032 (2)0.0291 (16)0.0009 (14)0.0096 (13)0.0039 (14)
C140.0332 (15)0.0270 (18)0.0272 (16)0.0025 (13)0.0078 (12)0.0025 (13)
C70.062 (2)0.028 (2)0.061 (2)0.0025 (17)0.0186 (19)0.0050 (17)
C40.0433 (18)0.031 (2)0.0387 (19)0.0065 (15)0.0123 (15)0.0047 (14)
C170.0471 (18)0.0287 (18)0.0351 (18)0.0005 (15)0.0106 (14)0.0053 (14)
C10.0360 (17)0.043 (2)0.0383 (18)0.0011 (15)0.0069 (14)0.0005 (16)
C100.0435 (19)0.043 (2)0.046 (2)0.0116 (17)0.0123 (16)0.0132 (17)
C130.0387 (18)0.031 (2)0.0242 (16)0.0035 (14)0.0032 (13)0.0039 (13)
C180.0344 (16)0.0311 (18)0.0240 (15)0.0037 (13)0.0070 (12)0.0035 (13)
C80.0377 (17)0.037 (2)0.0411 (19)0.0030 (15)0.0151 (15)0.0053 (15)
C230.0404 (17)0.047 (2)0.0321 (17)0.0041 (15)0.0149 (14)0.0034 (15)
C30.047 (2)0.044 (2)0.047 (2)0.0128 (17)0.0122 (16)0.0095 (17)
C200.0357 (17)0.050 (2)0.0297 (17)0.0041 (15)0.0043 (13)0.0078 (16)
C150.0431 (18)0.0290 (19)0.0348 (17)0.0050 (14)0.0099 (14)0.0082 (14)
C110.0414 (19)0.055 (3)0.042 (2)0.0032 (17)0.0031 (16)0.0049 (18)
C240.0397 (18)0.037 (2)0.0271 (16)0.0004 (14)0.0053 (14)0.0020 (14)
C210.068 (2)0.047 (2)0.044 (2)0.0302 (19)0.0156 (18)0.0083 (17)
C20.0389 (18)0.055 (3)0.0370 (19)0.0057 (17)0.0006 (15)0.0042 (17)
C160.069 (2)0.024 (2)0.043 (2)0.0035 (16)0.0189 (17)0.0021 (15)
C120.0486 (19)0.043 (2)0.0352 (19)0.0000 (16)0.0015 (15)0.0011 (16)
C60.059 (2)0.028 (2)0.055 (2)0.0092 (16)0.0175 (18)0.0052 (17)
C220.0324 (17)0.064 (3)0.0353 (18)0.0188 (16)0.0079 (14)0.0039 (17)
O60.071 (2)0.138 (4)0.083 (2)0.017 (2)0.0171 (17)0.043 (2)
Geometric parameters (Å, º) top
Mn2—O3i2.140 (2)C17—H17A0.9700
Mn2—O52.170 (2)C17—H17B0.9700
Mn2—O22.224 (2)C1—C21.390 (4)
Mn2—N12.244 (2)C1—H10.9300
Mn2—O12.271 (2)C10—C111.353 (5)
Mn2—N22.282 (2)C10—C81.398 (4)
O1—C131.251 (3)C10—H100.9300
O2—C131.269 (3)C18—C241.524 (4)
O3—C241.269 (4)C18—C231.529 (4)
O3—Mn2ii2.140 (2)C23—C221.539 (4)
O4—C241.236 (4)C23—H23A0.9700
O5—H5WB0.833 (10)C23—H23B0.9700
O5—H5WA0.835 (10)C3—C21.358 (5)
N1—C11.325 (3)C3—H30.9300
N1—C51.360 (4)C20—C221.539 (4)
N2—C121.323 (3)C20—H20A0.9700
N2—C91.364 (4)C20—H20B0.9700
C19—C141.530 (4)C15—C161.523 (4)
C19—C181.547 (4)C15—H15A0.9700
C19—H19A0.9700C15—H15B0.9700
C19—H19B0.9700C11—C121.395 (4)
C5—C41.398 (4)C11—H110.9300
C5—C91.445 (4)C21—C221.517 (5)
C9—C81.402 (4)C21—C161.522 (5)
C14—C131.521 (4)C21—H21A0.9700
C14—C201.536 (4)C21—H21B0.9700
C14—C151.540 (4)C2—H20.9300
C7—C61.342 (4)C16—H160.9800
C7—C81.431 (4)C12—H120.9300
C7—H70.9300C6—H60.9300
C4—C31.402 (4)C22—H220.9800
C4—C61.429 (4)O6—H6WB0.839 (10)
C17—C161.524 (4)O6—H6WA0.844 (10)
C17—C181.537 (4)
O3i—Mn2—O588.62 (8)O2—C13—C14119.4 (3)
O3i—Mn2—O2105.10 (9)C24—C18—C23114.3 (2)
O5—Mn2—O299.46 (8)C24—C18—C17109.8 (2)
O3i—Mn2—N190.53 (9)C23—C18—C17108.9 (2)
O5—Mn2—N1105.42 (8)C24—C18—C19106.6 (2)
O2—Mn2—N1150.90 (8)C23—C18—C19109.1 (2)
O3i—Mn2—O195.98 (8)C17—C18—C19107.9 (2)
O5—Mn2—O1157.34 (8)C10—C8—C9117.1 (3)
O2—Mn2—O157.92 (7)C10—C8—C7124.3 (3)
N1—Mn2—O196.73 (8)C9—C8—C7118.5 (3)
O3i—Mn2—N2159.65 (9)C18—C23—C22109.6 (2)
O5—Mn2—N284.25 (8)C18—C23—H23A109.7
O2—Mn2—N294.88 (8)C22—C23—H23A109.7
N1—Mn2—N273.16 (9)C18—C23—H23B109.7
O1—Mn2—N297.92 (9)C22—C23—H23B109.7
C13—O1—Mn290.40 (18)H23A—C23—H23B108.2
C13—O2—Mn292.09 (17)C2—C3—C4120.0 (3)
C24—O3—Mn2ii127.51 (19)C2—C3—H3120.0
Mn2—O5—H5WB94 (4)C4—C3—H3120.0
Mn2—O5—H5WA122 (4)C14—C20—C22109.5 (2)
H5WB—O5—H5WA113 (3)C14—C20—H20A109.8
C1—N1—C5117.8 (3)C22—C20—H20A109.8
C1—N1—Mn2125.7 (2)C14—C20—H20B109.8
C5—N1—Mn2116.35 (18)C22—C20—H20B109.8
C12—N2—C9116.9 (3)H20A—C20—H20B108.2
C12—N2—Mn2127.6 (2)C16—C15—C14110.3 (2)
C9—N2—Mn2115.25 (18)C16—C15—H15A109.6
C14—C19—C18111.2 (2)C14—C15—H15A109.6
C14—C19—H19A109.4C16—C15—H15B109.6
C18—C19—H19A109.4C14—C15—H15B109.6
C14—C19—H19B109.4H15A—C15—H15B108.1
C18—C19—H19B109.4C10—C11—C12119.0 (3)
H19A—C19—H19B108.0C10—C11—H11120.5
N1—C5—C4122.8 (3)C12—C11—H11120.5
N1—C5—C9117.7 (3)O4—C24—O3123.4 (3)
C4—C5—C9119.4 (3)O4—C24—C18117.9 (3)
N2—C9—C8123.1 (3)O3—C24—C18118.6 (3)
N2—C9—C5117.0 (3)C22—C21—C16109.6 (3)
C8—C9—C5119.9 (3)C22—C21—H21A109.8
C13—C14—C19108.7 (2)C16—C21—H21A109.8
C13—C14—C20111.6 (2)C22—C21—H21B109.8
C19—C14—C20108.6 (2)C16—C21—H21B109.8
C13—C14—C15110.4 (2)H21A—C21—H21B108.2
C19—C14—C15108.2 (2)C3—C2—C1119.1 (3)
C20—C14—C15109.3 (2)C3—C2—H2120.4
C6—C7—C8121.9 (3)C1—C2—H2120.4
C6—C7—H7119.1C21—C16—C15109.6 (3)
C8—C7—H7119.1C21—C16—C17109.8 (3)
C5—C4—C3117.1 (3)C15—C16—C17109.3 (3)
C5—C4—C6119.4 (3)C21—C16—H16109.4
C3—C4—C6123.4 (3)C15—C16—H16109.4
C16—C17—C18110.3 (2)C17—C16—H16109.4
C16—C17—H17A109.6N2—C12—C11123.7 (3)
C18—C17—H17A109.6N2—C12—H12118.1
C16—C17—H17B109.6C11—C12—H12118.1
C18—C17—H17B109.6C7—C6—C4120.8 (3)
H17A—C17—H17B108.1C7—C6—H6119.6
N1—C1—C2123.1 (3)C4—C6—H6119.6
N1—C1—H1118.4C21—C22—C20110.0 (3)
C2—C1—H1118.4C21—C22—C23109.8 (3)
C11—C10—C8120.0 (3)C20—C22—C23109.4 (3)
C11—C10—H10120.0C21—C22—H22109.2
C8—C10—H10120.0C20—C22—H22109.2
O1—C13—O2119.5 (3)C23—C22—H22109.2
O1—C13—C14121.1 (3)H6WB—O6—H6WA111 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O2iii0.84 (1)1.88 (1)2.711 (3)173 (5)
O5—H5WB···O4i0.83 (1)1.76 (1)2.582 (3)172 (5)
O6—H6WA···O3iv0.84 (1)2.60 (6)3.062 (4)116 (5)
O6—H6WB···O1v0.84 (1)2.22 (4)2.914 (4)140 (5)
Symmetry codes: (i) x, y, z+1; (iii) x, y, z+1; (iv) x+1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H14O4)(C12H8N2)(H2O)]·H2O
Mr493.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.248 (2), 18.345 (3), 9.3908 (17)
β (°) 105.283 (3)
V3)2201.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.30 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.830, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
10943, 3918, 2393
Rint0.046
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 0.83
No. of reflections3918
No. of parameters310
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Mn2—O3i2.140 (2)Mn2—N12.244 (2)
Mn2—O52.170 (2)Mn2—O12.271 (2)
Mn2—O22.224 (2)Mn2—N22.282 (2)
O2—Mn2—O157.92 (7)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O2ii0.835 (10)1.881 (13)2.711 (3)173 (5)
O5—H5WB···O4i0.833 (10)1.755 (12)2.582 (3)172 (5)
O6—H6WA···O3iii0.844 (10)2.60 (6)3.062 (4)116 (5)
O6—H6WB···O1iv0.839 (10)2.22 (4)2.914 (4)140 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Guangdong Medical College (B2010009).

References

First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J. Q. & Wu, T. (2010). Z. Kristallogr. New Cryst. Struct. 225, 483–485.  CAS Google Scholar
First citationSeidel, S. R. & Stang, P. J. (2002). Acc. Chem. Res. 35, 972–986.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1541-m1542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds