organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5E)-5-(2,4-Di­chloro­benzyl­­idene)-2-(piperidin-1-yl)-1,3-thia­zol-4(5H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalagangothri 574 199, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 October 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C15H14Cl2N2OS, the piperidine ring adopts a chair conformation. The dihedral angle between the thia­zolidine ring and the dichloro­benzene ring is 9.30 (4)°; this near coplanar conformation is stabilized by the formation of an intra­molecular C—H⋯S hydrogen bond, which generates an S(6) ring. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming [001] chains. Weak ππ inter­actions [centroid–centroid separation = 3.5460 (5) Å] consolidate the structure.

Related literature

For details and properties of the 4-thia­zolidinone ring system, see: Lesyk & Zimenkovsky (2004[Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547-1577.]); Lesyk et al. (2007[Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641-648.]); Havrylyuk et al. (2009[Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396-1404.]); Ahn et al. (2006[Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). Bioorg. Med. Chem. Lett. 16, 2996-2999.]); Park et al. (2008[Park, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250-2255.]); Geronikaki et al. (2008[Geronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221-5228.]); Zimenkovsky et al. (2005[Zimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Pol. Chem. Soc. 1, 69-72.]). For ring puckering, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14Cl2N2OS

  • Mr = 341.24

  • Monoclinic, C 2/c

  • a = 28.5303 (3) Å

  • b = 7.4915 (1) Å

  • c = 15.4789 (2) Å

  • β = 116.407 (1)°

  • V = 2963.17 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 100 K

  • 0.44 × 0.25 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.928

  • 46944 measured reflections

  • 6673 independent reflections

  • 5955 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.03

  • 6673 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯S1 0.95 2.49 3.2260 (8) 134
C4—H4A⋯O1i 0.95 2.40 3.3080 (9) 160
C15—H15A⋯O1ii 0.99 2.57 3.2778 (11) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4-thiazolidinone ring system is a core structure in various synthetic compounds displaying a broad spectrum of biological activities (Lesyk & Zimenkovsky, 2004), including an anticancer effect (Lesyk et al., 2007; Havrylyuk et al., 2009). The mechanisms of antitumor activity by 4-thiazolidinones and related heterocycles may be associated with their affinities to anticancer bio-targets, such as phosphatase of a regenerating liver (PRL-3) (Ahn et al., 2006; Park et al., 2008) and nonmembrane protein tyrosine phosphatase (SHP-2)(Geronikaki et al., 2008). 5-Arylidene derivatives were previously shown as the most active group of compounds with the anticancer activity among a large pool of 4-azolidone derivatives and analogs (Zimenkovsky et al., 2005). This prompted us to synthesize the title compound, (I), (Fig. 1).

The piperidine ((N2/C11–C15) ring adopts a chair conformation [Q = 0.5462 (10) Å; θ = 5.78 (10)° and ϕ = 206.6 (10)°; Cremer & Pople, 1975]. The central thiazolidine (S1/N1/C8–C10) ring makes dihedral angles of 21.18 (4)° and 9.30 (4)° with the terminal piperidine (N2/C11–C15) and phenyl (C1–C6) rings. The corresponding angle between the piperidine and phenyl (N2/C11–C15)/(C1–C6) rings is 13.69 (4)°. An intramolecular C1—H1A···S1 hydrogen bond generates an S(6) (Bernstein et al., 1995) ring motif.

In the crystal structure, (Fig. 2), the molecules are connected via intermolecular C—H···O (Table 1) hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. The crystal structure is further stabilized by weak ππ interactions between the thiazolidine (Cg1; S1/N1/C8–C10) and phenyl (Cg3; C1–C6) rings [Cg1···Cg3 = 3.5460 (5) Å; 1/2-x, 3/2-y, 1-z].

Related literature top

For details and properties of the 4-thiazolidinone ring system, see: Lesyk & Zimenkovsky (2004); Lesyk et al. (2007); Havrylyuk et al. (2009); Ahn et al. (2006); Park et al. (2008); Geronikaki et al. (2008); Zimenkovsky et al. (2005). For ring puckering, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

An equimolar mixture of 2-(4-methylsulfanylphenyl)acetohydrazide and 4-chlorobenzaldehyde was refluxed for four hours in the presence of few drops of acid catalyst and ethanol as solvent. The compound obtained was filtered, washed, dried and recrystalised from ethanol to yield brown blocks of (I).

Refinement top

All hydrogen atoms were positioned geometrically [ C–H = 0.95 or 0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. An intramolecular hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
(5E)-5-(2,4-Dichlorobenzylidene)-2-(piperidin-1-yl)- 1,3-thiazol-4(5H)-one top
Crystal data top
C15H14Cl2N2OSF(000) = 1408
Mr = 341.24Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9844 reflections
a = 28.5303 (3) Åθ = 2.7–35.2°
b = 7.4915 (1) ŵ = 0.58 mm1
c = 15.4789 (2) ÅT = 100 K
β = 116.407 (1)°Block, brown
V = 2963.17 (6) Å30.44 × 0.25 × 0.13 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
6673 independent reflections
Radiation source: fine-focus sealed tube5955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 35.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4546
Tmin = 0.783, Tmax = 0.928k = 1212
46944 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.7424P]
where P = (Fo2 + 2Fc2)/3
6673 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H14Cl2N2OSV = 2963.17 (6) Å3
Mr = 341.24Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.5303 (3) ŵ = 0.58 mm1
b = 7.4915 (1) ÅT = 100 K
c = 15.4789 (2) Å0.44 × 0.25 × 0.13 mm
β = 116.407 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6673 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5955 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.928Rint = 0.024
46944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.03Δρmax = 0.52 e Å3
6673 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.430128 (8)0.28966 (3)0.729616 (15)0.02400 (5)
Cl20.269296 (8)0.51920 (3)0.790208 (13)0.02382 (5)
S10.176998 (7)0.57324 (3)0.374212 (12)0.01596 (4)
O10.11470 (2)0.76041 (9)0.52929 (4)0.02178 (12)
N10.09082 (3)0.72148 (9)0.36763 (5)0.01686 (11)
N20.08873 (3)0.66216 (10)0.21783 (4)0.01825 (12)
C10.28809 (3)0.46653 (11)0.54975 (5)0.01796 (13)
H1A0.26880.48500.48220.022*
C20.33866 (3)0.40104 (11)0.58547 (6)0.01884 (13)
H2A0.35400.37740.54330.023*
C30.36659 (3)0.37051 (10)0.68400 (6)0.01726 (12)
C40.34481 (3)0.40355 (11)0.74672 (5)0.01740 (12)
H4A0.36390.37970.81380.021*
C50.29438 (3)0.47245 (10)0.70876 (5)0.01601 (12)
C60.26411 (3)0.50678 (10)0.60961 (5)0.01517 (12)
C70.21245 (3)0.58738 (10)0.57455 (5)0.01636 (12)
H7A0.20280.62210.62350.020*
C80.17611 (3)0.62056 (10)0.48355 (5)0.01523 (12)
C90.12450 (3)0.70822 (10)0.46399 (5)0.01629 (12)
C100.11223 (3)0.66071 (10)0.31348 (5)0.01553 (12)
C110.03308 (3)0.71217 (13)0.16554 (6)0.02211 (15)
H11A0.02270.77960.20930.027*
H11B0.01140.60270.14500.027*
C120.02289 (3)0.82567 (13)0.07750 (6)0.02274 (15)
H12A0.03920.94440.09880.027*
H12B0.01530.84340.03940.027*
C130.04478 (3)0.73902 (13)0.01359 (6)0.02228 (15)
H13A0.02570.62670.01410.027*
H13B0.03980.82020.04030.027*
C140.10279 (3)0.69973 (12)0.07298 (6)0.01982 (14)
H14A0.12210.81330.09610.024*
H14B0.11650.63930.03200.024*
C150.11176 (4)0.58124 (12)0.15908 (6)0.02219 (15)
H15A0.09580.46270.13590.027*
H15B0.14980.56400.19910.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01844 (8)0.02974 (10)0.02435 (9)0.00495 (7)0.01001 (7)0.00259 (7)
Cl20.01920 (9)0.04116 (12)0.01293 (7)0.00453 (7)0.00879 (6)0.00332 (7)
S10.01586 (8)0.02028 (8)0.01193 (7)0.00101 (6)0.00634 (6)0.00006 (6)
O10.0210 (3)0.0317 (3)0.0141 (2)0.0032 (2)0.0092 (2)0.0011 (2)
N10.0159 (3)0.0229 (3)0.0124 (2)0.0001 (2)0.0069 (2)0.0001 (2)
N20.0163 (3)0.0272 (3)0.0112 (2)0.0023 (2)0.0060 (2)0.0005 (2)
C10.0199 (3)0.0215 (3)0.0134 (3)0.0007 (3)0.0083 (2)0.0006 (2)
C20.0208 (3)0.0212 (3)0.0169 (3)0.0014 (3)0.0105 (3)0.0005 (2)
C30.0165 (3)0.0178 (3)0.0180 (3)0.0004 (2)0.0081 (2)0.0008 (2)
C40.0167 (3)0.0204 (3)0.0146 (3)0.0003 (2)0.0064 (2)0.0014 (2)
C50.0164 (3)0.0203 (3)0.0125 (3)0.0014 (2)0.0075 (2)0.0005 (2)
C60.0158 (3)0.0175 (3)0.0126 (3)0.0016 (2)0.0066 (2)0.0004 (2)
C70.0166 (3)0.0201 (3)0.0127 (3)0.0010 (2)0.0068 (2)0.0003 (2)
C80.0159 (3)0.0178 (3)0.0126 (3)0.0014 (2)0.0068 (2)0.0002 (2)
C90.0164 (3)0.0196 (3)0.0133 (3)0.0010 (2)0.0070 (2)0.0001 (2)
C100.0150 (3)0.0189 (3)0.0125 (3)0.0008 (2)0.0060 (2)0.0003 (2)
C110.0155 (3)0.0365 (4)0.0139 (3)0.0009 (3)0.0061 (2)0.0022 (3)
C120.0190 (3)0.0339 (4)0.0148 (3)0.0050 (3)0.0070 (3)0.0033 (3)
C130.0230 (4)0.0303 (4)0.0133 (3)0.0015 (3)0.0078 (3)0.0010 (3)
C140.0220 (3)0.0245 (4)0.0159 (3)0.0008 (3)0.0111 (3)0.0006 (3)
C150.0252 (4)0.0291 (4)0.0138 (3)0.0072 (3)0.0100 (3)0.0015 (3)
Geometric parameters (Å, º) top
Cl1—C31.7357 (8)C6—C71.4560 (11)
Cl2—C51.7397 (7)C7—C81.3498 (10)
S1—C81.7402 (7)C7—H7A0.9500
S1—C101.7839 (8)C8—C91.5148 (11)
O1—C91.2265 (9)C11—C121.5207 (12)
N1—C101.3186 (10)C11—H11A0.9900
N1—C91.3722 (10)C11—H11B0.9900
N2—C101.3261 (9)C12—C131.5296 (12)
N2—C151.4690 (10)C12—H12A0.9900
N2—C111.4743 (11)C12—H12B0.9900
C1—C21.3851 (11)C13—C141.5223 (12)
C1—C61.4075 (10)C13—H13A0.9900
C1—H1A0.9500C13—H13B0.9900
C2—C31.3900 (11)C14—C151.5252 (12)
C2—H2A0.9500C14—H14A0.9900
C3—C41.3880 (11)C14—H14B0.9900
C4—C51.3893 (11)C15—H15A0.9900
C4—H4A0.9500C15—H15B0.9900
C5—C61.4102 (10)
C8—S1—C1088.74 (3)N1—C10—S1117.13 (5)
C10—N1—C9111.56 (6)N2—C10—S1118.84 (6)
C10—N2—C15122.99 (7)N2—C11—C12111.35 (7)
C10—N2—C11120.09 (6)N2—C11—H11A109.4
C15—N2—C11115.73 (6)C12—C11—H11A109.4
C2—C1—C6122.55 (7)N2—C11—H11B109.4
C2—C1—H1A118.7C12—C11—H11B109.4
C6—C1—H1A118.7H11A—C11—H11B108.0
C1—C2—C3118.91 (7)C11—C12—C13111.84 (7)
C1—C2—H2A120.5C11—C12—H12A109.2
C3—C2—H2A120.5C13—C12—H12A109.2
C4—C3—C2121.44 (7)C11—C12—H12B109.2
C4—C3—Cl1119.28 (6)C13—C12—H12B109.2
C2—C3—Cl1119.29 (6)H12A—C12—H12B107.9
C3—C4—C5118.17 (7)C14—C13—C12109.79 (6)
C3—C4—H4A120.9C14—C13—H13A109.7
C5—C4—H4A120.9C12—C13—H13A109.7
C4—C5—C6123.08 (7)C14—C13—H13B109.7
C4—C5—Cl2116.79 (5)C12—C13—H13B109.7
C6—C5—Cl2120.12 (6)H13A—C13—H13B108.2
C1—C6—C5115.83 (7)C13—C14—C15110.80 (7)
C1—C6—C7123.46 (7)C13—C14—H14A109.5
C5—C6—C7120.64 (7)C15—C14—H14A109.5
C8—C7—C6130.21 (7)C13—C14—H14B109.5
C8—C7—H7A114.9C15—C14—H14B109.5
C6—C7—H7A114.9H14A—C14—H14B108.1
C7—C8—C9121.03 (7)N2—C15—C14110.69 (7)
C7—C8—S1129.85 (6)N2—C15—H15A109.5
C9—C8—S1109.10 (5)C14—C15—H15A109.5
O1—C9—N1124.51 (7)N2—C15—H15B109.5
O1—C9—C8122.08 (7)C14—C15—H15B109.5
N1—C9—C8113.41 (6)H15A—C15—H15B108.1
N1—C10—N2124.03 (7)
C6—C1—C2—C31.25 (12)C7—C8—C9—O13.74 (12)
C1—C2—C3—C40.26 (12)S1—C8—C9—O1177.51 (7)
C1—C2—C3—Cl1179.63 (6)C7—C8—C9—N1175.99 (7)
C2—C3—C4—C51.49 (12)S1—C8—C9—N12.77 (8)
Cl1—C3—C4—C5178.41 (6)C9—N1—C10—N2178.19 (8)
C3—C4—C5—C61.30 (12)C9—N1—C10—S11.36 (9)
C3—C4—C5—Cl2177.86 (6)C15—N2—C10—N1175.15 (8)
C2—C1—C6—C51.41 (12)C11—N2—C10—N18.17 (12)
C2—C1—C6—C7175.53 (8)C15—N2—C10—S15.31 (11)
C4—C5—C6—C10.10 (11)C11—N2—C10—S1172.29 (6)
Cl2—C5—C6—C1179.24 (6)C8—S1—C10—N10.25 (7)
C4—C5—C6—C7176.93 (7)C8—S1—C10—N2179.82 (7)
Cl2—C5—C6—C72.21 (10)C10—N2—C11—C12140.61 (8)
C1—C6—C7—C87.99 (13)C15—N2—C11—C1251.50 (10)
C5—C6—C7—C8175.21 (8)N2—C11—C12—C1351.51 (10)
C6—C7—C8—C9179.51 (7)C11—C12—C13—C1455.21 (10)
C6—C7—C8—S12.03 (13)C12—C13—C14—C1556.91 (10)
C10—S1—C8—C7177.01 (8)C10—N2—C15—C14139.08 (8)
C10—S1—C8—C91.60 (5)C11—N2—C15—C1453.41 (10)
C10—N1—C9—O1177.67 (8)C13—C14—C15—N255.37 (9)
C10—N1—C9—C82.61 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···S10.952.493.2260 (8)134
C4—H4A···O1i0.952.403.3080 (9)160
C15—H15A···O1ii0.992.573.2778 (11)129
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14Cl2N2OS
Mr341.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.5303 (3), 7.4915 (1), 15.4789 (2)
β (°) 116.407 (1)
V3)2963.17 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.44 × 0.25 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.783, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
46944, 6673, 5955
Rint0.024
(sin θ/λ)max1)0.815
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.03
No. of reflections6673
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···S10.952.493.2260 (8)134
C4—H4A···O1i0.952.403.3080 (9)160
C15—H15A···O1ii0.992.573.2778 (11)129
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAhn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., Kang, S. K., Jeong, D. G., Jung, S. K., Lee, S. H., Kim, H. M., Park, S. K., Lee, K. H., Lee, C. W., Ryu, S. E. & Choi, J. K. (2006). Bioorg. Med. Chem. Lett. 16, 2996–2999.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGeronikaki, A., Eleftheriou, P., Vicini, P., Alam, I., Dixit, A. & Saxena, A. K. (2008). J. Med. Chem. 51, 5221–5228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHavrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A. & Lesyk, R. (2009). Eur. J. Med. Chem. 44, 1396–1404.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1577.  Web of Science CrossRef CAS Google Scholar
First citationPark, H., Jung, S. K., Jeong, D. G., Ryu, S. E. & Kim, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2250–2255.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimenkovsky, B., Kazmirchuk, G., Zaprutko, L., Paraskiewicz, A., Melzer, E. & Lesyk, R. (2005). Pol. Chem. Soc. 1, 69–72.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds